Final Investment Grade Audit

Prepared for Town of Sudbury, Massachusetts

May 6, 2014

Prepared for

Town of Sudbury, Massachusetts

May 6, 2014

Final Investment Grade Audit

Presented by

Ameresco Inc. 111 Speen Street, Suite 410 Framingham, MA 01701 T: (508) 661.2200 • F: (508) 661.2201

Table of Contents

EXECUTIVE SUMMARY

SECTION 1: BASELINE

SECTION 2: EXISTING CONDITIONS

SECTION 3: ENERGY CONSERVATION MEASURES

SECTION 4: FINANCIAL RESULTS / RECOMMENDATIONS

SECTION 5: PRELIMINARY IMPLEMENTATION SCHEDULE

SECTION 6: PRELIMINARY COMMISSIONING PLAN

SECTION 7: MEASUREMENT & VERIFICATION PLAN

Table of Contents

This page is intentionally left blank.

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014

Page 2

Executive Summary

The Metropolitan Area Planning Council (MAPC) issued a Request for Qualifications (RFQ) to Energy Service Companies (ESCos) to provide for Comprehensive Energy Management Services for 14 of its member communities. Ameresco submitted a proposal and was subsequently awarded the contract.

The program utilizes a multiple step design/development process beginning with a Preliminary Energy Audit (PEA) and followed by a refined and detailed Investment Grade Audit (IGA). This IGA is a key step in developing a successful energy savings and infrastructure improvement project focusing on the exact needs and desires of the Town. The purpose of the IGA is to analyze and quantify the feasibility of installing certain improvements or energy conservation measures (ECMs) throughout the Town of Sudbury. The IGA will form the basis for the subsequent Energy Services Agreement (ESA) which will enable the design and construction phase.

This IGA quantifies how the Town will be able to reduce utility costs by nearly \$83,000 annually, through the acquisition of \$1 million dollars in capital improvements. This investment however, will be budget-neutral to the Town. The Town will achieve these improvements via a Performance Contact designed to extract energy inefficiencies in the current utility operating budgets to self-fund the project from future energy savings. Payment will be made over time utilizing Ameresco's guaranteed annual energy savings for security.

Table ES.1

Total Project Cost	\$1,093,073
Estimated Utility Rebates	\$118,928
Net Project Cost	\$974,145
Financing Term (after construction)	15 years
Estimated Tax-exempt Interest Rate	3.25%
Guaranteed Cost Savings / Year 1	\$82,598
Net Excess Cumulative Cash Flow	\$97,350

Executive Summary

In collaboration with and by direction of the Town, Ameresco has conducted an IGA on the buildings below. The table provides the square footage for each building analyzed, along with the energy performance of each building, in terms of fossil fuel and electricity usage per square foot. Energy performance is the ratio of yearly energy use by square footage and is a good indicator of how well a building performs.

Facility Name	Gross Square Feet	Fuel MBTU / g.s.f.	Electric MBTU / g.s.f.	Total EUI MBTU / g.s.f.
DPW Highway ¹	7,154	147.5	-	147.5
DPW Offices	28,274	42.3	22.9	65.2
Flynn Building	14,750	48.1	38.8	86.9
Town Hall ²	13,705	110.9	11.1	122.1
Fairbank Community Center	40,341	154.7	48.9	203.6
Public Library	34,364	40.4	31.7	72.1
Fire Department Headquarters	10,055	66.2	32.7	98.9
Fire Department South	3,286	102.2	17.7	119.8
Fire Department North	3,286	81.9	19.4	101.3
Curtis Middle School	155,789	37.8	25.2	63.0
Loring Elementary School	78,451	40.8	19.0	59.8
Noyes Elementary School	82,502	52.7	15.0	67.8
Haynes Elementary School	62,565	61.5	18.1	79.7
Nixon Elementary School	57,902	54.7	18.3	73.0
Total/Averages	592,424	57.1	23.2	80.3

Ameresco developed a comprehensive baseline for each facility, the details of which can be found in Section 1. The total amount of utility usage for the Fiscal Year 2011 was 4,025,852 kWh of electricity, 338,293 Therms of natural gas, and 5,203 kgallons of water.

A wide-range of energy conservation measures (ECMs) were identified, evaluated, and presented for consideration. The comprehensive development process of the IGA included input from Town personnel in order to refine the ECMs and overall scope of the project to match the infrastructure need of the facilities. This IGA outlines and describes 11 distinct ECMs across all facilities as listed in the matrix on the following page. The subsequent page lists the cost and savings for each of the measures across all facilities.

Final Investment Grade Audit

Page 2

¹ Receives electricity from the DPW Office Building

² Not included in project, with the exception to PC Load Management

10 10

Table ES.2: ECM Matrix

Town of Sudbury Energy Conservation Measures (ECMs)	Lighting System Improvements	Integrated and New Energy Management System	Programmable Thermostats	PC Load Management	Demand Control Ventilation	Variable Frequency Drives	Vending Machine Controls	Weatherization	Pipe Insulation	Efficient Showerheads	Replace Transformers	
Facility	1	3	4	5	6	7	9	11	22	25	29	
		<u> </u>	<u> </u>									
DPW Highway	X		X	X			X					
DPW Offices				X								ļ
Flynn Building	X			X								
Town Hall		──	──	X			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	┥───┤
Police Department	_			v			v			v	<u> </u>	
Fairbank Community Center (Including Pool)	V	╂───	╂───	X		v	X			X		───
Public Library	X X	+	+	X X		X	v	v		X	<u> </u>	───
Fire Dept Headquarters	Λ	+	+	X X			X X	X	v	Λ	+	\vdash
Fire Dept South		+	+	X X			X X	X	X X		+	\vdash
Fire Dept North Curtis Middle School	X	+	+	Λ	X		Λ		Λ	<u> </u>	X	┝──┤
Loring Elementary		X			Λ		X				X X	<u> </u>
Noyes Elementary	•		+									
Haynes Elementary	_		+	<u> </u>	v			X			┝───┘	
	v											
Nixon Elementary	X X	X X			X			Λ				

. .

70

Table ES.3: Cost and Savings by Measure

F #		A		Natural Gas	Water	Sewer	Energy			Total Project	
Ecm #	ECM Name	Annual kW	Total kWh	(Therms)	(kGallons)	(kGallons)	Savings	O&M Savings	Savings	Costs	SPB
1	Lighting System Improvements	671	209,268	(1,597)	-	-	\$ 33,272	\$ 3,174	\$ 36,446	\$ 350,467	9.62
3	Integrated and New Energy Management System	-	9,227	11,938	-	-	\$ 14,769	\$-	\$ 14,769	\$ 392,039	26.54
4	Programmable Thermostats	-	637	1,400	-	-	\$ 1,782	\$-	\$ 1,782	\$ 9,174	5.15
5	PC Load Management	-	15,369	(244)	-	-	\$ 1,260	\$-	\$ 1,260	\$ 5,526	4.38
6	Demand Control Ventilation	-	33,827	414	-	-	\$ 3,455	\$-	\$ 3,455	\$ 52,327	15.15
	Variable Frequency Drives	-	15,564	-	-	-	\$ 1,551	\$-	\$ 1,551	\$ 30,123	19.42
	Vending Machine Controls	-	16,801	(282)	-	-	\$ 1,529	\$-	\$ 1,529	\$ 7,272	4.76
11	Weatherization	-	33	1,312	-	-	\$ 1,549	\$-	\$ 1,549	\$ 17,941	11.58
22	Pipe Insulation	-	-	389	-	-	\$ 526	\$-	\$ 526	\$ 6,251	11.88
	Efficient Showerheads	-	-	708	200	200	\$ 1,543	\$-	\$ 1,543	\$ 582	0.38
	Replace Transformers	219	129,218	-		-	\$ 15,782	\$-	\$ 15,782	\$ 221,372	14.03
		890	429,944	14,039	200	200	\$ 77,018	\$ 3,174	\$ 80,192	\$ 1,093,073	13.63

Final Investment Grade Audit

Table ES.4: Project Pro-Forma

Town of Sudbury - Pro-Forma

Initial Project Costs:	
Implementation costs	\$ 1,093,073
Total Initial Project Costs	\$ 1,093,073
Utility Rebates	\$ 118,928
Total Dahata	
Total Rebates	\$ 118,928
Net Project Costs after rebates	\$ 974,146

Financial Assumptions	
Term of Project {yrs}	15.0 yı
Term of Financing (yrs)	15.0 y
Estimated Financing Rate	3.25
Payments per year (frequency)	1
Discount Rate	3.25
Average Energy escalation rate (annual)	3.00
Project Simple Payback	13.6

Р	o-forma									Ŷ	ear					
		Ini	tial Values	1		2		3	4	5		6	7	8	9	10
1	Annual energy costs without improvements	\$	1,093,162	\$ 1,125,957	\$	1,159,736	\$ 1	1,194,528	\$ 1,230,364	\$ 1,267,275	\$	1,305,293	\$ 1,344,452	\$ 1,384,785	\$ 1,426,329	\$ 1,469,119
2	Annual energy costs with improvements	\$	1,016,144	\$ 1,046,629	\$	1,078,027	\$ 1	1,110,368	\$ 1,143,679	\$ 1,177,990	\$	1,213,329	\$ 1,249,729	\$ 1,287,221	\$ 1,325,838	\$ 1,365,613
3	Annual energy cost savings (1-2)	\$	77,018	\$ 79,329	\$	81,709	\$	84,160	\$ 86,685	\$ 89,285	\$	91,964	\$ 94,723	\$ 97,564	\$ 100,491	\$ 103,506
4	O&M Savings	\$	3,174	\$ 3,269	\$	3,367	\$	3,468	\$ 3,572	\$ 3,679	\$	3,790	\$ 3,903	\$ 4,020	\$ 4,141	\$ 4,265
5	Total Project Savings	\$	80,192	\$ 82,598	\$	85,076	\$	87,628	\$ 90,257	\$ 92,964	\$	95,753	\$ 98,626	\$ 101,585	\$ 104,632	\$ 107,771
6	Payments for financing equipment			\$ 68,546	\$	70,797	\$	73,115	\$ 75,503	\$ 77,963	\$	80,496	\$ 83,106	\$ 85,793	\$ 88,562	\$ 91,413
7	Payments for Ongoing Services	\$	-	\$ 7,568	\$	7,795	\$	8,029	\$ 8,270	\$ 8,518	\$	8,773	\$ 9,036	\$ 9,307	\$ 9,587	\$ 9,874
8	Net annual benefits			\$ 6,484	\$	6,484	\$	6,484	\$ 6,484	\$ 6,484	\$	6,484	\$ 6,484	\$ 6,484	\$ 6,484	\$ 6,484
9	Cumulative cash flow	\$	97,260	\$ 6,484	\$	12,968	\$	19,452	\$ 25,936	\$ 32,420	\$	38,904	\$ 45,388	\$ 51,872	\$ 58,356	\$ 64,840
10	Net Present Value of cash flow	\$	76,024		1				 	 			 	 	 	
11	Interest Rate	I	3.25%		[
12	Discount Rate		3.25%		T											
					T											

Line #		11		12		13	14		15		Totals
1	\$	1,513,192	\$	1,558,588	\$	1,605,346	\$ 1,653,506	\$	1,703,111	\$	20,941,583
2	\$	1,406,581	\$	1,448,779	\$	1,492,242	\$ 1,537,009	\$	1,583,120	\$	19,466,155
3	\$	106,611	\$	109,810	\$	113,104	\$ 116,497	\$	119,992	\$	1,475,429
4	\$	4,393	\$	4,525	\$	4,661	\$ 4,801	\$	4,945	\$	60,800
5	\$	111,004	\$	114,335	\$	117,765	\$ 121,298	\$	124,936	\$	1,536,228
6	\$	94,350	\$	97,375	\$	100,491	\$ 103,700	\$	107,005	\$	1,298,215
7	\$	10,171	\$	10,476	\$	10,790	\$ 11,114	\$	11,447	\$	140,753
8	\$	6,484	\$	6,484	\$	6,484	\$ 6,484	\$	6,484	\$	97,260
9	\$	71,324	\$	77,808	\$	84,292	\$ 90,776	\$	97,260		
10							 				
11			[[
12	I				[[
	Γ				[· · · ·	

Notes:

1 This Proforma Cash Flow reflects an estimated financing rate of 3.25%. The actual rate will increase or decrease based on market conditions and customer credit rating at the time of funding.

2 Savings are based on current utility rate structures and usage information provided for purposes of this project.

Energy Conservation Measures

The following ECM descriptions are intended to provide a high level overview. In general the ECMs are designed to deliver many technical, financial, and environmental benefits to the Town of Sudbury that include:

- Better learning and working environment for students and staff;
- Improved energy efficiency and operation of existing systems;
- New energy efficient equipment and systems;
- Performance Guarantee of energy savings; and
- Reduction of Greenhouse gasses and emissions.

Final Investment Grade Audit

Page 6

ECM 1: Lighting System Improvements

Ameresco proposes to install a state-of-the-art lighting system to benefit the building occupants of the Town. The project replaces or upgrades existing fixtures and will enhance the quality, consistency, and color rendering of the lighting system, while meeting all applicable codes and standards.

We identified over 130 different lamp/ballast/fixture combinations, the majority of which are linear fluorescent, which provide general lighting in key areas such as classrooms, offices, & halls.

Figure 1.1:.New lamps and ballasts will improve aesthetics and provide substantial energy savings.

Ameresco standardized the lighting system where practical,

reducing the number of different products the Town must stock and maintain. Most fixtures replaced or retrofitted with 4' T8 lamps will receive 28-watt "energy-efficient" lamps and instant-start ballasts. This premium combination consumes less energy while matching the light output of standard T8's. The 28-watt lamp also maintains light output better than T12 and typical T8 lamps.

ECM 3: Integrated and New Energy Management Systems

Ameresco proposes to replace and/or integrate the different existing EMS systems installed in Loring Elementary School, Noyes Elementary School, Haynes Elementary School and Nixon Elementary School.

The proposed EMS would be "open protocol" and "interoperable" with other manufacturer's products. This feature would allow products from any vendor to be installed as the system is maintained or expanded in the future. The recommended EMS would be accessible from any Internet-enabled personal computer with web

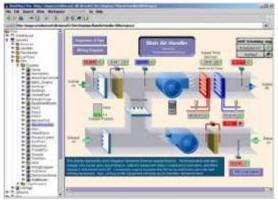


Figure 3.1: Ameresco proposes to expand and recommission the existing EMS.

browsing software and would provide reduced energy consumption, increase system reliability and improve occupant comfort for the Town. The proposed EMS will provide dynamic systems control and utility consumption reporting capabilities for the entire Town.

Under the proposed EMS, Ameresco would install a new EMS that would be installed on top of existing controls for the air handling units and other control valves, as well as exhaust fans and circulator pumps. All existing pneumatic logic controllers will be removed as well as existing pneumatic thermostats controlling unit ventilators and cabinet heaters.

Final Investment Grade Audit

Executive Summary

ECM 4: Programmable Thermostats

Ameresco proposes to install new local programmable thermostats at the DPW Highway Building to control the existing infrared heaters serving the garage bays. The new programmable thermostats will be installed in each of the three existing zones to monitor space temperature and provide control of the existing infrared heaters according to occupancy schedules and setpoint temperatures.

Figure 4.1: Ameresco proposes to replace the existing T87 thermostats at the DPW Highway Building with new programmable thermostats.

ECM 5: PC Load Management

Ameresco proposes to install a client/server software application that will manage the power consumption of computers located throughout the Town buildings. Ameresco identified 149 personal computers (PCs) of various models located at a number of Town buildings. This software will save energy and money by reducing the time the computers spend in high power modes while not in use. These packages are easy-to-deploy software utilities that address network energy waste and reduce operating costs without impacting computer users. The applications manage and minimize the energy consumed by the network's clients through one centralized interface.

Figure 5.1: These are typical computers found at the DPW Offices and throughout the other Town buildings as well.

ECM 6: Demand Control Ventilation

Ameresco identified energy saving opportunities at the Curtis Middle School and Haynes Elementary School through the installation of demand control ventilation (DCV). DCV controls modulate the amount of outdoor air supplied to a space to maintain a required ventilation rate (CFM/person) based on the actual occupancy at that time. This strategy saves energy by reducing the amount of outdoor air that is conditioned during low occupancy periods.

Figure 6.1: Existing constant air volume system serving the gymnasium at the Haynes Elementary School.

"Page content is subject to Confidentiality Restrictions'

Final Investment Grade Audit

Page 8

ECM 7: Variable Frequency Drives

Ameresco proposes to install variable frequency drives (VFD) for the HVAC fans located at the Goodnow Library. The VFDs will be integrated to the new Energy Management System. The installation of VFDs and controls will allow the fans to modulate with varying load more efficiently than the existing inlet guide vane method of control, which will reduce energy consumption and to improve system efficiency.

Figure 7.1: Existing belt driven fan with inlet guide vanes inside RTU-1.

ECM 9: Vending Machine Controls

Ameresco proposes to install occupancy sensing, plug load controllers to reduce the unnecessary operation of the Town's vending machines during unoccupied periods. Each vending machine controller will save energy used by the refrigerated vending machine during unoccupied hours without compromising product quality. The controller will use a sensor to detect when the space is unoccupied and turn off the vending machine. Existing non-refrigerated snack machines will also be controlled.

The infiltration of outdoor air can be a significant load on a building's central heating and cooling systems. There are many sources of infiltration in a building's exterior envelope that can be considerably reduced with proper weatherstripping and air sealing methods. The major sources of infiltration are exterior doors, windows, walls and roof-wall intersections.

Ameresco evaluated the exterior of each building and found many areas that were in need of proper weather-stripping. The majority of the doors recommended for weather-

Figure 9.1: Soda and drink vending machines will be controlled and temperature set back, resulting in electrical savings.

Figure 11.1: By reducing infiltration through leaky windows at the Fairbank Community Center, energy savings will be achieved through reduced heating and cooling loads.

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014

stripping replacement had worn weather-stripping and door sweeps causing large gaps between the door jam and door.

Ameresco proposes to perform a number of infiltration reduction measures at a number of buildings throughout the Town. Exterior doors, windows, roof-wall intersections, soffit overhangs, and wall penetrations at the identified buildings have many gaps that allow outside air to infiltrate the building. The new weather-stripping and sealants will greatly reduce heat loss as well as increase occupant comfort due to fewer drafts.

ECM 22: Pipe Insulation

Ameresco proposes to insulate hot water piping at the Fire Station North and Fire Station South where insulation is absent or insufficient. The areas that lack insulation include the boiler header and hot water supply piping. Replacing insufficient insulation and insulating bare pipes will improve the overall efficiency of each system and alleviate over

Figure 22.1: Existing bare pipe at Fire Station North and Fire Station South will be insulated.

heating due to heat loss from exposed piping. Cost savings from the reduction of natural gas usage will result from the implementation of this measure.

ECM 25: Efficient Showerheads

Ameresco proposes to reduce domestic water consumption at the Fairbank Community Center and Fire Department Headquarters by replacing standard flow showerhead fixtures with low flow showerhead fixtures. The low-flow water fixtures will enhance facility operations by reducing water usage.

ECM 29: Replace Transformers

Most transformers in the Town are estimated to be loaded at about 5% -15% of their total capacity which is typical of other buildings. Operating at low levels for normal transformers is inefficient. Commercial transformer specifications rarely require a minimum efficiency. As one would expect, building a less efficient transformer is cheaper than building a more efficient one, so a typical low-first-cost transformer will have a low up-front cost but high operating cost, with the lifetime cost of the operating losses exceeding the purchase cost many times over.

Ameresco proposes to replace existing step-down transformers with new energy-efficient transformers at Curtis Middle School and Loring Elementary School. All of the transformers are dry-type indoor transformers that step-down 480 volt power to 208Y/120 volt power. Ameresco

Figure 25.1: Standard flow showerhead fixtures like the one shown above at the Fire Department Headquarters will be replaced with low consumption models.

Figure29.1: Existing standard efficiency transformers like the one pictured above at the Curtis Middle School will be replaced in this measure.

"Page content is subject to Confidentiality Restrictions"

Final Investment Grade Audit

Page 10

proposes to replace these transformers with new premium efficiency units that will reduce the electric losses and lower the cooling load of some of the equipment rooms

Executive Summary

Summary

Ameresco has presented a complete and comprehensive IGA that addresses the needs of the Town and provides realistic solutions. The ECMs identified present very viable and needed solutions for the continued effective operations of the Town and School facilities. The final accepted IGA will form the basis for the scope-of-work under the subsequent ESA, whereby Ameresco will provide design, acquisition, installation, modification, commissioning and training for the ECMs as presented herein.

This is an important project for the Town and one that requires an Energy Services Company (ESCo) with significant expertise. The Ameresco team has extensive experience with Performance Contracting projects in municipalities and school districts in the Boston metropolitan area, throughout the Commonwealth and North America. We have the proven commitment, experience, resources, technical expertise and financial capability out of our corporate headquarters in nearby Framingham, to successfully execute this project over the full contract term. We are ready and eager to begin implementation so that the Town may secure current low cost financing and realize the overall benefit of improved facilities within the next 12 months.

Final Investment Grade Audit

Section 1: Baseline

Overview

Ameresco performed an Investment Grade Audit (IGA) for the Town of Sudbury, Massachusetts. The Town of Sudbury is located in Middlesex County, west of Boston. The Town buildings are comprised of schools, fire and police stations, library, senior center, community center, public works buildings, and the Town Hall.

Ameresco performed a Preliminary Energy Audit (PEA) for the Town of Sudbury on fifteen (15) buildings throughout the Town, including five (5) school buildings and ten (10) Town facilities. The total area of building space audited was approximately 598,880 square feet. After review of the facilities with Town personnel, the Town narrowed down the list to fourteen (14) facilities to focus on during the Investment Grade Audit (IGA) phase. The Police Department was removed entirely from the project due to potential future plans for this building. The list of buildings included in the IGA phase consisted of five (5) school buildings and eight (9) Town facilities. The area of building space audited during the IGA phase was approximately 592,424 square feet.

As part of the IGA, Ameresco developed a baseline model for each facility that was audited during the IGA phase. The baseline developed for each building is based on fiscal year 2011 (FY11) utility data. The total amount of utility usage for the Fiscal Year 2011 was 4,025,852 kWh of electricity, 338,293 Therms of natural gas, and 5,203 kgallons of water. The total utility cost for this time period was \$1,433,237.

The baseline utility cost shown in the proforma located in Section 4 is based on current utility rates and does not include customer charges. Further, most of the rate tariffs the buildings receive electricity, natural gas and water under include block rate structures. These structures charge different rates depending on how much is used. Ameresco is only including rates that reflect blocks that will be affected by the ECMs. These rates are shown in Section 7 in the Utility Rate Table. The baseline utility cost shown in the proforma located in Section 4 is the product of the baseline utility energy units multiplied by the utility rates shown in Section 7.

Table 1 gives the square footage for each facility analyzed, along with the energy performance of each building, in terms of fossil fuel and electricity usage per square foot. Energy performance is the ratio of yearly energy use by square footage and is a good indicator of how well a building performs. The energy performance of each Town and school buildings was calculated from the utility information provided by Town personnel and directly from the utility companies.

Final Investment Grade Audit

The total mbtu/gsf represents the total energy usage for the entire facility on a square foot basis. The total energy usage for the entire facility on a square foot basis is the addition of both electrical and fossil fuel (mbtu/gsf) if applicable. In most of the buildings evaluated, the primary source for space heating is natural gas. Supplemental electric heating is used at a few locations. Electric cooling is utilized to varying degree in all Town buildings, mostly through DX split-systems and local air conditioners. Buildings with larger central cooling systems operate at a higher annual electrical mbtu/gsf.

Facility Name	Gross Square Feet	Fuel MBTU / g.s.f.	Electric MBTU / g.s.f.	Total EUI MBTU / g.s.f.
DPW Highway ¹	7,154	147.5	-	147.5
DPW Offices	28,274	42.3	22.9	65.2
Flynn Building	14,750	48.1	38.8	86.9
Town Hall ²	13,705	110.9	11.1	122.1
Fairbank Community Center	40,341	154.7	48.9	203.6
Public Library	34,364	40.4	31.7	72.1
Fire Department Headquarters	10,055	66.2	32.7	98.9
Fire Department South	3,286	102.2	17.7	119.8
Fire Department North	3,286	81.9	19.4	101.3
Curtis Middle School	155,789	37.8	25.2	63.0
Loring Elementary School	78,451	40.8	19.0	59.8
Noyes Elementary School	82,502	52.7	15.0	67.8
Haynes Elementary School	62,565	61.5	18.1	79.7
Nixon Elementary School	57,902	54.7	18.3	73.0
Total/Averages	592,424	57.1	23.2	80.3

Table 1: List of Audited Buildings and Energy Performance

Using information from the energy performance table along with investigating the existing conditions of equipment and systems, Ameresco has identified several key opportunities to reduce utility costs for each facility. Many of those savings opportunities have been captured in the Energy Conservation Measures (ECM) and are detailed in Section 3.

Baseline Information

The baseline utility data for this Investment Grade Audit is based on the Fiscal 2011 energy data (*July 2010 through June 2011*). Fiscal Year 2011's annual heating degree days (HDD) closely matched the 30-year average weather conditions for Sudbury, Massachusetts. Fiscal 2012 energy data was also available; however, Fiscal 2011 was used as we believe it still closely represents current operational conditions. For annual energy usage see the table at the end of this section.

Utilities are supplied through a number of different providers. At present, NSTAR provides delivery services while TransCanada provides commodity (supply) for electricity. Natural Gas is delivered by National Grid

Final Investment Grade Audit

Page 2

¹ Receives electricity from the DPW Office Building

² Not included in project, with the exception to PC Load Management

and supplied by Direct Energy. Water is supplied to the buildings by the Town of Sudbury. For annual energy usage at each facility, see Table 2.

Table 2: Annual Energy Use by Facility

Facility Name	Natural Gas Usage (Therms)	Electric Usage (kWh)	Annual Electric Demand (kW)
DPW Highway	10,554	0	0
DPW Offices	11,963	189,927	632.0
Flynn Building	7,090	167,776	378.8
Town Hall	15,204	44,680	113.2
Fairbank Community Center	62,395	578,160	1,242.8
Public Library	13,886	319,200	1,024.0
Fire Department Headquarters	6,659	96,280	204.4
Fire Department South	3,357	17,017	0
Fire Department North	2,691	18,716	0
Curtis Middle School	58,861	1,150,680	5,261.6
Loring Elementary School	31,984	436,720	1,827.6
Noyes Elementary School	43,508	363,200	1,780.0
Haynes Elementary School	38,481	332,616	1,394.8
Nixon Elementary School	31,660	310,880	1,249.6
Totals	338,293	4,025,852	15,108.8

Each ECM presented in this audit was explicitly "baselined" by a "temperature bin" analysis for temperature variant loads and by a fixed baseline for constant loads. Straightforward electrical saving ECMs such as lighting retrofits and motor replacements were analyzed by a combination of known operating hours, field measurements and engineering calculations. The baseline operating hours for each location or a portion thereof was determined from information from the Town and review of metered data acquired during the Investment Grade Audit. Energy cost savings for each ECM was calculated with the energy rates outlined in this section.

Electricity

The buildings receive electricity supply from TransCanada at an average price of \$0.10379 per kWh. NSTAR electricity delivery is charged according to three delivery rates; G-1, G-2, and T-2. NSTAR rates vary between seasons (winter and summer). Ameresco analyzed the winter and summer rates and developed a blended rate structure as well. These rates were applied to each energy conservation measure (ECM) as appropriate. A blended rate was applied to an ECM if the savings occurred in both seasons. For ECMs that only provided savings during the summer period (cooling related ECMs), the summer rate was applied. Section 7 of the IGA outlines the exact rate used in determining the cost savings for each building. Each delivery rate plus the supply cost is displayed in Table 3.

Electricity Charges	Winter On-Peak (kWh)	Winter Off-Peak (kWh)	Winter Electric Demand (kW)	Summer On-Peak (kWh)	Summer Off-Peak (kWh)	Summer Electric Demand (kW)
General Service – G-1	\$0.1935	\$0.1935	\$0.00	\$0.2215	\$0.2215	\$0.00
General Service – G-2	\$0.1428	\$0.1428	\$9.43	\$0.1527	\$0.1527	\$20.22
Time of Use – T-2	\$0.1202	\$0.1202	\$11.43	\$0.1202	\$0.1202	\$19.88

Table 3: Electric Rates (includes Supply and Delivery)

Table 4: Electric Rates by Building

Facility	G-1	G-2	T-2
DPW Highway		Х	
DPW Offices		Х	
Flynn Building		Х	
Town Hall		Х	
Fairbank Community Center		Х	
Public Library		Х	
Fire Department Headquarters		Х	
Fire Department South	Х		
Fire Department North	Х		
Curtis Middle School			Х
Loring Elementary School			Х
Noyes Elementary School		Х	
Haynes Elementary School			Х
Nixon Elementary School		Х	

Natural Gas

The buildings receive natural gas supply from Direct Energy at an average price of \$1.273 per therm. National Grid natural gas delivery is charged under four different rate structures; G-41, G-42, G-43, and G-44. Each delivery rate plus the supply cost is displayed in Table 5.

Table 5: Natural Gas Rates (includes Supply and Delivery)

Natural Gas Charges	Delivery (\$/Therm)	Supply (\$/Therm)	Total Cost
G-41 – Commercial Heat	\$0.6722	\$1.273	\$1.9452
G-42 – Commercial Heat	\$0.5455	\$1.273	\$1.8185
G-43 – Commercial Heat	\$0.4796	\$1.273	\$1.7526
G-43 – Commercial Heat	\$0.3636	\$1.273	\$1.6366

Table 6: Gas Rates by Building

Facility	G-41	G-42	G-43	G-44
DPW Highway		Х		
DPW Offices			Х	
Flynn Building			Х	
Town Hall		Х		
Fairbank Community Center				Х
Public Library			Х	
Fire Department Headquarters			Х	
Fire Department South	Х			
Fire Department North	Х			
Curtis Middle School			Х	
Loring Elementary School			Х	
Noyes Elementary School			Х	
Haynes Elementary School			Х	
Nixon Elementary School			Х	

Water & Sewer Usage

Water and sewer service is provided to the Town and School buildings by the Town. Water consumption is recorded quarterly. For calculating a cost savings for the water conservation measures, Ameresco utilized the current water rate of \$4.00 per kgallon. This rate was used for Town and School buildings.

End-Use Breakdown

A baseline model was developed for each audited building. Fiscal year 2011 utility data as previously described was used to calibrate the model(s). The energy end-use breakdown for natural gas and electricity was calculated from inventoried equipment ratings, local bin weather data, operational characteristics obtained from personnel, and building envelope characteristics. Where equipment data could not be obtained, engineering experience and judgment was used. The major fuel heating end-uses found in the Town and school buildings audited includes space heating, (which consist of mechanical ventilation, conduction, and infiltration), domestic hot water usage, and cooking. Electrical usage includes lighting, space cooling, HVAC fan/pumps, kitchen equipment (includes cooking appliances, refrigeration, etc.), and office equipment (includes conduction appliances, refrigeration, etc.), and office equipment (includes cooking appliances).

This page is intentionally left blank.

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014

Page 6

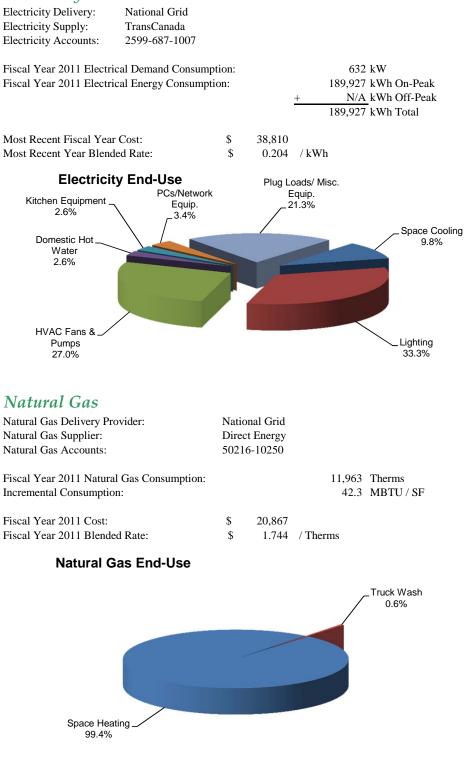
End-Use Graphs

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014

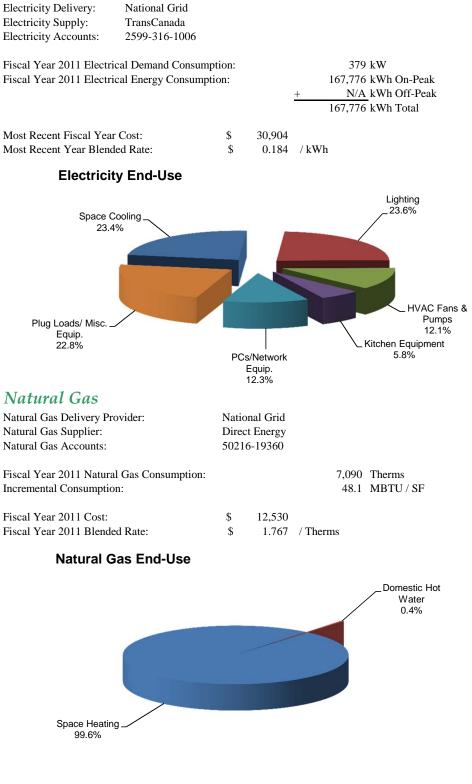
DPW Highway

Natural Gas

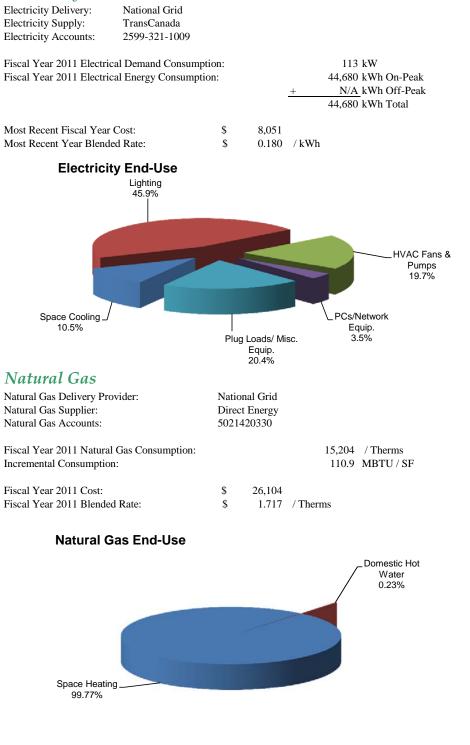

Natural Gas Delivery Provider: Natural Gas Supplier: Natural Gas Accounts:	Direc	nal Grid t Energy 5-10240		
Fiscal Year 2011 Natural Gas Consumption: Incremental Consumption:			,	Therms MBTU / SF
Fiscal Year 2011 Cost: Fiscal Year 2011 Blended Rate:	\$ \$	18,470 1.750	/ Therms	
Natural Gas End-Use				
	20			_Domestic Hot Water 0.3%
Space Heating 99.7%				

Investment Grade Audit for

End-Use Information DPW Offices

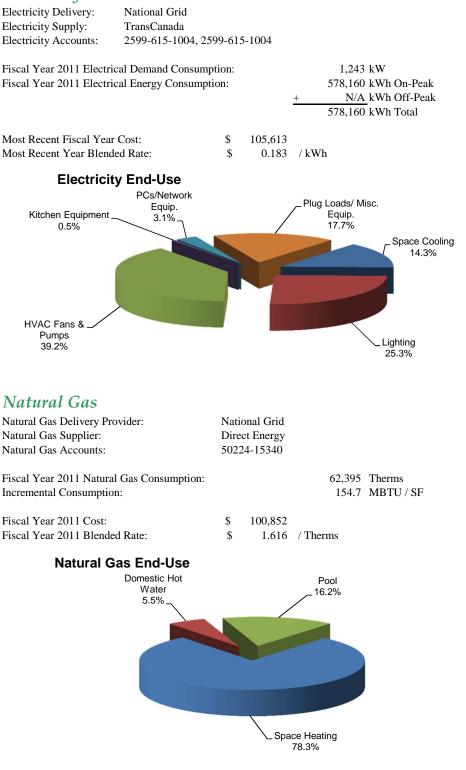

Electricity

Flynn Building


Electricity

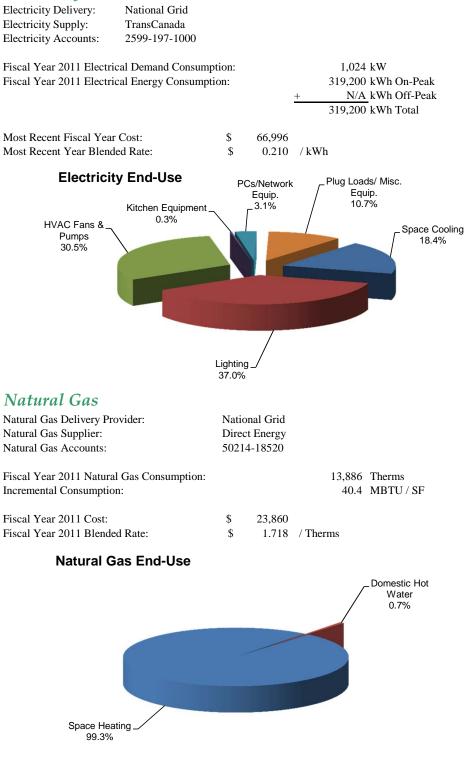
Town Hall

Electricity

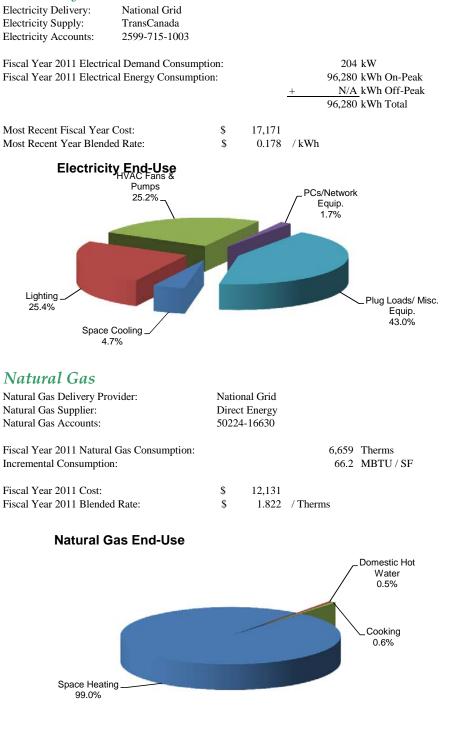


Investment Grade Audit for MAPC - Sudbury April 12, 2013

Fairbank Community Center (Including Pool)

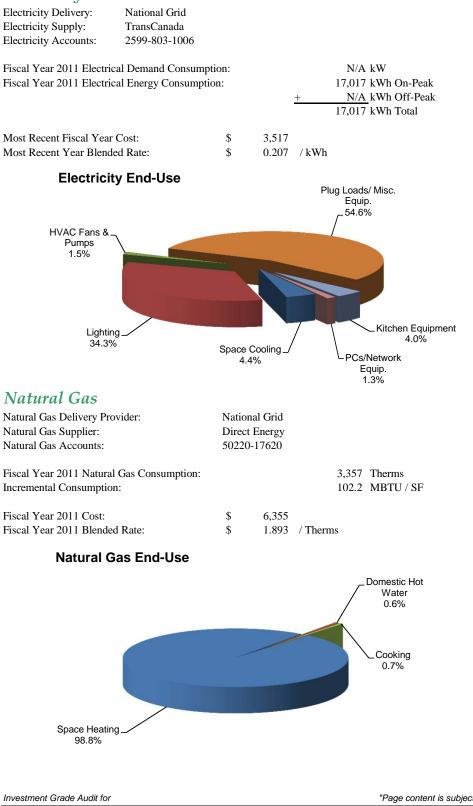

Electricity

Public Library


Electricity

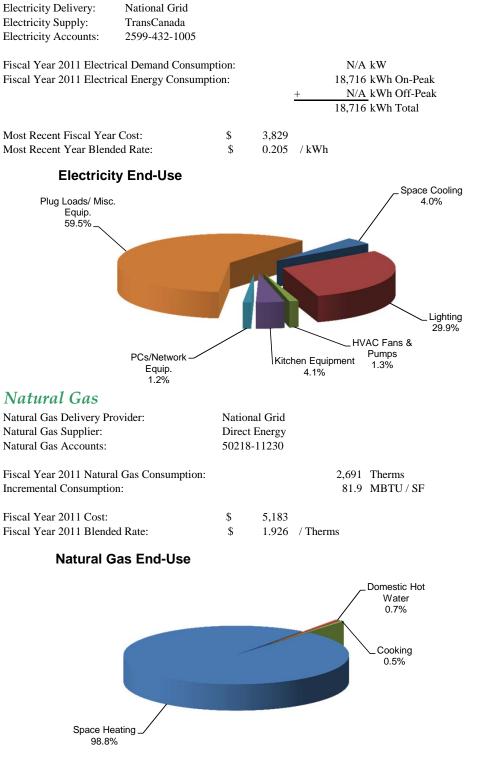
Fire Dept Headquarters

Electricity

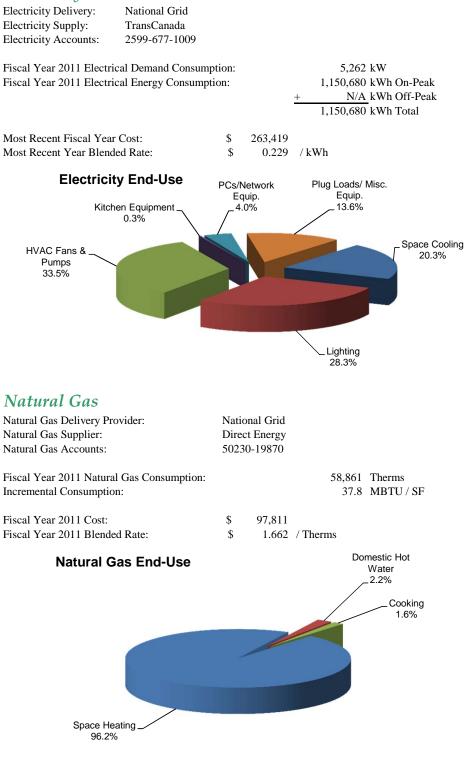


Investment Grade Audit for MAPC - Sudbury April 12, 2013

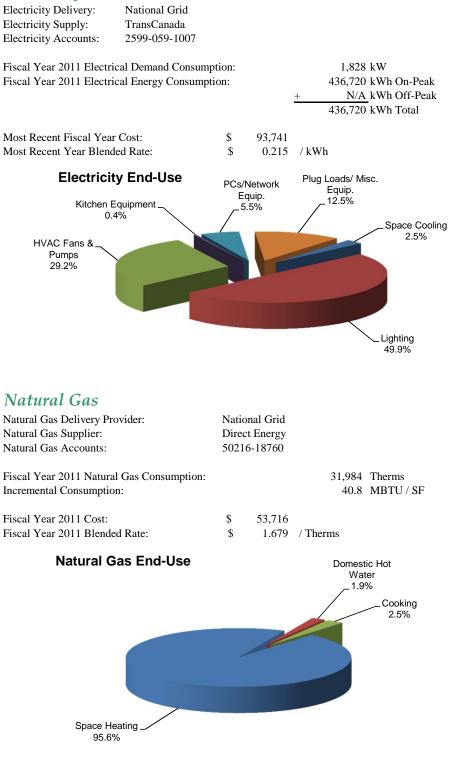
End-Use Information Fire Dept South


Electricity

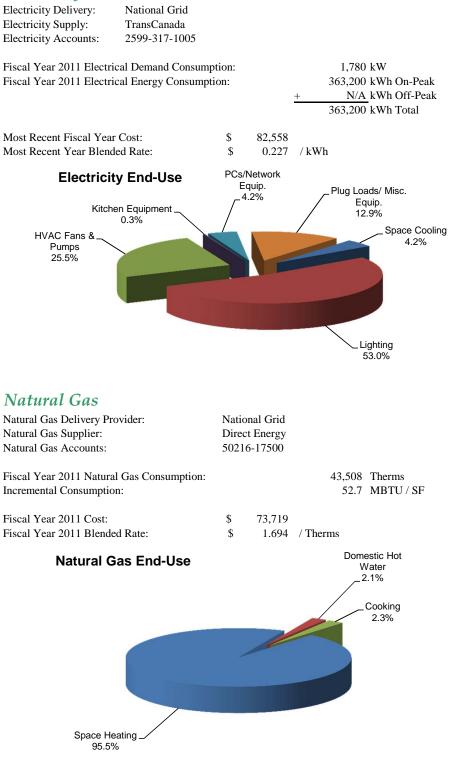
Fire Dept North


Electricity

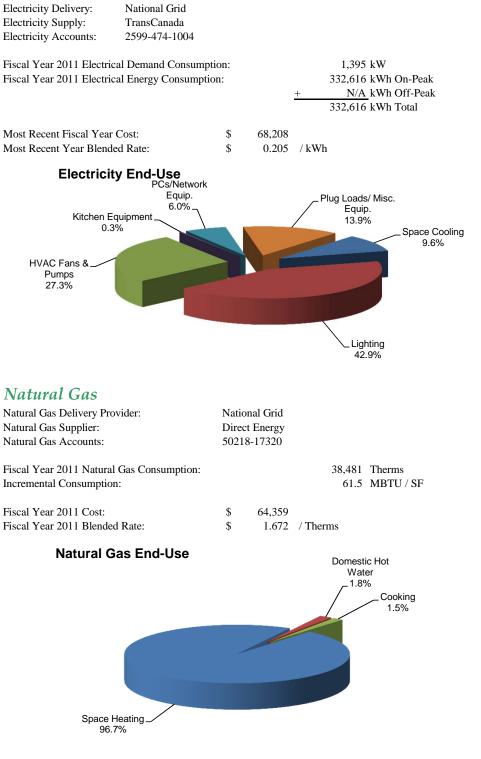
Curtis Middle School


Electricity

Loring Elementary

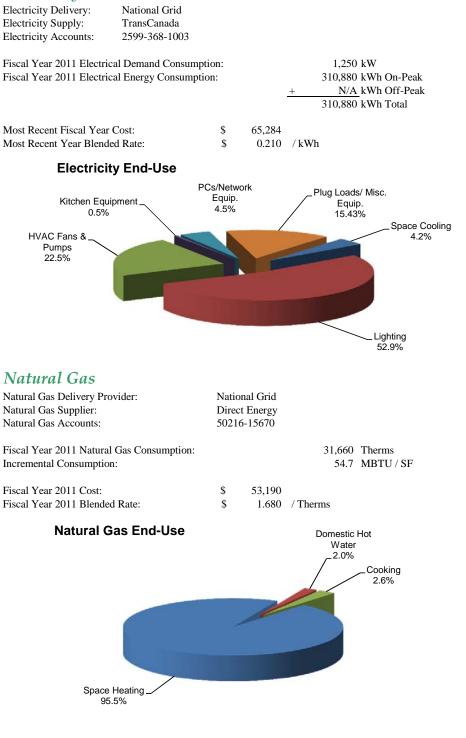

Electricity

Noyes Elementary


Electricity

Haynes Elementary

Electricity



End-Use Information

Nixon Elementary

Electricity

Investment Grade Audit for MAPC - Sudbury April 12, 2013

"Page content is subject to Confidentiality Restrictions" Nixon Elementary

This page is intentionally left blank.

IGA Baseline Information

Final Investment Grade Audit

This page is intentionally left blank.

MAPC - Sudbury

Utility Data Summary

Fiscal 2011

		Cost				Annual El	lectric				Annual Fossil Fuel			Performance		Water	& Sewer (Annua	al 2011)
Facility Name	GSF Area (SF)	Annual Cost (\$)	Unit Cost (\$/SF)	Demand (kW)	Energy Consump (Peak kWh)	Peak Energy Cost \$	Total Cost	W/Sqft	kWh/Sqft	Natural Gas (Therms)	Natural Gas Cost \$	Total MMbtu	kWh/Sqft	Fossil Fuel (Mbtu/Sqft)	Annual EUI (Mbtu/Sqft)	Water (kGallons)	Water Cost \$	6 Gal/Se
DPW Highway	7,154	\$18,727	\$2.62				\$0	0.0	0.0	10,554	\$18,470	1,055	0.0	147.5	147.5	79	\$257	11.0
DPW Offices	28,274	\$59,901	\$2.12	632.0	189,927	\$38,810	\$38,810	1.9	6.7	11,963	\$20,867	1,196	6.7	42.3	65.2	68	\$224	2.4
Flynn Building	14,750	\$43,684	\$2.96	378.8	167,776	\$30,904	\$30,904	2.1	11.4	7,090	\$12,530	709	11.4	48.1	86.9	77	\$251	5.2
Town Hall	13,705	\$34,319	\$2.50	113.2	44,680	\$8,051	\$8,051	0.7	3.3	15,204	\$26,104	1,520	3.3	110.9	122.1	48	\$164	3.5
Fairbank Community Center (Includin	40,341	\$213,717	\$5.30	1,242.8	578,160	\$105,613	\$105,613	2.6	14.3	62,395	\$100,852	6,240	14.3	154.7	203.6	2,404	\$7,252	59.6
Public Library	34,364	\$91,187	\$2.65	1,024.0	319,200	\$66,996	\$66,996	2.5	9.3	13,886	\$23,860	1,389	9.3	40.4	72.1	104	\$332	3.0
Fire Dept Headquarters	10,055	\$29,673	\$2.95	204.4	96,280	\$17,171	\$17,171	1.7	9.6	6,659	\$12,131	666	9.6	66.2	98.9	117	\$371	11.6
Fire Dept South	3,286	\$9,976	\$3.04		17,017	\$3,517	\$3,517	0.0	5.2	3,357	\$6,355	336	5.2	102.2	119.8	28	\$104	8.5
Fire Dept North	3,286	\$9,182	\$2.79		18,716	\$3,829	\$3,829	0.0	5.7	2,691	\$5,183	269	5.7	81.9	101.3	50	\$170	15.2
Curtis Middle School	155,789	\$363,127	\$2.33	5,261.6	1,150,680	\$263,419	\$263,419	2.8	7.4	58,861	\$97,811	5,886	7.4	37.8	63.0	619	\$1,897	4.0
Loring Elementary	78,451	\$148,947	\$1.90	1,827.6	436,720	\$93,741	\$93,741	1.9	5.6	31,984	\$53,716	3,198	5.6	40.8	59.8	490	\$1,490	6.2
Noyes Elementary	82,502	\$157,739	\$1.91	1,780.0	363,200	\$82,558	\$82,558	1.8	4.4	43,508	\$73,719	4,351	4.4	52.7	67.8	474	\$1,462	5.7
Haynes Elementary	62,565	\$133,444	\$2.13	1,394.8	332,616	\$68,208	\$68,208	1.9	5.3	38,481	\$64,359	3,848	5.3	61.5	79.7	279	\$877	4.5
Nixon Elementary	57,902	\$119,612	\$2.07	1,249.6	310,880	\$65,284	\$65,284	1.8	5.4	31,660	\$53,190	3,166	5.4	54.7	73.0	366	\$1,138	6.3
Fotals	592,424	\$1,433,237	\$2.42	15,108.8	4,025,852	\$848,101	\$848,101	2.1	6.8	338,293	\$569,147	33,829	6.8	57.1	80.3	5,203	\$15,989	8.8

Utility Baseline Backup Information

This page is intentionally left blank.

MAPC - Sudbury Utility Data Summary - All Facilities

Fiscal Year 2011

	Weather			Elect	tric				Natural Gas		Total	Water &	Sewer (Ani	nual 2011)	Total
Date	HDD	kW	Peak kWh	Off-Peak kWh	Total kWh	Total \$	\$/kWh Blended	Therms	\$	\$/Therm	MMBtu	kGal water	Total \$	\$/kGal Total	\$
Jul-10	6	1,261	239,042	79,572	318,614	\$76,522	\$0.2402	1,849	5,207	2.8159	185	0	\$0	\$0.00	\$81,729
Aug-10	16	1,043	223,021	64,957	287,978	\$69,926	\$0.2428	1,688	4,546	2.6932	169	1,328	\$4,079	\$3.07	\$78,551
Sep-10	103	1,535	247,453	81,184	328,637	\$89,022	\$0.2709	3,140	7,839	2.4967	314	0	\$0	\$0.00	\$96,862
Oct-10	455	1,519	274,081	71,481	345,562	\$73,770	\$0.2135	8,831	14,976	1.6959	883	0	\$0	\$0.00	\$88,746
Nov-10	731	1,226	281,687	63,036	344,723	\$64,728	\$0.1878	27,079	44,516	1.6439	2,708	1,414	\$4,337	\$3.07	\$113,581
Dec-10	1,181	1,172	284,573	75,166	359,739	\$65,491	\$0.1821	44,669	74,522	1.6683	4,467	0	\$0	\$0.00	\$140,013
Jan-11	1,330	1,274	274,652	76,535	351,187	\$65,632	\$0.1869	75,537	125,214	1.6577	7,554	0	\$0	\$0.00	\$190,846
Feb-11	1,114	1,202	299,544	74,154	373,698	\$69,757	\$0.1867	64,051	105,759	1.6512	6,405	1,176	\$3,623	\$3.08	\$179,139
Mar-11	948	1,167	278,552	73,362	351,914	\$66,806	\$0.1898	56,417	93,483	1.6570	5,642	0	\$0	\$0.00	\$160,289
Apr-11	521	1,103	257,496	57,434	314,930	\$61,203	\$0.1943	39,715	66,231	1.6677	3,972	0	\$0	\$0.00	\$127,434
May-11	259	1,229	254,645	48,217	302,862	\$62,074	\$0.2050	10,634	18,161	1.7078	1,063	1,285	\$3,950	\$3.07	\$84,185
Jun-11	89	1,552	274,164	71,844	346,008	\$83,170	\$0.2404	4,683	8,692	1.8560	468	0	\$0	\$0.00	\$91,862
Totals	6,753	15,281	3,188,910	836,942	4,025,852	\$848,101	\$0.2107	338,293	\$569,147	\$1.6824	33,829	5,203	\$15,989	\$3.07	\$1,433,237

Utility Data Summary - DPW Highway

Fiscal Year 2011

	Weather		Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	0	\$0	\$0.00	0	0	\$0	\$0.00	\$0
Aug-10	16	11	\$125	\$11.40	1	19	\$62	\$3.26	\$187
Sep-10	103	7	\$69	\$9.79	1	0	\$0	\$0.00	\$69
Oct-10	455	170	\$310	\$1.82	17	0	\$0	\$0.00	\$310
Nov-10	731	934	\$1,589	\$1.70	93	22	\$71	\$3.23	\$1,660
Dec-10	1,181	1,454	\$2,521	\$1.73	145	0	\$0	\$0.00	\$2,521
Jan-11	1,330	2,477	\$4,287	\$1.73	248	0	\$0	\$0.00	\$4,287
Feb-11	1,114	2,274	\$3,931	\$1.73	227	23	\$74	\$3.22	\$4,005
Mar-11	948	1,837	\$3,183	\$1.73	184	0	\$0	\$0.00	\$3,183
Apr-11	521	984	\$1,715	\$1.74	98	0	\$0	\$0.00	\$1,715
May-11	259	332	\$583	\$1.76	33	15	\$50	\$3.33	\$633
Jun-11	89	74	\$157	\$2.12	7	0	\$0	\$0.00	\$157
Totals	6,753	10,554	\$18,470	\$1.75	1,055	79	\$257	\$3.25	\$18,727

Utility Data Summary - DPW Offices

Fiscal Year 2011

1 iscui 1 cu																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	70	16,188	16,188	\$2,448	\$1,482	\$3,930	\$0.24	3	\$176	\$58.83	0	0	\$0	\$0.00	\$4,106
Aug-10	16	52	16,186	16,186	\$2,224	\$1,757	\$3,982	\$0.25	3	\$137	\$45.73	0	12	\$41	\$3.42	\$4,160
Sep-10	103	56	12,913	12,913	\$2,246	\$1,766	\$4,012	\$0.31	10	\$177	\$17.72	1	0	\$0	\$0.00	\$4,189
Oct-10	455	54	12,080	12,080	\$1,236	\$1,457	\$2,693	\$0.22	89	\$262	\$2.95	9	0	\$0	\$0.00	\$2,956
Nov-10	731	38	13,440	13,440	\$921	\$1,348	\$2,269	\$0.17	397	\$749	\$1.89	40	19	\$62	\$3.26	\$3,080
Dec-10	1,181	45	17,280	17,280	\$1,122	\$1,462	\$2,583	\$0.15	874	\$1,489	\$1.70	87	0	\$0	\$0.00	\$4,073
Jan-11	1,330	64	21,280	21,280	\$1,412	\$1,842	\$3,254	\$0.15	3,249	\$5,428	\$1.67	325	0	\$0	\$0.00	\$8,682
Feb-11	1,114	60	21,680	21,680	\$1,546	\$2,231	\$3,778	\$0.17	3,447	\$5,740	\$1.67	345	22	\$71	\$3.23	\$9,589
Mar-11	948	53	16,800	16,800	\$1,299	\$2,281	\$3,580	\$0.21	2,613	\$4,368	\$1.67	261	0	\$0	\$0.00	\$7,949
Apr-11	521	45	15,680	15,680	\$1,150	\$1,790	\$2,940	\$0.19	1,035	\$1,757	\$1.70	104	0	\$0	\$0.00	\$4,697
May-11	259	42	13,440	13,440	\$1,038	\$1,696	\$2,734	\$0.20	200	\$413	\$2.06	20	15	\$50	\$3.33	\$3,197
Jun-11	89	52	12,960	12,960	\$1,578	\$1,477	\$3,055	\$0.24	43	\$170	\$3.94	4	0	\$0	\$0.00	\$3,224
Totals	6,753	632	189,927	189,927	\$18,220	\$20,589	\$38,810	\$0.20	11,963	\$20,867	\$1.74	1,196	68	\$224	\$3.29	\$59,901

Utility Data Summary - Flynn Building

Fiscal Year 2011

riscai i ca																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	50	15,712	15,712	\$1,776	\$1,699	\$3,475	\$0.22	4	\$173	\$43.27	0	0	\$0	\$0.00	\$3,649
Aug-10	16	37	15,835	15,835	\$1,694	\$1,720	\$3,414	\$0.22	1	\$134	\$134.17	0	16	\$53	\$3.31	\$3,601
Sep-10	103	37	13,670	13,670	\$1,635	\$1,519	\$3,154	\$0.23	2	\$155	\$77.66	0	0	\$0	\$0.00	\$3,309
Oct-10	455	39	13,478	13,478	\$954	\$1,474	\$2,427	\$0.18	148	\$364	\$2.46	15	0	\$0	\$0.00	\$2,792
Nov-10	731	24	14,943	14,943	\$752	\$1,599	\$2,351	\$0.16	640	\$1,105	\$1.73	64	23	\$74	\$3.22	\$3,530
Dec-10	1,181	25	13,826	13,826	\$738	\$1,495	\$2,234	\$0.16	1,004	\$1,671	\$1.66	100	0	\$0	\$0.00	\$3,905
Jan-11	1,330	32	13,150	13,150	\$715	\$1,431	\$2,145	\$0.16	1,715	\$2,823	\$1.65	172	0	\$0	\$0.00	\$4,968
Feb-11	1,114	23	14,454	14,454	\$794	\$1,568	\$2,362	\$0.16	1,341	\$2,204	\$1.64	134	18	\$59	\$3.28	\$4,625
Mar-11	948	23	12,288	12,288	\$725	\$1,340	\$2,065	\$0.17	1,165	\$1,934	\$1.66	117	0	\$0	\$0.00	\$3,998
Apr-11	521	23	13,114	13,114	\$749	\$1,435	\$2,184	\$0.17	705	\$1,198	\$1.70	71	0	\$0	\$0.00	\$3,382
May-11	259	25	13,465	13,465	\$792	\$1,470	\$2,262	\$0.17	263	\$512	\$1.95	26	20	\$65	\$3.25	\$2,840
Jun-11	89	43	13,841	13,841	\$1,348	\$1,482	\$2,830	\$0.20	102	\$256	\$2.51	10	0	\$0	\$0.00	\$3,085
Totals	6,753	379	167,776	167,776	\$12,671	\$18,232	\$30,904	\$0.18	7,090	\$12,530	\$1.77	709	77	\$251	\$3.26	\$43,684

Utility Data Summary - Town Hall

Fiscal Year 2011

1 iscui 1 cu																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	16	4,480	4,480	\$352	\$480	\$832	\$0.19	3	\$172	\$57.20	0	0	\$0	\$0.00	\$1,004
Aug-10	16	6	3,840	3,840	\$351	\$420	\$772	\$0.20	2	\$136	\$67.84	0	18	\$59	\$3.28	\$966
Sep-10	103	6	4,040	4,040	\$370	\$442	\$812	\$0.20	3	\$157	\$52.28	0	0	\$0	\$0.00	\$969
Oct-10	455	15	3,640	3,640	\$236	\$396	\$633	\$0.17	350	\$671	\$1.92	35	0	\$0	\$0.00	\$1,304
Nov-10	731	6	3,760	3,760	\$221	\$403	\$624	\$0.17	1,186	\$1,991	\$1.68	119	9	\$32	\$3.56	\$2,647
Dec-10	1,181	9	3,600	3,600	\$256	\$389	\$645	\$0.18	1,934	\$3,243	\$1.68	193	0	\$0	\$0.00	\$3,888
Jan-11	1,330	15	3,720	3,720	\$208	\$401	\$609	\$0.16	3,538	\$5,906	\$1.67	354	0	\$0	\$0.00	\$6,515
Feb-11	1,114	6	3,760	3,760	\$237	\$408	\$645	\$0.17	2,923	\$4,875	\$1.67	292	12	\$41	\$3.42	\$5,560
Mar-11	948	6	3,400	3,400	\$220	\$368	\$588	\$0.17	2,645	\$4,422	\$1.67	265	0	\$0	\$0.00	\$5,011
Apr-11	521	4	3,520	3,520	\$201	\$384	\$585	\$0.17	2,029	\$3,403	\$1.68	203	0	\$0	\$0.00	\$3,988
May-11	259	6	3,080	3,080	\$210	\$341	\$551	\$0.18	562	\$987	\$1.76	56	9	\$32	\$3.56	\$1,569
Jun-11	89	17	3,840	3,840	\$346	\$411	\$757	\$0.20	29	\$141	\$4.88	3	0	\$0	\$0.00	\$898
Totals	6,753	113	44,680	44,680	\$3,207	\$4,844	\$8,051	\$0.18	15,204	\$26,104	\$1.72	1,520	48	\$164	\$3.42	\$34,319

Town of Sudbury Utility Data Summary - Fairbank Community Center (Including Pool)

Fiscal Yea	r 2011															
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	152	53,520	53,520	\$5,809	\$5,808	\$11,617	\$0.22	1,466	\$2,873	\$1.96	147	0	\$0	\$0.00	\$14,489
Aug-10	16	136	56,400	56,400	\$6,076	\$6,117	\$12,193	\$0.22	1,409	\$2,633	\$1.87	141	621	\$1,873	\$3.02	\$16,699
Sep-10	103	112	42,680	42,680	\$4,902	\$4,816	\$9,718	\$0.23	2,246	\$3,796	\$1.69	225	0	\$0	\$0.00	\$13,514
Oct-10	455	123	44,400	44,400	\$3,266	\$4,891	\$8,157	\$0.18	3,566	\$5,516	\$1.55	357	0	\$0	\$0.00	\$13,673
Nov-10	731	83	48,160	48,160	\$2,478	\$5,199	\$7,677	\$0.16	5,536	\$8,858	\$1.60	554	614	\$1,852	\$3.02	\$18,387
Dec-10	1,181	83	48,560	48,560	\$2,488	\$5,253	\$7,741	\$0.16	6,423	\$10,549	\$1.64	642	0	\$0	\$0.00	\$18,290
Jan-11	1,330	101	49,320	49,320	\$2,627	\$5,330	\$7,957	\$0.16	9,839	\$15,609	\$1.59	984	0	\$0	\$0.00	\$23,566
Feb-11	1,114	87	53,600	53,600	\$2,902	\$5,783	\$8,685	\$0.16	8,370	\$12,911	\$1.54	837	625	\$1,885	\$3.02	\$23,481
Mar-11	948	80	46,480	46,480	\$2,600	\$5,032	\$7,631	\$0.16	8,882	\$14,060	\$1.58	888	0	\$0	\$0.00	\$21,691
Apr-11	521	72	46,400	46,400	\$2,476	\$5,075	\$7,550	\$0.16	6,957	\$11,335	\$1.63	696	0	\$0	\$0.00	\$18,885
May-11	259	81	44,240	44,240	\$2,540	\$4,864	\$7,403	\$0.17	5,070	\$8,265	\$1.63	507	544	\$1,642	\$3.02	\$17,310
Jun-11	89	133	44,400	44,400	\$4,500	\$4,785	\$9,285	\$0.21	2,631	\$4,447	\$1.69	263	0	\$0	\$0.00	\$13,732
Totals	6,753	1,243	578,160	578,160	\$42,662	\$62,951	\$105,613	\$0.18	62,395	\$100,852	\$1.62	6,240	2,404	\$7,252	\$3.02	\$213,717

Utility Data Summary - Public Library

Fiscal Year 2011

ristai i ta	1 2011															
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	125	34,320	34,320	\$4,718	\$3,742	\$8,460	\$0.25	13	\$192	\$14.74	1	0	\$0	\$0.00	\$8,652
Aug-10	16	111	30,840	30,840	\$4,528	\$3,376	\$7,905	\$0.26	9	\$146	\$16.25	1	24	\$77	\$3.21	\$8,128
Sep-10	103	115	28,680	28,680	\$4,592	\$3,195	\$7,786	\$0.27	13	\$172	\$13.23	1	0	\$0	\$0.00	\$7,958
Oct-10	455	92	27,840	27,840	\$2,268	\$3,089	\$5,357	\$0.19	411	\$763	\$1.86	41	0	\$0	\$0.00	\$6,121
Nov-10	731	81	25,680	25,680	\$1,852	\$2,829	\$4,682	\$0.18	1,428	\$2,373	\$1.66	143	20	\$65	\$3.25	\$7,119
Dec-10	1,181	55	23,880	23,880	\$1,427	\$2,663	\$4,090	\$0.17	1,835	\$3,080	\$1.68	184	0	\$0	\$0.00	\$7,170
Jan-11	1,330	64	20,640	20,640	\$1,402	\$2,323	\$3,725	\$0.18	2,864	\$4,790	\$1.67	286	0	\$0	\$0.00	\$8,514
Feb-11	1,114	54	23,160	23,160	\$1,491	\$2,603	\$4,095	\$0.18	2,349	\$3,924	\$1.67	235	37	\$116	\$3.14	\$8,135
Mar-11	948	58	23,760	23,760	\$1,578	\$2,642	\$4,220	\$0.18	2,250	\$3,770	\$1.68	225	0	\$0	\$0.00	\$7,990
Apr-11	521	70	25,680	25,680	\$1,809	\$2,864	\$4,672	\$0.18	1,631	\$2,743	\$1.68	163	0	\$0	\$0.00	\$7,415
May-11	259	74	25,680	25,680	\$1,861	\$2,838	\$4,699	\$0.18	953	\$1,604	\$1.68	95	23	\$74	\$3.22	\$6,377
Jun-11	89	125	29,040	29,040	\$4,234	\$3,071	\$7,305	\$0.25	130	\$303	\$2.33	13	0	\$0	\$0.00	\$7,608
Totals	6,753	1,024	319,200	319,200	\$31,760	\$35,236	\$66,996	\$0.21	13,886	\$23,860	\$1.72	1,389	104	\$332	\$3.19	\$91,187

Utility Data Summary - Fire Dept Headquarters

Fiscal Year 2011

Fiscal Tea	11 2011															
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	30	9,320	9,320	\$936	\$1,008	\$1,943	\$0.21	33	\$217	\$6.57	3	0	\$0	\$0.00	\$2,160
Aug-10	16	16	8,760	8,760	\$810	\$958	\$1,769	\$0.20	24	\$169	\$7.04	2	30	\$95	\$3.17	\$2,033
Sep-10	103	13	7,040	7,040	\$674	\$796	\$1,470	\$0.21	27	\$193	\$7.15	3	0	\$0	\$0.00	\$1,663
Oct-10	455	23	6,160	6,160	\$462	\$695	\$1,157	\$0.19	59	\$232	\$3.93	6	0	\$0	\$0.00	\$1,388
Nov-10	731	7	5,760	5,760	\$284	\$646	\$930	\$0.16	313	\$617	\$1.97	31	32	\$101	\$3.16	\$1,648
Dec-10	1,181	12	7,360	7,360	\$399	\$805	\$1,204	\$0.16	1,039	\$1,762	\$1.70	104	0	\$0	\$0.00	\$2,966
Jan-11	1,330	24	9,440	9,440	\$496	\$1,008	\$1,504	\$0.16	2,032	\$3,414	\$1.68	203	0	\$0	\$0.00	\$4,918
Feb-11	1,114	18	12,600	12,600	\$666	\$1,321	\$1,987	\$0.16	1,417	\$2,383	\$1.68	142	26	\$83	\$3.19	\$4,453
Mar-11	948	18	9,080	9,080	\$556	\$969	\$1,526	\$0.17	1,041	\$1,770	\$1.70	104	0	\$0	\$0.00	\$3,296
Apr-11	521	12	7,160	7,160	\$413	\$791	\$1,204	\$0.17	584	\$1,037	\$1.78	58	0	\$0	\$0.00	\$2,241
May-11	259	8	5,840	5,840	\$322	\$661	\$983	\$0.17	51	\$176	\$3.46	5	29	\$92	\$3.17	\$1,252
Jun-11	89	24	7,760	7,760	\$661	\$835	\$1,496	\$0.19	39	\$160	\$4.11	4	0	\$0	\$0.00	\$1,656
Totals	6,753	204	96,280	96,280	\$6,679	\$10,492	\$17,171	\$0.18	6,659	\$12,131	\$1.82	666	117	\$371	\$3.17	\$29,673

Utility Data Summary - Fire Dept South

Fiscal Year 2011

ristai i ta	1 2011															
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	0	1,473	1,473	\$165	\$164	\$330	\$0.22	44	\$104	\$2.36	4	0	\$0	\$0.00	\$433
Aug-10	16	0	1,604	1,604	\$180	\$178	\$358	\$0.22	36	\$83	\$2.31	4	8	\$29	\$3.63	\$471
Sep-10	103	0	1,230	1,230	\$140	\$142	\$282	\$0.23	52	\$115	\$2.22	5	0	\$0	\$0.00	\$397
Oct-10	455	0	1,251	1,251	\$115	\$142	\$257	\$0.21	80	\$152	\$1.90	8	0	\$0	\$0.00	\$409
Nov-10	731	0	1,237	1,237	\$106	\$138	\$244	\$0.20	257	\$469	\$1.83	26	7	\$26	\$3.71	\$739
Dec-10	1,181	0	1,582	1,582	\$134	\$171	\$304	\$0.19	462	\$870	\$1.88	46	0	\$0	\$0.00	\$1,174
Jan-11	1,330	0	1,953	1,953	\$170	\$209	\$379	\$0.19	712	\$1,334	\$1.87	71	0	\$0	\$0.00	\$1,713
Feb-11	1,114	0	1,805	1,805	\$160	\$195	\$354	\$0.20	597	\$1,116	\$1.87	60	6	\$23	\$3.83	\$1,493
Mar-11	948	0	1,447	1,447	\$130	\$159	\$288	\$0.20	537	\$1,009	\$1.88	54	0	\$0	\$0.00	\$1,297
Apr-11	521	0	1,367	1,367	\$123	\$153	\$276	\$0.20	361	\$683	\$1.89	36	0	\$0	\$0.00	\$958
May-11	259	0	973	973	\$90	\$113	\$203	\$0.21	152	\$287	\$1.89	15	7	\$26	\$3.71	\$515
Jun-11	89	0	1,095	1,095	\$123	\$118	\$242	\$0.22	67	\$134	\$1.99	7	0	\$0	\$0.00	\$375
Totals	6,753	0	17,017	17,017	\$1,636	\$1,881	\$3,517	\$0.21	3,357	\$6,355	\$1.89	336	28	\$104	\$3.71	\$9,976

Utility Data Summary - Fire Dept North

Fiscal Year 2011

riscai i ca																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	0	1,809	1,809	\$201	\$197	\$398	\$0.22	11	\$50	\$4.50	1	0	\$0	\$0.00	\$447
Aug-10	16	0	1,641	1,641	\$184	\$178	\$363	\$0.22	11	\$44	\$3.97	1	11	\$38	\$3.45	\$444
Sep-10	103	0	1,266	1,266	\$144	\$143	\$287	\$0.23	11	\$48	\$4.33	1	0	\$0	\$0.00	\$335
Oct-10	455	0	1,289	1,289	\$118	\$144	\$263	\$0.20	24	\$66	\$2.76	2	0	\$0	\$0.00	\$329
Nov-10	731	0	1,507	1,507	\$128	\$163	\$290	\$0.19	187	\$349	\$1.87	19	15	\$50	\$3.33	\$689
Dec-10	1,181	0	1,533	1,533	\$130	\$165	\$295	\$0.19	361	\$682	\$1.89	36	0	\$0	\$0.00	\$977
Jan-11	1,330	0	1,742	1,742	\$152	\$187	\$339	\$0.19	657	\$1,232	\$1.88	66	0	\$0	\$0.00	\$1,571
Feb-11	1,114	0	1,867	1,867	\$165	\$199	\$364	\$0.19	549	\$1,028	\$1.87	55	12	\$41	\$3.42	\$1,433
Mar-11	948	0	1,501	1,501	\$134	\$163	\$297	\$0.20	468	\$881	\$1.88	47	0	\$0	\$0.00	\$1,177
Apr-11	521	0	1,547	1,547	\$138	\$169	\$307	\$0.20	288	\$548	\$1.90	29	0	\$0	\$0.00	\$855
May-11	259	0	1,374	1,374	\$123	\$151	\$274	\$0.20	101	\$197	\$1.95	10	12	\$41	\$3.42	\$512
Jun-11	89	0	1,640	1,640	\$181	\$172	\$353	\$0.22	23	\$59	\$2.55	2	0	\$0	\$0.00	\$411
Totals	6,753	0	18,716	18,716	\$1,799	\$2,030	\$3,829	\$0.20	2,691	\$5,183	\$1.93	269	50	\$170	\$3.40	\$9,182

Utility Data Summary - Curtis Middle School

Fiscal Year 2011

cal 2011																
Weather				1	Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
HDD	kW	Peak kWh	Off-Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
0 6	466	46,347	51,813	98,160	\$13,873	\$11,442	\$25,315	\$0.26	52	\$250	\$4.82	5	0	\$0	\$0.00	\$25,565
0 16	381	36,613	42,227	78,840	\$11,420	\$9,300	\$20,720	\$0.26	41	\$195	\$4.75	4	168	\$514	\$3.06	\$21,429
0 103	614	54,420	49,710	104,130	\$18,047	\$11,938	\$29,985	\$0.29	386	\$755	\$1.96	39	0	\$0	\$0.00	\$30,740
0 455	566	63,639	44,721	108,360	\$13,146	\$12,277	\$25,423	\$0.23	1,952	\$3,091	\$1.58	195	0	\$0	\$0.00	\$28,514
0 731	420	56,760	34,980	91,740	\$9,045	\$10,288	\$19,333	\$0.21	4,659	\$7,591	\$1.63	466	216	\$658	\$3.05	\$27,582
0 1,181	369	57,819	43,251	101,070	\$8,188	\$11,353	\$19,540	\$0.19	7,080	\$11,757	\$1.66	708	0	\$0	\$0.00	\$31,298
1 1,330	360	52,781	47,389	100,170	\$8,343	\$11,286	\$19,629	\$0.20	13,590	\$22,522	\$1.66	1,359	0	\$0	\$0.00	\$42,151
1 1,114	369	53,249	43,171	96,420	\$8,552	\$10,897	\$19,450	\$0.20	11,085	\$18,375	\$1.66	1,109	78	\$244	\$3.13	\$38,069
1 948	364	61,842	45,468	107,310	\$8,612	\$12,105	\$20,716	\$0.19	9,194	\$15,254	\$1.66	919	0	\$0	\$0.00	\$35,970
1 521	337	41,981	31,009	72,990	\$7,603	\$8,518	\$16,120	\$0.22	9,611	\$15,939	\$1.66	961	0	\$0	\$0.00	\$32,059
1 259	454	51,869	28,621	80,490	\$9,935	\$9,268	\$19,203	\$0.24	757	\$1,287	\$1.70	76	157	\$481	\$3.06	\$20,970
1 89	561	66,576	44,424	111,000	\$15,929	\$12,055	\$27,984	\$0.25	454	\$796	\$1.75	45	0	\$0	\$0.00	\$28,780
6,753	5,262	643,896	506,784	1,150,680	\$132,693	\$130,726	\$263,419	\$0.23	58,861	\$97,811	\$1.66	5,886	619	\$1,897	\$3.06	\$363,127
	HDD 0 6 0 16 0 103 0 455 0 731 0 1,181 1 1,330 1 1,114 1948 521 11 259 1 89	Weather HDD kW 0 6 466 0 16 381 0 103 614 0 455 566 0 731 420 0 1,181 369 1 1,330 360 1 1,114 369 1 948 364 11 521 337 12 259 454 1 89 561 6,753 5,262	Weather Peak kWh HDD kW Peak kWh 0 6 466 46,347 0 16 381 36,613 0 103 614 54,420 0 455 566 63,639 0 731 420 56,760 0 1,181 369 57,819 1 1,330 360 52,781 1 1,114 369 53,249 1 948 364 61,842 1 521 337 41,981 11 259 454 51,869 1 89 561 66,576	Weather Weather HDD kW Peak kWh Off-Peak kWh 0 6 466 46,347 51,813 0 16 381 36,613 42,227 0 103 614 54,420 49,710 0 455 566 63,639 44,721 0 731 420 56,760 34,980 0 1,181 369 57,819 43,251 1 1,330 360 52,781 47,389 1 1,114 369 53,249 43,171 1 948 364 61,842 45,468 11 521 337 41,981 31,009 12 259 454 51,869 28,621 1 89 561 66,576 44,424 6,753 5,262 643,896 506,784	Weather Image: Project Weather HDD kW Peak kWh Off-Peak kWh Total kWh 0 6 466 46,347 51,813 98,160 0 16 381 36,613 42,227 78,840 0 103 614 54,420 49,710 104,130 0 455 566 63,639 44,721 108,360 0 731 420 56,760 34,980 91,740 0 1,181 369 57,819 43,251 101,070 1 1,133 360 52,781 47,389 100,170 1 1,114 369 53,249 43,171 96,420 1 948 364 61,842 45,468 107,310 11 521 337 41,981 31,009 72,990 12 259 454 51,869 28,621 80,490 18 9 561 66,576 44,424 11,000	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ 0 6 466 46,347 51,813 98,160 \$13,873 0 16 381 36,613 42,227 78,840 \$11,420 0 103 614 54,420 49,710 104,130 \$18,047 0 455 566 63,639 44,721 108,360 \$13,146 0 731 420 56,760 34,980 91,740 \$9,045 0 1,181 369 57,819 43,251 101,070 \$8,843 1 1,330 360 52,781 47,389 100,170 \$8,552 1 948 364 61,842 45,468 107,310 \$8,612 11 521 337 41,981 31,009 72,990 \$7,603 12 259 454 51,869 28,621 80,490 \$9,935 18	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 0 1,181 369 57,819 43,251 101,070 \$8,343 \$11,286 1 1,130 360 52,781 47,389 100,170 \$8,843 \$11,286 1 1,114 369 53,249 43,171 96,420 \$8,552 \$10,897 1 948 364 61,842 45,468 107,310 \$8,612 <th>Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 0 1,181 369 57,819 43,251 100,170 \$8,343 \$11,286 \$19,629 1 1,330 360 52,781 47,389 100,170 \$8,434 \$11,962 \$19,450 1 313 354 61,842 45,468 107,310 \$8,612</th> <th>Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 0 7,31 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 1,181 369 57,819 43,251 100,170 \$8,843 \$11,286 \$19,629 \$0.20 1 1,330 360 52,781 47,389 100,170 \$8,843 \$11,286 \$19,629 \$0.20</th> <th>Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.266 41 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 1 1,330 360 52,781 47,389 100,170 \$8,343 \$11,286 \$19,629 \$0.20 13,590 1 1,114 369</th> <th>Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 \$250 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 \$755 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 \$7,591 1 1,330 360 52,781 47,389 100,170 \$8,343 \$11,286</th> <th>Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm 0 6 466 46,347 51,813 98,160 \$13,873 \$11,420 \$25,315 \$0.26 52 \$250 \$4.82 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 \$1.58 0 7,31 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 1 1,330<</th> <th>WeatherTotal sNatural GasTotalHDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$\$/kWh BlendedTherm\$\$/ThermMMBiu0646646,34751,81398,160\$13,873\$11,442\$25,315\$0.2652\$250\$4.82501638136,61342,22778,840\$11,420\$9,300\$20,720\$0.2641\$195\$4.754010361454,42049,710104,130\$18,047\$11,938\$29,985\$0.29386\$7755\$1.9639045556663,63944,721108,360\$13,146\$12,277\$25,423\$0.231,952\$3,091\$1.58195073142056,76034,98091,740\$9,045\$10,288\$19,333\$0.214,659\$7,591\$1.6346611,8136957,81943,251101,070\$8,843\$11,286\$19,629\$0.2013,590\$22,222\$1.661,35911,11436953,24943,17196,420\$8,552\$10,897\$19,450\$0.2011,085\$18,375\$1.661,109194836461,84245,468107,310\$8,612\$12,105\$20,716\$0.199,194\$15,254\$1.66919125133741,98131,00972</th> <th>Weather Electric Natural Gas Total Water & HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$AkWh Blended Therm \$ \$\forallow Interval for \$ MMBtu kGal water 0 6 466 46,347 51,813 98,160 \$13,873 \$11,422 \$25,315 \$0.26 52 \$250 \$4.82 5 0 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 4 168 0 103 614 \$4,420 49,710 104,130 \$11,938 \$29,985 \$0.23 1,952 \$3,091 \$11.58 195 0 0 455 566 63,639 44,721 108,360 \$11,142 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 466 216 0 1,181 369 57,819 43</th> <th>Weather Natural Gas Total Water & Sewer* (Annu- MBD) HDD KW Peak kWh Off-Peak kWh Total kWh Delix \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu kGal water Water \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 \$250 \$4.82 5 0 \$0 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 4 168 \$514 0 103 614 54,420 49,710 104,130 \$18,947 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 39 0 \$0 \$0 0 435 566 63,639 44,721 108,360 \$11,142 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 466 216 \$6588<!--</th--><th>Weather Natural Gas Total Water & Sewer* (Annual 2011) HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu kGal water Water \$ \$kGal Water 0 6 466 46,347 51,813 98,160 \$13,873 \$11,420 \$25,315 \$0.26 52 \$250 \$4.82 5 0 \$0 \$0 \$0 \$0 \$0 \$0.00 \$0.26 41 \$195 \$4.75 4 168 \$514 \$3.06 0 103 614 54,420 49,710 104,130 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 39 0 \$0 \$0 \$0.00 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 \$1.63 466 216 \$658 \$3.05 1,181</th></th>	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 0 1,181 369 57,819 43,251 100,170 \$8,343 \$11,286 \$19,629 1 1,330 360 52,781 47,389 100,170 \$8,434 \$11,962 \$19,450 1 313 354 61,842 45,468 107,310 \$8,612	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 0 7,31 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 1,181 369 57,819 43,251 100,170 \$8,843 \$11,286 \$19,629 \$0.20 1 1,330 360 52,781 47,389 100,170 \$8,843 \$11,286 \$19,629 \$0.20	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.266 41 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 1 1,330 360 52,781 47,389 100,170 \$8,343 \$11,286 \$19,629 \$0.20 13,590 1 1,114 369	Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 \$250 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 \$755 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 0 731 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 \$7,591 1 1,330 360 52,781 47,389 100,170 \$8,343 \$11,286	Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm 0 6 466 46,347 51,813 98,160 \$13,873 \$11,420 \$25,315 \$0.26 52 \$250 \$4.82 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 0 103 614 54,420 49,710 104,130 \$18,047 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 \$1.58 0 7,31 420 56,760 34,980 91,740 \$9,045 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 1 1,330<	WeatherTotal sNatural GasTotalHDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$\$/kWh BlendedTherm\$\$/ThermMMBiu0646646,34751,81398,160\$13,873\$11,442\$25,315\$0.2652\$250\$4.82501638136,61342,22778,840\$11,420\$9,300\$20,720\$0.2641\$195\$4.754010361454,42049,710104,130\$18,047\$11,938\$29,985\$0.29386\$7755\$1.9639045556663,63944,721108,360\$13,146\$12,277\$25,423\$0.231,952\$3,091\$1.58195073142056,76034,98091,740\$9,045\$10,288\$19,333\$0.214,659\$7,591\$1.6346611,8136957,81943,251101,070\$8,843\$11,286\$19,629\$0.2013,590\$22,222\$1.661,35911,11436953,24943,17196,420\$8,552\$10,897\$19,450\$0.2011,085\$18,375\$1.661,109194836461,84245,468107,310\$8,612\$12,105\$20,716\$0.199,194\$15,254\$1.66919125133741,98131,00972	Weather Electric Natural Gas Total Water & HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$AkWh Blended Therm \$ \$\forallow Interval for \$ MMBtu kGal water 0 6 466 46,347 51,813 98,160 \$13,873 \$11,422 \$25,315 \$0.26 52 \$250 \$4.82 5 0 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 4 168 0 103 614 \$4,420 49,710 104,130 \$11,938 \$29,985 \$0.23 1,952 \$3,091 \$11.58 195 0 0 455 566 63,639 44,721 108,360 \$11,142 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 466 216 0 1,181 369 57,819 43	Weather Natural Gas Total Water & Sewer* (Annu- MBD) HDD KW Peak kWh Off-Peak kWh Total kWh Delix \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu kGal water Water \$ 0 6 466 46,347 51,813 98,160 \$13,873 \$11,442 \$25,315 \$0.26 52 \$250 \$4.82 5 0 \$0 0 16 381 36,613 42,227 78,840 \$11,420 \$9,300 \$20,720 \$0.26 41 \$195 \$4.75 4 168 \$514 0 103 614 54,420 49,710 104,130 \$18,947 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 39 0 \$0 \$0 0 435 566 63,639 44,721 108,360 \$11,142 \$10,288 \$19,333 \$0.21 4,659 \$7,591 \$1.63 466 216 \$6588 </th <th>Weather Natural Gas Total Water & Sewer* (Annual 2011) HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu kGal water Water \$ \$kGal Water 0 6 466 46,347 51,813 98,160 \$13,873 \$11,420 \$25,315 \$0.26 52 \$250 \$4.82 5 0 \$0 \$0 \$0 \$0 \$0 \$0.00 \$0.26 41 \$195 \$4.75 4 168 \$514 \$3.06 0 103 614 54,420 49,710 104,130 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 39 0 \$0 \$0 \$0.00 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 \$1.63 466 216 \$658 \$3.05 1,181</th>	Weather Natural Gas Total Water & Sewer* (Annual 2011) HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu kGal water Water \$ \$kGal Water 0 6 466 46,347 51,813 98,160 \$13,873 \$11,420 \$25,315 \$0.26 52 \$250 \$4.82 5 0 \$0 \$0 \$0 \$0 \$0 \$0.00 \$0.26 41 \$195 \$4.75 4 168 \$514 \$3.06 0 103 614 54,420 49,710 104,130 \$11,938 \$29,985 \$0.29 386 \$755 \$1.96 39 0 \$0 \$0 \$0.00 0 455 566 63,639 44,721 108,360 \$13,146 \$12,277 \$25,423 \$0.23 1,952 \$3,091 \$1.63 466 216 \$658 \$3.05 1,181

Utility Data Summary - Loring Elementary

Fiscal Year 2011

Fiscal Y	ai 2011																
	Weather				1	Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Off-Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-1) 6	105	9,842	15,838	25,680	\$3,236	\$3,020	\$6,255	\$0.24	43	\$237	\$5.51	4	0	\$0	\$0.00	\$6,492
Aug-1) 16	107	7,778	12,062	19,840	\$3,252	\$2,410	\$5,661	\$0.29	19	\$161	\$8.49	2	104	\$317	\$3.05	\$6,140
Sep-1	103	174	17,001	17,579	34,580	\$5,240	\$3,875	\$9,116	\$0.26	76	\$282	\$3.71	8	0	\$0	\$0.00	\$9,397
Oct-1	455	169	24,491	13,909	38,400	\$4,012	\$4,218	\$8,230	\$0.21	457	\$818	\$1.79	46	0	\$0	\$0.00	\$9,048
Nov-1	731	165	27,262	14,138	41,400	\$3,662	\$4,441	\$8,103	\$0.20	2,465	\$4,034	\$1.64	247	120	\$365	\$3.04	\$12,502
Dec-1	1,181	160	24,808	17,832	42,640	\$3,581	\$4,578	\$8,160	\$0.19	4,808	\$7,997	\$1.66	481	0	\$0	\$0.00	\$16,157
Jan-1	1,330	162	22,036	16,784	38,820	\$3,711	\$4,174	\$7,886	\$0.20	7,175	\$11,919	\$1.66	718	0	\$0	\$0.00	\$19,805
Feb-1	1,114	163	25,177	18,223	43,400	\$3,824	\$4,664	\$8,488	\$0.20	6,499	\$10,786	\$1.66	650	115	\$350	\$3.04	\$19,624
Mar-1	948	157	25,527	15,993	41,520	\$3,693	\$4,461	\$8,154	\$0.20	5,829	\$9,689	\$1.66	583	0	\$0	\$0.00	\$17,842
Apr-1	521	149	22,330	15,230	37,560	\$3,477	\$4,118	\$7,595	\$0.20	3,667	\$6,110	\$1.67	367	0	\$0	\$0.00	\$13,705
May-1	259	158	24,301	11,819	36,120	\$3,622	\$3,947	\$7,569	\$0.21	713	\$1,225	\$1.72	71	151	\$458	\$3.03	\$9,252
Jun-1	89	159	20,347	16,413	36,760	\$4,689	\$3,837	\$8,526	\$0.23	233	\$457	\$1.96	23	0	\$0	\$0.00	\$8,983
Totals	6,753	1,828	250,900	185,820	436,720	\$45,999	\$47,742	\$93,741	\$0.21	31,984	\$53,716	\$1.68	3,198	490	\$1,490	\$3.04	\$148,947

Utility Data Summary - Noyes Elementary

Fiscal Year 2011

I ISCAI I CO																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	84	19,600	19,600	\$2,991	\$2,206	\$5,197	\$0.27	55	\$250	\$4.55	6	0	\$0	\$0.00	\$5,447
Aug-10	16	62	18,000	18,000	\$2,570	\$2,063	\$4,633	\$0.26	33	\$183	\$5.53	3	121	\$373	\$3.08	\$5,189
Sep-10	103	158	28,400	28,400	\$6,013	\$3,089	\$9,102	\$0.32	90	\$1,288	\$14.31	9	0	\$0	\$0.00	\$10,390
Oct-10	455	172	31,600	31,600	\$4,084	\$3,357	\$7,441	\$0.24	514	\$919	\$1.79	51	0	\$0	\$0.00	\$8,359
Nov-10	731	166	34,400	34,400	\$3,293	\$3,595	\$6,888	\$0.20	3,210	\$5,225	\$1.63	321	133	\$409	\$3.08	\$12,521
Dec-10	1,181	158	36,000	36,000	\$3,218	\$3,763	\$6,982	\$0.19	6,665	\$11,066	\$1.66	667	0	\$0	\$0.00	\$18,048
Jan-11	1,330	184	33,600	33,600	\$3,491	\$3,529	\$7,021	\$0.21	10,795	\$17,906	\$1.66	1,080	0	\$0	\$0.00	\$24,927
Feb-11	1,114	170	37,600	37,600	\$3,600	\$3,937	\$7,537	\$0.20	9,058	\$15,019	\$1.66	906	91	\$283	\$3.11	\$22,839
Mar-11	948	158	30,400	30,400	\$3,215	\$3,210	\$6,425	\$0.21	7,574	\$12,573	\$1.66	757	0	\$0	\$0.00	\$18,998
Apr-11	521	162	34,000	34,000	\$3,379	\$3,587	\$6,965	\$0.20	4,701	\$7,822	\$1.66	470	0	\$0	\$0.00	\$14,787
May-11	259	142	28,800	28,800	\$2,936	\$3,083	\$6,019	\$0.21	574	\$1,005	\$1.75	57	129	\$397	\$3.08	\$7,421
Jun-11	89	164	30,800	30,800	\$5,157	\$3,191	\$8,348	\$0.27	239	\$463	\$1.94	24	0	\$0	\$0.00	\$8,811
Totals	6,753	1,780	363,200	363,200	\$43,948	\$38,610	\$82,558	\$0.23	43,508	\$73,719	\$1.69	4,351	474	\$1,462	\$3.08	\$157,739

Utility Data Summary - Haynes Elementary

Fiscal Year 2011

ear 2011																
Weather				E	Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
HDD	kW	Peak kWh	Off-Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
0 6	63	6,751	11,921	18,672	\$1,933	\$1,995	\$3,928	\$0.21	41	\$224	\$5.46	4	0	\$0	\$0.00	\$4,152
0 16	61	6,324	10,668	16,992	\$1,869	\$1,821	\$3,690	\$0.22	27	\$173	\$6.42	3	76	\$238	\$3.13	\$4,101
0 103	121	11,953	13,895	25,848	\$3,609	\$2,695	\$6,304	\$0.24	89	\$287	\$3.22	9	0	\$0	\$0.00	\$6,591
0 455	123	17,653	12,851	30,504	\$2,884	\$3,145	\$6,029	\$0.20	570	\$1,003	\$1.76	57	0	\$0	\$0.00	\$7,033
0 731	123	20,858	13,918	34,776	\$2,702	\$3,521	\$6,223	\$0.18	3,772	\$6,124	\$1.62	377	81	\$253	\$3.12	\$12,600
0 1,181	140	19,205	14,083	33,288	\$3,023	\$3,392	\$6,415	\$0.19	6,226	\$10,340	\$1.66	623	0	\$0	\$0.00	\$16,756
1 1,330	133	16,990	12,362	29,352	\$2,958	\$2,997	\$5,954	\$0.20	9,084	\$15,076	\$1.66	908	0	\$0	\$0.00	\$21,030
1 1,114	130	19,232	12,760	31,992	\$2,956	\$3,268	\$6,224	\$0.19	7,413	\$12,299	\$1.66	741	42	\$136	\$3.24	\$18,659
1 948	133	19,947	11,901	31,848	\$3,001	\$3,254	\$6,255	\$0.20	6,590	\$10,946	\$1.66	659	0	\$0	\$0.00	\$17,201
1 521	119	16,717	11,195	27,912	\$2,693	\$2,885	\$5,578	\$0.20	3,866	\$6,444	\$1.67	387	0	\$0	\$0.00	\$12,021
1 259	127	17,423	7,777	25,200	\$2,803	\$2,616	\$5,419	\$0.22	424	\$758	\$1.79	42	80	\$250	\$3.13	\$6,427
1 89	122	15,225	11,007	26,232	\$3,497	\$2,692	\$6,188	\$0.24	379	\$684	\$1.81	38	0	\$0	\$0.00	\$6,873
6,753	1,395	188,278	144,338	332,616	\$33,927	\$34,281	\$68,208	\$0.21	38,481	\$64,359	\$1.67	3,848	279	\$877	\$3.14	\$133,444
	Weather HDD 00 6 010 16 010 16 010 14 010 455 010 1,181 11 1,330 11 1,114 11 948 11 521 11 259 11 89	Weather HDD kW 00 6 63 100 16 61 100 15 123 100 455 123 100 455 123 100 1,181 140 11 1,330 133 11 1,114 130 14 521 119 11 259 127 11 89 122	Weather Peak kWh HDD kW Peak kWh 00 6 63 6,751 100 16 61 6,324 100 103 121 11,953 100 455 123 17,653 100 1,81 124 19,205 101 1,181 140 19,205 111 1,330 133 16,990 111 1,114 130 19,232 115 211 119 16,717 11259 127 17,423 1189 122 15,225	Weather Weather HDD kW Peak kWh Off-Peak kWh 0 6 63 6,751 11,921 0 16 61 6,324 10,668 0 103 121 11,953 13,895 10 455 123 17,653 12,851 10 7,31 123 20,858 13,918 10 1,181 140 19,205 14,083 11 1,330 133 16,990 12,362 11 1,310 19,232 12,760 11 948 133 19,947 11,901 11 521 119 16,717 11,195 11 259 127 17,423 7,777 11 89 122 15,225 11,007	Weather Weather Image: New Peak kWh Off-Peak kWh Total kWh 0 6 63 $6,751$ $11,921$ $18,672$ 10 16 61 $6,324$ $10,668$ $16,992$ 10 103 121 $11,953$ $13,895$ $25,848$ 10 455 123 $17,653$ $12,851$ $30,504$ 10 731 123 $20,858$ $13,918$ $34,776$ 10 1,181 140 19,205 14,083 $33,288$ 11 1,330 133 16,990 12,362 $29,352$ 11 1,330 133 $16,990$ 12,362 $29,352$ 11 1,314 130 $19,232$ $12,760$ $31,992$ 11 948 133 $19,947$ $11,901$ $31,848$ 11 521 119 $16,717$ $11,195$ $27,912$ 11 259 127 $17,423$ $7,777$ $25,200$	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ 0 6 63 6,751 11,921 18,672 \$1,333 10 16 61 6,324 10,668 16,992 \$1,869 10 103 121 11,953 13,895 25,848 \$3,609 10 455 123 17,653 12,851 30,504 \$2,884 10 731 123 20,858 13,918 34,776 \$2,702 10 1,181 140 19,205 14,083 33,288 \$3,023 11 1,330 133 16,990 12,362 29,352 \$2,956 11 1,114 130 19,232 12,760 31,992 \$2,956 11 948 133 19,947 11,901 31,848 \$3,001 11 521 119 16,717 11,901 31,848 \$3,693 11 <	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 10 16 61 6,324 10,668 16,992 \$1,869 \$1,821 10 103 121 11,953 13,895 25,848 \$3,609 \$2,695 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 10 731 123 20,858 13,918 34,776 \$2,702 \$3,521 10 1,181 140 19,205 14,083 33,228 \$3,023 \$3,392 11 1,330 133 16,990 12,362 29,352 \$2,956 \$3,268 11 1,30 19,232 12,760 31,992 \$2,956 \$3,268 11 948 133 19,947 11,901 31,848 \$3,001 \$3,254 <th>Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 10 16 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 10 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 11 1,330 133 16,990 12,362 29,352 \$2,956 \$3,268 \$6,224 11 1,114 130 19,232 12,760 31,992 \$2,956 \$3,268 \$6,224 11 948 133 19,947 11,901 31,848 \$3,001 \$3,25</th> <th>Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 0 16 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 \$0.22 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.24 0 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 11 1,330 133 16,990 12,362 29,352 \$2,956 \$3,268 \$6,224 \$0.19 11 1,310 19,232 12,760 31,992 \$2,956 \$3,268 \$6,224 \$0.19</th> <th>ElectricHDDkWPeak kWhOff-Peak kWhTotal kWhDelivSup \$Total \$\$/kWh BlendedTherm06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.24891045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570107,3112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772101,18114019,20514,08333,288\$3,023\$3,392\$6,415\$0.196,226111,33013316,99012,36229,352\$2,956\$3,268\$6,224\$0.197,4131194813319,94711,90131,848\$3,001\$3,254\$6,255\$0.206,5901152111916,71711,19527,912\$2,203\$2,816\$5,5419\$0.22424118912215,22511,00726,232\$3,497\$2,692\$6,188\$0.24379</th> <th>ElectricNatural GasHDDkWPeak kWhOff-Peak kWhTotal kWhDelivSup \$Total \$\$SkWh BlendedTherm\$06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$2241016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227\$1731010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$2871045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003107,3112320,85813,91834,776\$2,702\$3,521\$6,223\$0.18$3,772$\$6,124101,18114019,20514,08333,288\$3,023\$3,392\$6,415\$0.19$6,226$\$10,340111,33013316,99012,36229,352\$2,956\$3,268\$6,224\$0.19$7,413$\$12,2991194813319,94711,90131,848\$3,001\$3,254\$6,255\$0.20$6,590$\$10,9461152111916,71711,19527,912\$2,693\$2,885\$5,578\$0.20$3,866$\$6,4441125912717,4237,77725,200\$2,803\$2,616\$5,419\$0.22424\$7581189<</th> <th>Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 41 \$224 \$5.46 0 16 61 6,324 10,668 16,992 \$1,889 \$1,821 \$3,690 \$0.22 27 \$173 \$6.42 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.24 89 \$287 \$3.22 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 570 \$1,003 \$1.76 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 6,226 \$10,340 \$1.66 11 1,330</th> <th>Weather Electric Natural Gas Total HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 41 \$224 \$5,46 4 0 10 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 \$0.22 27 \$173 \$6,42 3 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.22 27 \$1,73 \$6,42 3 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 \$70 \$1,003 \$1,76 \$7 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 \$0,626<th>WeatherTotal valueTotal ValueWeatherElectricNatural GasTotalWater &HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$\$/kWh BlendedTherm\$\$/ThermMMBtukGal water06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227\$173\$6.42376010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.22901045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.765701073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781101,18114019,20514,08333,288\$3,203\$3,392\$6,415\$0.196,226\$10,340\$1.666230111,31019,23212,76031,992\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.66741421494813319,94711,90131,848\$3,001\$3,254\$6,255\$0.206,590</th><th>Weather Electric Natural Gas Total Water & Sewer* (Annotation of the sewer (Annotation of the sewer) (Annotat</th><th>WeatherTotal Vater & Sewer* (Annual 2011)HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$S/kWh BlendedTherm\$\$ThermMMBtukGal waterWater \$\$kGal Water \$\$kGal Water \$06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640\$0\$0\$0.000016616,32410,66816,992\$1,869\$1.821\$3,690\$0.2227\$173\$6.42376\$238\$3.13010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.2290\$0\$0\$0.001045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.76570\$0\$0\$0.001073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781\$253\$3.12111,18114019,20514,08333,288\$2,997\$5,954\$0.209,084\$1.666230\$0\$0.00111,31316,99012,36229,352\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.6674142\$136\$3,2414</th></th>	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 10 16 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 10 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 11 1,330 133 16,990 12,362 29,352 \$2,956 \$3,268 \$6,224 11 1,114 130 19,232 12,760 31,992 \$2,956 \$3,268 \$6,224 11 948 133 19,947 11,901 31,848 \$3,001 \$3,25	Weather Electric HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 0 16 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 \$0.22 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.24 0 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 11 1,330 133 16,990 12,362 29,352 \$2,956 \$3,268 \$6,224 \$0.19 11 1,310 19,232 12,760 31,992 \$2,956 \$3,268 \$6,224 \$0.19	ElectricHDDkWPeak kWhOff-Peak kWhTotal kWhDelivSup \$Total \$\$/kWh BlendedTherm06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.24891045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570107,3112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772101,18114019,20514,08333,288\$3,023\$3,392\$6,415\$0.196,226111,33013316,99012,36229,352\$2,956\$3,268\$6,224\$0.197,4131194813319,94711,90131,848\$3,001\$3,254\$6,255\$0.206,5901152111916,71711,19527,912\$2,203\$2,816\$5,5419\$0.22424118912215,22511,00726,232\$3,497\$2,692\$6,188\$0.24379	ElectricNatural GasHDDkWPeak kWhOff-Peak kWhTotal kWhDelivSup \$Total \$\$SkWh BlendedTherm\$06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$2241016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227\$1731010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$2871045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003107,3112320,85813,91834,776\$2,702\$3,521\$6,223\$0.18 $3,772$ \$6,124101,18114019,20514,08333,288\$3,023\$3,392\$6,415\$0.19 $6,226$ \$10,340111,33013316,99012,36229,352\$2,956\$3,268\$6,224\$0.19 $7,413$ \$12,2991194813319,94711,90131,848\$3,001\$3,254\$6,255\$0.20 $6,590$ \$10,9461152111916,71711,19527,912\$2,693\$2,885\$5,578\$0.20 $3,866$ \$6,4441125912717,4237,77725,200\$2,803\$2,616\$5,419\$0.22424\$7581189<	Weather Electric Natural Gas HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 41 \$224 \$5.46 0 16 61 6,324 10,668 16,992 \$1,889 \$1,821 \$3,690 \$0.22 27 \$173 \$6.42 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.24 89 \$287 \$3.22 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 570 \$1,003 \$1.76 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 6,226 \$10,340 \$1.66 11 1,330	Weather Electric Natural Gas Total HDD kW Peak kWh Off-Peak kWh Total kWh Deliv \$ Sup \$ Total \$ \$/kWh Blended Therm \$ \$/Therm MMBtu 0 6 63 6,751 11,921 18,672 \$1,933 \$1,995 \$3,928 \$0.21 41 \$224 \$5,46 4 0 10 61 6,324 10,668 16,992 \$1,869 \$1,821 \$3,690 \$0.22 27 \$173 \$6,42 3 0 103 121 11,953 13,895 25,848 \$3,609 \$2,695 \$6,304 \$0.22 27 \$1,73 \$6,42 3 10 455 123 17,653 12,851 30,504 \$2,884 \$3,145 \$6,029 \$0.20 \$70 \$1,003 \$1,76 \$7 10 1,181 140 19,205 14,083 33,288 \$3,023 \$3,392 \$6,415 \$0.19 \$0,626 <th>WeatherTotal valueTotal ValueWeatherElectricNatural GasTotalWater &HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$\$/kWh BlendedTherm\$\$/ThermMMBtukGal water06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227\$173\$6.42376010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.22901045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.765701073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781101,18114019,20514,08333,288\$3,203\$3,392\$6,415\$0.196,226\$10,340\$1.666230111,31019,23212,76031,992\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.66741421494813319,94711,90131,848\$3,001\$3,254\$6,255\$0.206,590</th> <th>Weather Electric Natural Gas Total Water & Sewer* (Annotation of the sewer (Annotation of the sewer) (Annotat</th> <th>WeatherTotal Vater & Sewer* (Annual 2011)HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$S/kWh BlendedTherm\$\$ThermMMBtukGal waterWater \$\$kGal Water \$\$kGal Water \$06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640\$0\$0\$0.000016616,32410,66816,992\$1,869\$1.821\$3,690\$0.2227\$173\$6.42376\$238\$3.13010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.2290\$0\$0\$0.001045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.76570\$0\$0\$0.001073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781\$253\$3.12111,18114019,20514,08333,288\$2,997\$5,954\$0.209,084\$1.666230\$0\$0.00111,31316,99012,36229,352\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.6674142\$136\$3,2414</th>	WeatherTotal valueTotal ValueWeatherElectricNatural GasTotalWater &HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$\$/kWh BlendedTherm\$\$/ThermMMBtukGal water06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640016616,32410,66816,992\$1,869\$1,821\$3,690\$0.2227\$173\$6.42376010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.22901045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.765701073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781101,18114019,20514,08333,288\$3,203\$3,392\$6,415\$0.196,226\$10,340\$1.666230111,31019,23212,76031,992\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.66741421494813319,94711,90131,848\$3,001\$3,254\$6,255\$0.206,590	Weather Electric Natural Gas Total Water & Sewer* (Annotation of the sewer (Annotation of the sewer) (Annotat	WeatherTotal Vater & Sewer* (Annual 2011)HDDkWPeak kWhOff-Peak kWhTotal kWhDeliv \$Sup \$Total \$S/kWh BlendedTherm\$\$ThermMMBtukGal waterWater \$\$kGal Water \$\$kGal Water \$06636,75111,92118,672\$1,933\$1,995\$3,928\$0.2141\$224\$5.4640\$0\$0\$0.000016616,32410,66816,992\$1,869\$1.821\$3,690\$0.2227\$173\$6.42376\$238\$3.13010312111,95313,89525,848\$3,609\$2,695\$6,304\$0.2489\$287\$3.2290\$0\$0\$0.001045512317,65312,85130,504\$2,884\$3,145\$6,029\$0.20570\$1,003\$1.76570\$0\$0\$0.001073112320,85813,91834,776\$2,702\$3,521\$6,223\$0.183,772\$6,124\$1.6237781\$253\$3.12111,18114019,20514,08333,288\$2,997\$5,954\$0.209,084\$1.666230\$0\$0.00111,31316,99012,36229,352\$2,956\$3,268\$6,224\$0.197,413\$12,299\$1.6674142\$136\$3,2414

Utility Data Summary - Nixon Elementary

Fiscal Year 2011

1 100001 1 00																
	Weather				Electric					Natural Gas		Total	Water &	Sewer* (Ann	ual 2011)	Total
Date	HDD	kW	Peak kWh	Total kWh	Deliv \$	Sup \$	Total \$	\$/kWh Blended	Therm	\$	\$/Therm	MMBtu	kGal water	Water \$	\$/kGal Water	\$
Jul-10	6	77	19,680	19,680	\$2,755	\$2,088	\$4,843	\$0.25	81	\$289	\$3.57	8	0	\$0	\$0.00	\$5,132
Aug-10	16	56	19,200	19,200	\$2,416	\$2,052	\$4,467	\$0.23	62	\$226	\$3.65	6	100	\$310	\$3.10	\$5,004
Sep-10	103	114	24,160	24,160	\$4,449	\$2,545	\$6,994	\$0.29	128	\$346	\$2.70	13	0	\$0	\$0.00	\$7,339
Oct-10	455	122	26,560	26,560	\$2,948	\$2,755	\$5,702	\$0.21	441	\$809	\$1.83	44	0	\$0	\$0.00	\$6,511
Nov-10	731	105	27,920	27,920	\$2,254	\$2,859	\$5,113	\$0.18	2,095	\$3,442	\$1.64	210	103	\$319	\$3.10	\$8,874
Dec-10	1,181	107	29,120	29,120	\$2,308	\$2,990	\$5,298	\$0.18	4,504	\$7,493	\$1.66	450	0	\$0	\$0.00	\$12,790
Jan-11	1,330	116	28,000	28,000	\$2,352	\$2,879	\$5,231	\$0.19	7,810	\$12,969	\$1.66	781	0	\$0	\$0.00	\$18,200
Feb-11	1,114	112	31,360	31,360	\$2,572	\$3,217	\$5,789	\$0.18	6,729	\$11,168	\$1.66	673	69	\$217	\$3.14	\$17,174
Mar-11	948	108	26,080	26,080	\$2,370	\$2,690	\$5,061	\$0.19	5,792	\$9,626	\$1.66	579	0	\$0	\$0.00	\$14,686
Apr-11	521	102	28,000	28,000	\$2,334	\$2,893	\$5,227	\$0.19	3,296	\$5,498	\$1.67	330	0	\$0	\$0.00	\$10,725
May-11	259	103	24,160	24,160	\$2,233	\$2,524	\$4,757	\$0.20	482	\$860	\$1.78	48	94	\$292	\$3.11	\$5,909
Jun-11	89	128	26,640	26,640	\$4,053	\$2,749	\$6,803	\$0.26	240	\$465	\$1.94	24	0	\$0	\$0.00	\$7,267
Totals	6,753	1,250	310,880	310,880	\$33,042	\$32,241	\$65,284	\$0.21	31,660	\$53,190	\$1.68	3,166	366	\$1,138	\$3.11	\$119,612

Section 2: Existing Conditions

DPW Highway

Building Characteristics

The DPW Highway building is a 7,154 ft² building that was constructed in 1956. It is utilized by the Department of Public Works, Monday through Friday from 6:30 AM to 3:30 PM, and consists of offices, three garage bays, and a dormitory. The building has a concrete masonry unit (CMU) construction throughout the first level and a steel frame roof system with a flat rubber top coat. The second story addition above the offices that houses the dormitory has a wood frame construction with vinyl siding and a sloped roof with asphalt shingles. Windows throughout the building are mostly double pane glazing in vinyl frames, with the

exception of the few garage bay windows which are single pane glazing in metal frames. There are 12 overhead doors that account for much of the building's exterior surface.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The DPW Highway garages are heated by eight gas-fired Vantage II infrared heaters that are mounted from the ceiling. Each of the infrared heaters has a minimum gas input capacity of 100 MBH. The offices and dormitory are conditioned by a Carrier Weather Maker central heating and cooling system located in the first floor mechanical closet. The unit has a 100 MBH gas input capacity and a 5 ton cooling capacity

Energy Management Systems

The infrared heaters are each controlled by their own individual T87 style Honeywell thermostat. The furnace serving the offices and dormitory is controlled by an antiquated White Rodgers programmable thermostat.

Domestic Hot Water Systems

Domestic hot water is provided by an AO Smith Gas III gas-fired water heater with a gas input capacity of 30 MBH and a tank storage capacity of 30 gallons.

Final Investment Grade Audit

Section 2

Lighting Systems

Shops employ efficient 4' T8 28w strips, standard T8 strips, MH bay fixtures. Storage areas have standard T8 strips, MH surface fixtures. The parking garage employs MH bay fixtures. Building mounted fixtures use MH exterior fixtures, HPS floods.

DPW Offices

Building Characteristics

The DPW Offices building is a 28,274 ft² building that was constructed in 2001. It is utilized by the Department of Public Works, Monday through Friday from 8:00 AM to 4:00 PM, and consists of offices and a large garage bay. The office section of the building has a CMU construction and a metal and wood frame roof system with a sloped ashpalt shingle roof. There is sufficient insulation installed between the rafters of the office section attic. The garage bay portion of the building has an insulated metal panel wall and metal panel sloped roof system with metal framing throughout. There are 2 over-

sized overhead doors that serve the garage bay. Windows throughout the building are double pane glazing in aluminum frames.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The DPW Offices building is conditioned by a number of heating, cooling and ventilation units. The garage bay is heated by four gas-fired Reznor heating and ventilation (H&V) units that are hung from the ceiling. The two large units have an output capacity of 648 MBH and the two small units have an output capacity of 240 MBH. There are a number of exhaust fans that serve the garage bay and remove vehicle emissions. The office section of the building is heated and cooled by six Reznor HVAC units located in the attic with associated condensing units located on the rooftop. Each unit has a heating output capacity of 98 MBH and a cooling capacity ranging from 3 to 6 tons. These units serve six office zones and provide the conditioned air through an overhead distribution system and diffusers mounted in the dropped ceiling. A number of exhaust fans serve the common areas and electric rooms.

Energy Management Systems

The H&V units serving the garage bay are controlled by Honeywell thermostats that provide basic control of on/off function and temperature setpoint. The exhaust fans are controlled by a Vulcain system that monitors the emissions level in the space. Each of the HVAC units serving the office zones is controlled by a Robert Shaw 7-day programmable thermostat. The thermostats are programmed to operate during the hours of 8:00 AM and 5:00 PM.

Page 2

Domestic Hot Water Systems

Domestic hot water for the office section is provided by a small on-demand electric water heater and 20 gallon electric water heater. A gas-fired water heater with an input capacity of 395 MBH serves the truck washing load of the garage bay.

Lighting Systems

Offices use efficient 4' T8 28w troffers, compact fluorescent cans, incandescent cans, standard T8 troffers. Halls have standard T8 troffers, efficient 4' T8 28w wraps. The parking garage employs T5 bay fixtures. Storage areas use efficient 4' T8 28w troffers. Baths have compact fluorescent cans, standard T8 valances. The kitchen uses efficient 4' T8 28w troffers. Building mounts use HPS squares, exterior fixtures, and MH exterior fixtures. The parking lot utilizes MH parking/roadway fixtures.

Flynn Building

Building Characteristics

The Flynn building is a 14,750 ft² two story building with basement that was constructed in 1898 and renovated in 1968. It is utilized by many Town Departments including the Assessors Office, Engineering, and Treasurer, Monday through Friday from 7:00 AM to 8:00 PM. The building has a wood frame wall and roof construction with wood siding. The original front wing of the building has a sloped ashpalt shingle roof and the remaining section has a flat rubber roof. There is a minimal amount of blown-in fiberglass insulation in the attic space of the sloped roof sections. Windows throughout the

building are mostly double pane glazing in vinyl frames, with the exception of a few single pane, architectural wood frame windows.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Flynn Building is provided with heating hot water by a PK Thermific SN-1200 gas-fired boiler located in the basement boiler room. The boiler has an output capacity of 1,020 MBH and the heating hot water is distributed throughout the building to terminal units by two 3 HP pumps. All of the occupied spaces are heated by fourteen finned tube baseboard radiators that wrap around the entire perimeter of the building. Three split-system AC units with a combined cooling capacity of 7 tons provide cooling to the IT server room. There are also a number of window AC units of various sizes that provide cooling to offices.

Final Investment Grade Audit

Section 2

Energy Management Systems

The PK Thermific boiler is controlled by a Tekmar 256 controller that operates the boiler using outdoor temperature reset. The building's finned tube radiators are controlled by fourteen Honeywell T87 style thermostats with basic temperature setpoint control. There are fourteen associated hot water zone valves that open and close with the space heating demand.

Domestic Hot Water Systems

Domestic hot water is provided by an electric AO Smith water heater with a storage capacity of 30 gallons.

Lighting Systems

Offices have standard T8 wraps, troffers, strips, old surface fixtures, incandescent cans. Storage areas have standard T8 strips, wraps, old surface fixtures, incandescent surface fixtures, T12 strips. Halls employ standard T8 wraps, strips. Baths have standard T8 wraps, T12 valances. The kitchen uses standard T8 troffers.

Town Hall

Building Characteristics

The Town Hall building is a 12,789 ft² two story building that was constructed in 1931 with an addition completed in the 1950s. The building consists of offices and meeting spaces and is utilized by Town Departments including the Town Clerk, Sudbury Historical Society and Verterans' Agent, Monday through Friday from 9:00 AM to 5:00 PM. The building has a concrete and brick wall construction and Greekstyle architectural details at the front entrance. The cross gable style roof has a steel frame structure with a wood deck and exterior asphalt shingles. There is no insulation installed in the

attic space or walls of the building. The windows throughout the first level are double-hung, double pane glazing in vinyl frames. The second level windows are the original double-hung, single pane glazing in wood frames which are a major source of heat loss. Doors throughout are insulated slabs with sufficient weatherstripping.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Town Hall is provided with low pressure steam by a Weil-McLain 688 boiler located in the basement boiler room. The boiler has an input capacity of 1,703 MBH and distributes steam to the original building terminal units including radiators, convectors, and air-handling units. The radiators throughout the building

Final Investment Grade Audit

Page 4

are 1-pipe and 2-pipe, floor and wall mounted. Condensate from the steam distribution system is returned to condensate pump located in the boiler room. The boiler also provides steam to an Everhot steam-to-hot water heat exchanger that generates hot water for the building addition terminal units. The hot water is distributed throughout the building by a fractional horsepower circulator pump. The addition is provided with ventilation and cooling by a rooftop unit that distributes conditioned air through an overhead ductwork system. Four unit ventilators serve the Auditorium and second floor Historical Society.

Energy Management Systems

The steam boiler operates on outdoor air temperature and system pressure. Steam zones in the original building have little to no control. The hot water heating zones are controlled by local thermostats inside each occupied space. These thermostats control basic open/close operation of Taco zone valves. The air conditioning unit and unit ventilators are controlled by Robert Shaw programmable thermostats that provide scheduling and occupied/unoccupied setpoint temperature control.

Domestic Hot Water Systems

Domestic hot water is provided primarily by an A.O. Smith ProMax water heater with a 40 gallon tank capacity and an input rating of 38 MBH. Additional domestic hot water is provided to the office area restrooms by a small electric heater.

Fairbank Community Center

Building Characteristics

The Fairbank Community Center is a 40,341 ft² building consisting of the Atkinson Pool, Senior Center, and School Administration offices. The original single story building that was constructed in 1959 first served as an elementary school but is now utilized by School Administration. This section has a masonry block construction and a built-up roof with rubber top coat. The Senior Center addition was constructed in 1989 and has a masonry block construction and metal frame roof and metal deck with asphalt shingles. The Atkinson Pool addition was constructed in 1989 and also has a masonry block construction and

metal frame roof system with asphalt shingles. The roof above the pool has an interior wood frame and wood deck. Windows in the 1959 wing are majority single pane glazing in aluminum frames with lower 1/3 sections of unibsulated panel. The remaining windows throughout the building are double pane windows in aluminum frames. The occupied hours vary but on average the Fairbank Community Center is occupied from 7:00 AM to 7:00 PM.

Final Investment Grade Audit

Section 2

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Senior Center and School Administration wings are primarily heated by two PK Thermific SN-2000 gasfired boilers, each with output capacity of 1,700 MBH. Two 5 HP pumps serve the primary hot water loop and distribute the water to the secondary hot water loop. In the secondary hot water loop the heating hot water is distributed by three sets of pumps to three zones; Senior Center, School Department, and Parks and Recreation. The School Administration is still heated by the original baseboard radiators located along the perimeter of the building. Various window mounted AC units provide cooling to the School department offices. The Senior Center is primarily conditioned by two Trane Climate Changer rooftop units that provide heating and cooling to the spaces through an overhead distribution system. Perimeter hot water baseboard provides supplementary heat to the spaces. The Video Game room and TV Lounge are provided with cooling by two Sanyo split-systems. A number of roof and wall mounted exhaust fans serve the common areas of the Senior Center and Administration wings.

A set of Raypack P-0514 gas-fired boilers located in the Atkinson Pool boiler room serves the heating load of the pool water. The lap pool boiler has an input capacity of 800 MBH and the diving pool boiler has an input capacity of 512 MBH. The water is heated, treated, and filtered before being pumped to the lap pool by two 10 HP pumps and also pumped to the diving pool by a 5 HP pump. The Atkinson Pool lobby area and locker rooms are conditioned by a York gas-fired rooftop unit that provides heating and cooling to the spaces through an overhead distribution system. The pool area is conditioned by a gas-fired rooftop unit as well. The rooftop units and boilers serving the Atkinson Pool are currently in the process of being replaced. A number of roof and wall mounted exhaust fans serve the common areas of the pool building.

Energy Management Systems

A majority of the HVAC equipment located in the Senior Center boiler room is controlled and monitored by a Johnson Controls Facility Explorer (FX) energy management system (EMS). The FX system provides hot water loop temperature and occupancy schedule adjustments for the three zones being served by the heating hot water system. A number of Johnson Control sensors located in the Senior Center meeting spaces communicate with the rooftop units to provide the necessary heating or cooling. The nine baseboard radiators in the Senior Center are controlled by Honeywell T87 style thermostats located within each occupied space. The Administration offices baseboard heat is controlled by thermostatic radiator valves installed directly on each of the eighteen sections of baseboard. The pool boiler plant is controlled by an antiquated independent control system. There is a 6.1 kW solar PV array installed on the Senior Center to offset the electric utility costs. This solar array is tied into a Wattmetrics system for real-time monitoring online.

Domestic Hot Water Systems

Domestic hot water for the Fairbank Community Center including the pool shower rooms is primarily provided by two PVI 40P gas-fired water heaters. These water heaters each have a tank capacity of 90 gallons and a gas input capacity of 400 MBH. Supplementary domestic hot water is provided by a twelve panel solar mechanical array on the Senior Center that is tied into the domestic water distribution system.

Final Investment Grade Audit

Page 6

Lighting Systems

Offices employ efficient 4' T8 30w troffers, standard T8 troffers. Baths have standard T8 troffers, valances, compact fluorescent exterior fixtures, efficient 4' T8 30w troffers, vanities. Halls employ standard T8 troffers, efficient 4' T8 30w troffers, compact fluorescent cans. Classrooms use standard T8 troffers, efficient 4' T8 30w troffers, and incandescent cans. The pool utilizes T5 bay fixtures. Storage areas use efficient 4' T8 30w wraps. The kitchen has standard T8 troffers. The gym use T5 bay fixtures. The auditorium uses efficient 4' T8 30w wraps. Building mounts have compact fluorescent exterior fixtures, cans, led exterior fixtures, MH floods. The parking lot use HPS parking/roadway fixtures.

Goodnow Library

Building Characteristics

The Goodnow Library is a 34,364 ft² two story building that underwent a major renovation and addition in 1997. It is utilized by Town of Sudbury residents and staff Monday through Thursday 9:00 AM to 9:00 PM, Friday and Saturday 9:00 AM to 5:00 PM, and Sunday 2:00 PM to 5:00 PM. The occupied space consists of two levels of open study space, a private study area, meeting room , and offices. The building has a brick and masonry block wall construction with thermal pane windows in aluminum frames throughout the addition and wood frame windows in the original section. The original building has a hipped roof with slate shingles and the addition has a metal

roof system with a combination of asphalt shingles on the sloped section and a rubber membrane on the flat section. The addition was constructed with batt insulation in the wall cavities and rigid insulation built in the roof system. The building has both wood slab and aluminum frame doors.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Goodnow Library is provided with heating hot water by a Smith Series 28A-5 gas-fired boiler with an output capacity of 1,014 MBH. Two 3 HP pumps distribute the hot water supply to baseboard radiators, VAV boxes, and two rooftop units. The two Trane Model YCD rooftop units provide heating, cooling, and ventilation to the entire library through an overhead variable air volume (VAV) distribution system. Air is distributed to each zone through 31 VAV boxes equipped with air dampers that modulate the amount of conditioned air supplied to each space based on the demand for heating or cooling. The VAV boxes are also equipped with hot water reheat coils to temper the supply air if necessary. Baseboard radiators along the perimeter walls provide additional heat as well. A handful of roof exhaust fans serve the Library common areas.

Final Investment Grade Audit

Section 2

Energy Management Systems

The boiler is controlled by a Honeywell T775 controller that operates the boiler using basic outdoor temperature reset. The Trane rooftop units are controlled by Trane programmable thermostats that allow programming of setpoint temperatures and occupied schedules. Each VAV box is controlled by a KMC thermostat with basic setpoint temperature control located within the occupied space being served. The thermostat communicates with the VAV box to open/close dampers and modulate the hot water valve to meet space temperature requirements. The baseboard radiators are also equipped with the same KMC thermostats that control the hot water valves supplying the units. All of the HVAC equipment currently operates independently of each other.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a State SSX gas-fired water heater with a tank capacity of 50 gallons and an input capacity of 52 MBH.

Lighting Systems

The library uses compact fluorescent cans, standard T8 troffers, T5 "biax" decorative fixtures, incandescent cans. Offices use standard T8 troffers, indirects, compact fluorescent cans, and T5 "biax" decorative fixtures. Halls employ compact fluorescent cans, incandescent cans, MH cans. Classrooms have compact fluorescent cans, incandescent cans, and standard T8 troffers. Storage areas use standard T8 wraps, strips, T12 wraps, strips. Baths use standard T8 strips. Building mounts use incandescent cans, compact fluorescent exterior fixtures. The parking lot uses HPS parking/roadway fixtures.

Fire Department Headquarters

Building Characteristics

The Fire Department Headquarters is a 10,055 ft² two story building that was constructed in 1991. It is utilized by the Sudbury Fire Department and provides 24/7 fire safety and emergency medical response services. The occupied space consists of a large apparatus bay, offices, conference room, dispatch, dormitories, kitchen, and fitness center. The building has a wood frame wall and roof construction with exterior vinyl siding and an asphalt shingle roof. Fiberglass batt insulation is installed within the wall cavities and blownin fiberglass inulation is installed in attic space. The double hung windows throughout the building are double pane glazing in vinyl frames.

Final Investment Grade Audit

Page 8

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The office wing of the Fire Station Headquarters is heated by two Central Environmental Systems gas-fired furnaces located in the attic, each with an output of 105 MBH. The conditioned air is distributed through an overhead system and diffusers mounted in the dropped-ceiling. Each of these units also provides 5 tons of cooling through a DX split-system. Electric unit heaters provide heat to those common spaces that are not conditioned by the overhead system. A few exhaust roof mounted and ceiling hung exhaust fans serve the restrooms, locker rooms, kitchen, and conference room.

The apparatus bay of the Fire Station Headquarters is heated by two ceiling mounted gas-fired unit heaters, each with an output capacity of 200 MBH. There is a Plymovent exhaust system as well as wall mounted exhaust fans installed in the apparatus bay to remove vehicle emissions.

Energy Management Systems

The office wing of the Fire Station Headquarters has two zones; 1st floor and 2nd floor. A Honeywell thermostat located in the 1st floor dispatch room controls Furnace-2 serving the 1st floor zone. A Honeywell thermostat located in the 2nd floor hall controls Furnace-1 serving the 2nd floor zone. These heat/cool thermostats control the on/off operation of the fan, heat/cool function of the units, and setpoint temperature. The apparatus bay unit heaters are controlled by T87 style thermostats with basic on/off and setpoint temperature control.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a Rheem-Ruud gas-fired water heater with a tank capacity of 85 gallons and input capacity of 300 MBH.

Lighting Systems

Offices use standard T8 troffers. The parking garage has standard T8 strips. Halls use standard T8 troffers, wraps. Baths employ compact fluorescent cans, standard T8 old wall mounted fixtures, troffers, T12 vanities. Storage areas use standard T8 troffers, strips. Bedrooms use standard T8 troffers. The gym uses standard T8 troffers. Classrooms use standard T8 troffers. Building mounts use incandescent decorative fixtures, MH floods.

Fire Department South (Fire Department 2)

Building Characteristics

The Fire Department South is a 3,286 ft² building that was constructed in 1988. It is utilized by the Sudbury Fire Department and provides 24/7 fire safety and emergency medical response services. The occupied space consists of a large apparatus bay, offices, a dormitory, kitchen, and lounge. The building has a brick and concrete wall construction and a cross gable steel frame roof covered in asphalt shingles. There are three large overhead doors that serve the apparatus bay. The double hung windows throughout the building are single pane glazing in wood frames.

Final Investment Grade Audit

Section 2

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The two zones of the building are heated by a Burnham 208NCL gas-fired boiler with an input capacity of 232 MBH. The low efficiency boiler is gravity-vented and equipped with an automatic vent damper. Two zone pumps in the boiler room distribute the hot water supply to the apparatus bay zone and the common area zone (kitchen, dormitory, offices). The apparatus bay is heated by two ceiling hung unit heaters equipped with hot water coils. A Plymovent exhaust system is installed in the apparatus bay to exhaust

vehicle emissions. The common area spaces are heated by baseboard radiators that wrap along the perimeter of the wing. Cooling for the office wing is provided by window air conditioners of various sizes.

Energy Management Systems

The two heating zones of the building have Honeywell T87 thermostats that control the zone pump for their respective zone. The thermostats provide basic setpoint temperature control of the spaces and the boiler operates to meet the required heating demand.

Domestic Hot Water Systems

Domestic hot water is provided by a 50-gallon Burnham indirect water heater located in the boiler room. The Burnham 208NCL gas-fired boiler provides the hot water and a zone pump delivers the hot water to the indirect water heater.

Fire Department North (Fire Department 3)

Building Characteristics

The Fire Department North is a 3,286 ft² building that was constructed in 1988. The building is a mirror

image of Fire Station South, with a few minor differences. It is utilized by the Sudbury Fire Department and provides 24/7 fire safety and emergency medical response services. The occupied space consists of a large apparatus bay, offices, a dormitory, kitchen, and lounge. The building has a brick and concrete wall construction and a steel frame roof covered in a rubber membrane. There are three large overhead doors that serve the apparatus bay. The original double hung windows throughout the building have been replaced with double pane, vinyl frame

inal Investment Grade Audit

Section 2

"Page content is subject to Confidentiality Restrictions'

windows.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The two zones of the building are heated by a Burnham P-209A gas-fired boiler with an input capacity of 266 MBH. The low efficiency boiler is gravity-vented and equipped with an automatic vent damper. Two zone pumps in the boiler room distribute the hot water supply to the apparatus bay zone and the common area zone (kitchen, dormitory, offices). The apparatus bay is heated by two ceiling hung unit heaters equipped with hot water coils. A Plymovent exhaust system is installed in the apparatus bay to exhaust vehicle emissions. The common area spaces are heated by baseboard radiators that wrap along the perimeter of the wing. Cooling for the office wing is provided by window air conditioners of various sizes.

Energy Management Systems

The two heating zones of the building have Honeywell thermostats that control the zone pump for their respective zone. The thermostats provide basic setpoint temperature control of the spaces and the boiler operates to meet the required heating demand.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a gas-fired water heater in the boiler room with a 40 gallon tank capacity and 40 MBH input capacity.

Curtis Middle School

Building Characteristics

The Curtis Middle School is a 155,000 ft² building that was constructed in 1998. It is utilized by teachers, staff, and students from approximately 7:30 AM to 3:00 PM through the school year, with some activities taking place during the evening and summer months. The building consists of three wing; A, B, and C. Three story A-Wing houses most of the classrooms and science labs. The two story B-Wing houses the cafeteria, main office, library, guidance offices, art rooms, and computer labs. The single story C-Wing houses the gym, auditorium, and music rooms. The building has a masronry block wall construction and numerous flat sections of metal frame and deck roof with

rubber membrane top coats. A formed metal panel system covers various wall sections of the west, south, and east facing exterior walls. Windows throughout the building are double hung and fixed style with insulated glass in aluminum frames. Exterior doors are insulated metal slabs with minimal glazing.

Final Investment Grade Audit

Section 2

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Curtis Middle School is provided with heating hot water by three Burnham Model KV1123 WML gasfired boilers, each with a gross output capacity of 4,551 MBH. Two 40 HP premium efficiency pumps distribute the hot water supply throughout the building. The two pumps share a Square D Econoflex adjustable speed drive controller that operates the pumps in a lead/lag strategy and varies the pumps output based on the hot water loop system pressure. The heating hot water is distributed to terminal units throughout the building including 14 rooftop units, 51 VAV boxes, 8 unit ventilators, and approximately 47 baseboard radiators.

The fourteen rooftop units provide a majority of the heating, cooling, and ventilation to the various zones of the building through risers and overhead ductwork systems. The following table provides a list of the rooftop units and the areas served by each.

Designation	Service	Supply Fan HP	Return Fan HP	Supply and Return CFM
RTU-1	A-Wing Science Prep Rooms	1.5	-	1,260
RTU-2 (HRU-1)	A-Wing Interior Classrooms	30	15	16,260
RTU-3 (HRU-2)	A-Wing Perimeter Classrooms	15	10	11,275
RTU-4 (HRU-3)	A-Wing Perimeter Classrooms	7.5	7.5	9,150
RTU-5	B-Wing Guidance Office	10	7.5	8,645
RTU-6	B-Wing Kitchen	7.5	3	6,050
RTU-7	B-Wing Library	15	7.5	10,350
RTU-8	B-Wing Cafeteria	7.5	5	6,400
RTU-9	B-Wing Main Office & Nurse	7.5	5	4,950
RTU-10	C-Wing Gym	7.5	3	7,000
RTU-11 (HRU-4)	C-Wing Locker Rooms	1.5	1.5	1,150
RTU-12	C-Wing Auditorium	15	7.5	12,000
RTU-13	C-Wing Orchestra & Music	3	2	2,650
RTU-14 (HRU-5)	C-Wing Orchestra & Music	3	3	2,700

Each of the rooftop units is equipped with a hot water heating coil and outside air dampers which modulate to provide varying amounts of ventilation air. All of the rooftop units except RTU-2, RTU-6, RTU-10, RTU-11 are equipped with DX cooling coils and air cooled condensing units. The supply and return fans of RTU-2, RTU-5, and RTU-9 are equipped with variable frequency drives (VFD) that modulate the fan output based on system pressure. These units serve VAV boxes equipped with reheat coils and dampers that modulate to meet the heating or cooling loads of their respective zone. The A-Wing science classrooms are provided with heating, cooling, and ventilation by ceiling hung unit ventilators. These units operate in conjunction with the fume hoods in each science classroom to ensure adequate ventilation. Hot water baseboard radiators are located throughout the building classrooms along the perimeter walls to supplement the overhead heating system. Heat recover units (HRU) provide ventilation air to the classrooms. Hot water cabinet unit heaters are located in common areas including stairways, corridors, and vestibules to condition those spaces. There are 29 Greenheck rooftop exhaust fans that serve the classrooms, restrooms, kitchen, and storage spaces.

inal Investment Grade Audit

Energy Management Systems

A Delta Controls Energy Management System (EMS) was installed to control all the HVAC equipment in the building. The fully digital control system consists of DDC actuators and valves on all HVAC equipment, Delta DAC controllers, Delta temperature sensors in all spaces, CO2 sensors for Demand Controlled Ventilation (DCV), and web accessible front end running on ORCAweb software. ORCAweb allows the operator to easily monitor HVAC equipment status, alarms or adjust temperature setpoints and operation schedules. Most of the Delta controllers are V2 models, except for the Delta V3 controllers operating the Science Room unit ventilators. The V2 controllers are not compatible with the new V3 controllers which have caused some communication issues. The V2 controllers may also present an issue with integrating the existing EMS into a town-wide network.

The following table contains the summer and winter operation schedules of the fourteen building zones and auxiliary terminal units. RTU-8, 10, and 12 are occasionally operated on the weekends and their schedules are modified on a weekly basis to accommodate changing activities.

Schedule –	Cooling	Season	Heating	Season
Schedule	On (AM)	Off (PM)	On (AM)	Off (PM)
A, B, C-Wings (FTR+CUH)	7:00	16:00	3:40	16:00
A, B, C-Wing (VAV)	7:03	16:00	4:37	16:00
A-Wing Science Rooms (UVs)	7:15	15:00	6:01	15:00
RTU-1	7:16	16:30	7:16	16:30
RTU-2 (HRU-1)	4:25	16:00	5:05	16:00
RTU-3 (HRU-2)	4:30	16:00	5:10	16:00
RTU-4 (HRU-3)	4:15	16:00	5:15	16:00
RTU-5	5:00	16:50	5:25	16:50
RTU-6	6:53	14:30	5:20	14:30
RTU-7	7:05	16:00	6:05	16:00
RTU-8	5:50	16:00	5:20	16:00
RTU-9	6:45	16:00	4:45	17:00
RTU-10	6:56	15:00	5:56	15:00
RTU-11 (HRU-4)	6:40	16:00	5:50	15:00
RTU-12	8:00	13:00	6:34	12:00
RTU-13	6:59	16:00	3:45	18:00
RTU-14 (HRU-5)	7:35	16:00	5:30	15:00

Domestic Hot Water Systems

Domestic hot water for the building is provided by two PVI Turbopower 750N gas-fired water heaters with input capacities of 600 MBH and an additional Takagi instantaneous gas-fired water heater with an input capacity of 380 MBH. A 15 kW Hatco booster water heater provides additional water heating for the kitchen domestic water load.

Lighting Systems

Classrooms use standard T8 indirects, wallwash, troffers, compact fluorescent cans. Halls have standard T8 troffers, coves, valances, compact fluorescent cans. Offices use standard T8 troffers, indirects, compact fluorescent cans. Baths employ standard T8 troffers, valances, strips, compact fluorescent cans. The cafeteria uses compact fluorescent cans, standard T8 troffers, and MH sconces. Storage areas use standard T8 troffers,

Final Investment Grade Audit

Section 2

strips. The library uses standard T8 troffers, MH decorative fixtures, indirects, compact fluorescent sconces. The auditorium has compact fluorescent cans, sconces, standard T8 troffers. Labs use standard T8 indirects. The gym employs T5 bay fixtures. The kitchen uses standard T8 troffers, compact fluorescent wall mounted fixtures. Building mounts use MH exterior fixtures, indirects, squares, led exterior fixtures.

Loring Elementary School

Building Characteristics

The Loring Elementary School is a 81,654 ft² building that was constructed in 1998. It is utilized by teachers, staff, and students from approximately 8:00 AM to 3:00 PM through the school year, with some activities

taking place during the evening and summer months. The two story building consists of kindergarten through grade 5 classrooms, gymnasium, library, cafetorium, and office space. The building has an insulated brick and masronry block wall construction . Sections of the building have a standing seam metal roofing system while a majority of the building has an EPDM membrane roofing system with a metal deck. Windows throughout the building are double hung and fixed style with double pane glazing in aluminum frames. Building entrances have aluminum store front window systems and all

exterior doors are insulated metal slabs with varying amounts of glazing.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Loring Elementary School is provided with heating hot water by two Burnham V1117W gas-fired boilers, each with a gross output of 3,353 MBH. The heating hot water is distributed throughout the building by two 15 HP Taco pumps to terminal units including 8 rooftop units, 11 fan-powered VAV boxes, and approximately 59 hot water finned tube radiators. The two pumps share a Square D Econoflex adjustable speed drive controller that operates the pumps in a lead/lag strategy and varies the pumps output based on the hot water loop system pressure.

RTU-1 serving the library provides heating, cooling, and ventilation and is equipped with a hot water heating coil, DX cooling coil, and economizer. The fans are equipped with VFDs for optimum fan start/stop and speed control. RTUs 2 through 8 provide heating and ventilation to the remaining areas of the building including the gym, classrooms, kitchen, and cafeteria. These units are equipped with hot water coils and economizers and distribute the conditioned air through an overhead ductwork system. The fan-powered VAV boxes serve the main office, library, and computer lab and are equipped with hot water reheat coils to provide additional heat to the spaces. Perimeter baseboard radiators are located throughout classrooms and common spaces to provide additional heat along the exterior walls and windows of those spaces. Fourteen roof mounted exhaust fans of fractional horsepower serve the restroom, classrooms, and general spaces.

Final Investment Grade Audit

Page 14

Energy Management Systems

The Loring Elementary School originally had a Johnson Controls Metasys EMS and Tekmar boiler controller installed to control all the HVAC equipment and boiler plant. The EMS was recently upgraded with a new Johnson Controls Facility Explorer EMS consisting of some new Facility Explorer field controllers and front end software. An FX60 Supervisory Controller was installed to manage all the existing Metasys and new Facility Explorer field controllers and provides web accessibility of the EMS front end software. All of the HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop temperature and occupancy schedule adjustments. Metasys temperature sensors in each occupied zone communicate with the FX system and provide control of the rooftop units, VAV boxes, and finned tube radiators.

Domestic Hot Water Systems

Domestic hot water for the building is provided by two PVI 40N gas-fired water heaters with input capacities of 400 MBH each. A 24 kW Hatco booster water heater provides additional water heating for the kitchen domestic water load.

Lighting Systems

Classrooms have T5 indirects, standard T8 troffers, and tubes. Halls use standard T8 troffers, boxes, strips, compact fluorescent cans, MH cans. The library uses T5 indirects. Baths use standard T8 valances, troffers, compact fluorescent cans. The cafeteria uses standard T8 troffers, bay fixtures, compact fluorescent cans. Offices use standard T8 troffers, strips, and T5 indirects. Labs have T5 indirects. The gym uses T5 bay fixtures. Storage areas employ standard T8 troffers, strips, compact fluorescent drums. The kitchen uses standard T8 troffers. Mechanical areas use standard T8 strips. The auditorium uses standard T8 strips. Building mounts use led exterior fixtures, MH exterior fixtures, standard T8 vapor tights, compact fluorescent exterior fixtures, drums. The parking lot employs MH parking/roadway fixtures.

Noyes Elementary School

Building Characteristics

The Noyes Elementary School is a 82,502 ft² building that was originally constructed in 1948 with an addition constructed in 1972 and renovations completed in 2000 and 2011. It is utilized by teachers, staff, and students from approximately 8:30 AM to 3:30 PM through the school year, with some activities taking place during the evening and summer months. The two story building consists of kindergarten through grade 5 classrooms, gymnasium, library, cafeteria, and office space. The building has a brick and masronry block wall construction and a steel frame roof system with flat white PVC membrane. Windows throughout the building are hopper and fixed style with insulated glass in aluminum frames. Building entrances have insulated metal slab doors with varying amounts of glazing.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

Final Investment Grade Audit

Section 2

The Noyes Elementary School is provided with heating hot water by three Thermal Solutions EVCA 1500BN2 gas-fired boilers, each with a gross output capacity of 1,420 MBH. Three 2 HP pumps distribute the hot water supply through the primary loop. A pair of 3 HP pumps and a pair of 5 HP pumps distribute the water through the secondary loop to terminal units including 37 unit ventilators, 9 finned tube radiators, 5 VAV boxes, 6 fan-powered boxes, 2 rooftop units, and 5 air handling units. All pumps are equipped with high efficiency motors.

The majority of the school is heated and ventilated by the 37 Nesbitt unit ventilators located in classrooms along perimeter walls. These units are equipped with hot water coils, face/bypass dampers, and outside air dampers that vary the amount of outside air provided to the space. The remaining spaces are conditioned by rooftop equipment. All of the rooftop units are equipped with hot water coils and outside air dampers, and distribute the conditioned air through overhead ductwork systems. RTU-1 and RTU-2 provide heating to the Speech and Guidance area through a VAV system. The VAV boxes in these two zones are equipped with hot water reheat coils and automatic dampers. AHUs 1 through 5 provide heating to the administration & computer lab, library, kitchen, cafeteria, and gym respectively. The fan-powered boxes serving the administration & computer lab and the library are equipped with hot water reheat coils. AHU-1 and AHU-2 are also equipped with DX coils and outdoor condensing units and provide cooling to their zones. The finned tube radiators provide additional heat to a number of classrooms and administration area.

Energy Management Systems

A Johnson Controls Facility Explorer EMS was installed to control the building HVAC equipment. An FX60 Supervisory Controller was installed to manage all the existing Honeywell and new Facility Explorer field controllers and provides web accessibility of the EMS front end software. Most of the equipment in renovated areas is equipped with Facility Explorer field controllers, sensors, valves, and actuators, including the boiler plant, some unit ventilators, and finned tube radiators. Much of the building HVAC equipment is being controlled by the previously existing Honeywell field controllers including the remaining unit ventilators, rooftop units, and fan boxes. All of the HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop temperature and occupancy schedule adjustments. Honeywell and Johnson Controls temperature sensors in each occupied zone communicate with the FX system and provide control of the terminal units. A small roof-mounted solar array was installed to offset the electric utility costs. The output can be monitored by a Solren View internet data monitoring system.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a Stat Model SUF gas-fired water heater with a 130 gallon tank capacity and a 300 MBH input capacity.

Final Investment Grade Audit

Page 16

Haynes Elementary School

Building Characteristics

The Hayness Elementary School is a 62,565 ft² building that was constructed in 1998. It is utilized by teachers, staff, and students from approximately 8:30 AM to 3:30 PM through the school year, with some activities taking place during the evening and summer months. The single story building consists of kindergarten through grade 5 classrooms, gymnasium, library, cafeteria, auditorium, and office space. The

building has an insulated brick and masronry block wall construction and an insulated steel frame roof system with a flat EPDM membrane top coat. Windows throughout the building are double-hung and fixed style with double pane glazing in aluminum frames. Building entrances have insulated metal slab doors with varying amounts of glazing.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

The Haynes Elementary School is provided with heating hot water by 18 Hydrotherm Multi-temp

modular boilers, grouped into three sections containing 6 modules each. Each section has a gross output capacity of 1,440 MBH. The low efficiency boilers are gravity-vented and equipped with automatic vent dampers. Two 7.5 HP pumps distribute the hot water supply throughout the building to terminal units including unit ventilators and rooftop units. The two pumps share a Square D Econoflex adjustable speed drive controller that operates the pumps in a lead/lag strategy and varies the pumps output based on the hot water loop system pressure.

Four McQuay Model RDS rooftop units, HV-1 through 4, equipped with hot water coils provide heating and ventilation to the library, cafeteria, auditorium, and gym. These units distribute the conditioned air through an overhead ductwork system. Three air conditioning units, AC-1 through 3, equipped with DX coils provide cooling to the head end room, computer room, and administration offices. AC-2 serving the computer room is also equipped with a gas-fired heat exchanger that provides heating the space. The remaining areas of the building including classrooms, the lobby and teacher's lounge are heated and ventilated by 35 AAF unit ventilators equipped with hot water coils, face/bypass dampers, and outside air dampers. Approximately 30 rooftop exhaust fans serve the gymnasium, classrooms, restrooms, and kitchen.

Energy Management Systems

A Honeywell Excel 15B Building Management System (BMS) was installed to control the HVAC equipment at Haynes Elementary School. The Honeywell BMS allows facility staff to monitor HVAC equipment operation and modify temperature setpoint temperatures and operation schedules. A Honeywell Excel 15B Building Manager operator interface was installed to connect the system to the internet and allow for web accessibility. Honeywell field controllers are installed on equipment throughout the building including the

Final Investment Grade Audit

Section 2

boiler plant and rooftop units. The controllers communicate with the Honeywell wall sensors located within each occupied space to monitor temperature and operate the associate equipment to meet space heating or cooling loads. The Honeywell BMS has full control of the rooftop units and boiler plant but only limited control of the exhaust fans and the AAF unit ventilators. The exhaust fans and unit ventilators are controlled through the BMS by RIB relays that provide basic on/off operation of the equipment. The unit ventilators are controlled by MicroTech 325 controllers that operate the units based on integral thermostats. The MicroTech controllers allow adjustment of minimum outside air damper position and heating setpoint. The stand-alone UV controllers operate independently of each other and do not communicate with the BMS.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a gas-fired PVI Turbopower 750P water heater with a 250 gallon tank capacity and a 600 MBH input capacity. Domestic hot water is distributed to points of use by two fractional horsepower pumps.

Lighting Systems

Classrooms have standard T8 indirects, strips, wraps. Halls use compact fluorescent cans, sconces, standard T8 tubes, valances, troffers. The cafeteria uses compact fluorescent decorative fixtures. Offices use standard T8 troffers, indirects, strips, vapor tights, compact fluorescent cans. The kitchen employs standard T8 troffers. The gym uses T5 bay fixtures. Baths use standard T8 strips, vapor tights, compact fluorescent cans. Labs have standard T8 troffers. The auditorium uses standard T8 wraps. Mechanical areas use standard T8 strips. Storage areas employ standard T8 strips, troffers. Building mounts use led exterior fixtures, MH exterior fixtures, compact fluorescent cans. The parking lot uses MH parking/roadway fixtures.

Nixon Elementary School

Building Characteristics

The Nixon Elementary School is a 57,902 ft² building that was originally constructed in 1960 with an addition completed in 1994 that nearly doubled the square footage. It is utilized by teachers, staff, and students from

approximately 8:30 AM to 3:30 PM through the school year, with some activities taking place during the evening and summer months. The single story building consists of kindergarten through grade 5 classrooms, gymnasium, library, cafeteria, and office space. The building has an insulated brick and masronry block wall construction and an insulated steel frame roof system with a flat EPDM membrane top coat. Windows throughout the building are hopper and fixed style with insulated glazing in aluminum frames. Building entrances have insulated metal slab doors with varying amounts

Final Investment Grade Audit

Page 18

of glazing.

Heating, Ventilating, and Air Conditioning Systems (HVAC)

Heating hot water is provided by three Patterson-Kelly Thermific B-1200 gas-fired boilers, each with an output capacity of 1,020. Two 10 HP pumps distribute the hot water supply to terminal units including 2 rooftop units, 37 unit ventilators, 18 finned tube radiators, and 8 cabinet unit heaters.

The gym is provided with heating and ventilation by RTU-1, equipped with a hot water coil and outside air damper. A similar unit, RTU-2, serves the library and rotunda and provides the spaces with heating and ventilation. RTU-2 is equipped with a DX coil to provide cooling to the space in addition to heating. Both of the rooftop units distribute the conditioned air through an exposed overhead ductwork system.

Classrooms in the original section of the building are heated and ventilated by Nesbitt unit ventilators and classrooms in the addition are heated and ventilated by MSI unit ventilators. Both models are practically the same in function and appearance. These units are floor mounted along the perimeter walls and are equipped with hot water coils and face and bypass dampers. Finned tube radiators are located in the administration area and the two corridors that connect the classroom wings to the administration area. Cabinet unit heaters serve the vestibules and interior corridors. Nine rooftop exhaust fans serve the restroom and common areas.

Energy Management Systems

A Johnson Controls Facility Explorer EMS was installed to control the boiler plant and rooftop units with intentions of expanding the EMS to control the remaining HVAC equipment in the future. The HVAC equipment is being controlled by the previously existing Honeywell field controllers. An FX60 Supervisory Controller was installed to manage all the existing Honeywell field controllers and provides web accessibility of the EMS front end software. The HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop temperature and occupancy schedule adjustments. Honeywell and Johnson Controls temperature sensors in each occupied zone communicate with the FX system and provide control of the rooftop units. The unit ventilators, cabinet unit heaters, and finned tube radiators are still being controlled by an antiquated pneumatic control system. Air compressors in the boiler room provide the required amount of air for the system and distribute it throughout the building through a tubing network. Pneumatic thermostats in each of the zones provide a signal to the associated terminal unit's pneumatic valves and dampers to open/close when there is demand for heat or when the space setpoint temperature is satisfied. The EMS has minimal control of the exhaust fans and unit ventilators by the use of numerous RIB relays that provide basic on/off operation of the equipment.

Domestic Hot Water Systems

Domestic hot water for the building is provided by a Rheem-Ruud G65 gas-fired water heater with a 60 gallon tank capacity and an input capacity of 360 MBH.

Lighting Systems

Classrooms have standard T8 boxes. Halls use standard T8 boxes, strips, compact fluorescent wall mounted fixtures, cans. Offices use standard T8 boxes, troffers, wraps, compact fluorescent cans, and surface fixtures.

Final Investment Grade Audit

Section 2

The library uses standard T8 boxes, strips, compact fluorescent cans. Baths employ standard T8 vanities, boxes, strips. The cafeteria uses T5 bay fixtures. The kitchen has standard T8 troffers. Storage areas use standard T8 boxes, strips. The gym uses T5 bay fixtures. The auditorium uses standard T8 troffers. Mechanical areas employ compact fluorescent surface fixtures. Building mounts use compact fluorescent wall mounted fixtures, squares, exterior fixtures, MH wraps, led exterior fixtures. The parking lot uses MH parking/roadway fixtures.

Final Investment Grade Audit

Section 3: Energy Conservation Measures

Table 1: Recommended Measures Index

ECM No.	Title	Tab
1	Lighting System Improvements	1
3	Integrated and New Energy Managements System	3
4	Programmable Thermostats	4
5	PC Load Management	5
6	Demand Control Ventilation	6
7	Variable Frequency Drives	7
9	Vending Machine Controls	9
11	Weatherization	11
22	Pipe Insulation	22
25	Efficient Showerheads	25
29	Replace Transformers	29

Maintenance Requirements per ECM

For the majority of measures included in this project, O&M is expected to be approximately equal to what the Town currently incurs for overall operations and maintenance, therefore O&M can continue to be performed as is. Town personnel will receive training on the proper operation and maintenance of the new equipment once equipment commissioning is complete. The Town will be expected to perform maintenance on a scheduled basis and repair/replacement of failed components in a timely manner, all in accordance with manufacturer's standards and/or Ameresco O&M manuals for the measures installed under this Performance Contract. If the Town is unable to perform these tasks, Ameresco can provide these services for an additional fee and/or the Town shall outsource to a qualified service provider. Failure of the Town to carry out the aforementioned during the term of the contract may require Ameresco to adjust the savings guarantee.

The following table describes the general maintenance requirements that will need to be carried out in order to ensure the persistence of savings for the term of the contract. Final operational and maintenance tasks will be developed in detail once these ECMs are commissioned. Ameresco will provide the Town with a set of O&M manuals that will detail these tasks.

Energy Conservation Measures	Required Maintenance	Town Responsibility	Ameresco Responsibility
ECM-1: Lighting System Improvements	Replace failed lamps and ballasts with the same or similarly rated components.	\checkmark	
ECM-3: Integrated and New Energy Management System	Calibrate sensors periodically to maintain accuracy. Replace or repair failed components.	\checkmark	
ECM-4: Programmable Thermostats	Calibrate sensors periodically to maintain accuracy. Replace or repair failed components.	\checkmark	
ECM-5: PC Load Management	Maintain energy saving profiles for existing and future computers	\checkmark	
ECM-6: Demand Control Ventilation	Calibrate sensors periodically to maintain accuracy. Replace or repair failed components.	\checkmark	
ECM-7: Variable Frequency Drives	Clean filters as required	\checkmark	
ECM-9: Vending Machine Controls	Transfer controls to any replacement machines	\checkmark	
ECM-11: Weatherization	Replace or repair failed components.	\checkmark	
ECM- 22: Pipe Insulation	Replace insulation if removed for maintenance of other systems.	\checkmark	
ECM-25: Efficient Showerheads	No maintenance required.	\checkmark	
ECM-29: Replace Transformers	No maintenance required.	\checkmark	

Warranty and Maintenance Response

Warranty

Ameresco will warrant the labor and material for each ECM for a period of one year from the issuance of substantial completion for each ECM. After the one year period, any remaining manufacturer's warranties will be passed on to the Town.

Final Investment Grade Audit

Page 2

Maintenance Response

To the extent that any Ameresco maintenance services are included in the final project, all operations and services will be coordinated through the Ameresco corporate office located in Framingham, Massachusetts and through local area contractors. This will provide the Town with a local, single point of contact. Kevin Sullivan, Operations Manager, will serve as the single point of contact for the Town throughout the entire operations phase of the project.

Savings Summary

Ecm #	ECM Name	Annual kW		Natural Gas (Therms)	Water (kGallons)	Sewer (kGallons)	Energy Savings	O&M Savings		Total Project Costs	SPB
1	Lighting System Improvements	671	209,268	(1,597)		-	\$ 33,272	\$ 3,174	\$ 36,446	\$ 350,467	9.62
	Integrated and New Energy Management System		9.227	11,938		-	\$ 14.769	\$ -	\$ 14.769		26.54
	Programmable Thermostats		637	1,400			\$ 1,782	\$ -	\$ 1,782	\$ 9,174	5.15
	PC Load Management	-	15,369	(244)	-	-	\$ 1,260	\$-	\$ 1,260	\$ 5,526	4.38
6	Demand Control Ventilation	-	33,827	414	-	-	\$ 3,455	\$-	\$ 3,455	\$ 52,327	15.15
	Variable Frequency Drives	-	15,564	-	-	-	\$ 1,551	\$-	\$ 1,551	\$ 30,123	19.42
	Vending Machine Controls	-	16,801	(282)	-	-	\$ 1,529	\$-	\$ 1,529	\$ 7,272	4.76
11	Weatherization	-	33	1,312	-	-	\$ 1,549	\$-	\$ 1,549	\$ 17,941	11.58
22	Pipe Insulation	-	-	389	-	-	\$ 526	\$-	\$ 526	\$ 6,251	11.88
25	Efficient Showerheads	-	-	708	200	200	\$ 1,543	\$-	\$ 1,543	\$ 582	0.38
	Replace Transformers	219	129,218		<u> </u>		\$ 15,782	\$ -	\$ 15,782	\$ 221,372	14.03
		890	429,944	14,039	200	200	\$ 77,018	\$ 3,174	\$ 80,192	\$ 1,093,073	13.63

Final Investment Grade Audit

ECM Matrix

Town of Sudbury Energy Conservation Measures (ECMs)	Lighting System Improvements	Integrated and New Energy Management System	Programmable Thermostats	PC Load Management	Demand Control Ventilation	Variable Frequency Drives	Vending Machine Controls	Weatherization	Pipe Insulation	Efficient Showerheads	Replace Transformers	
Facility	1	3	4	5	6	7	9	11	22	25	29	
DPW Highway	x		x	X			X					
DPW Offices			Δ	X								
Flynn Building	X			X								
Town Hall				X								
Police Department			1		1		1					
Fairbank Community Center (Including Pool)				Χ			Χ			Х		
Public Library	X			Х		X						
Fire Dept Headquarters	X			Χ			Χ	Χ		Χ		
Fire Dept South				Χ			Χ		Χ			
Fire Dept North				Χ			Χ	X	Χ			
Curtis Middle School	X				Х						Х	
	Х	Χ			1		X				X	
Loring Elementary	Λ											
Noyes Elementary	Λ	Х					X					
					X		X X X	X				

Final Investment Grade Audit

Existing and Proposed EUIs

Building	Square Feet	Baseline mbtu/sqft	Proposed mbtu/sqft	Overall Reduction
DPW Highway	7,154	147.5	124.7	15%
DPW Offices	28,274	65.2	65.1	0%
Flynn Building	14,750	86.9	84.6	3%
Town Hall	13,705	122.1	122.0	0%
Fairbank Community Center (In	40,341	203.6	201.7	1%
Public Library	34,364	72.1	67.5	6%
Fire Dept Headquarters	10,055	98.9	92.5	7%
Fire Dept South	3,286	119.8	113.6	5%
Fire Dept North	3,286	101.3	92.1	9%
Curtis Middle School	155,789	63.0	58.8	7%
Loring Elementary	78,451	59.8	56.2	6%
Noyes Elementary	82,502	67.8	64.9	4%
Haynes Elementary	62,565	79.7	68.7	14%
Nixon Elementary	57,902	73.0	65.1	11%
[
	592,424	80.3	75.4	6%

Final Investment Grade Audit

Town of Sudbury, MassachusettsPage 6May 6, 2014

ECM 1: Lighting System Improvements

ECM Overview

Ameresco will install a state-of-the-art lighting system to benefit the building occupants of the Town of Sudbury, MA. Our project replaces or upgrades approximately **3,259** existing fixtures and will enhance the quality, consistency, and color rendering of the lighting system, while meeting all applicable codes and standards.

Our in-house lighting experts completed a detailed survey of your facilities. Ameresco has eliminated the middle-man, and having implemented projects at hundreds of facilities with similar needs, is fully capable and responsible for meeting your lighting needs.

Figure 1.1:.New lamps and ballasts will improve aesthetics and provide substantial energy savings.

ECM Detail

Existing System

General Information about the Existing System at All Sites

We identified over 130 different lamp/ballast/fixture combinations, the majority of which are linear fluorescent, which provide general lighting in key areas such as classrooms, offices, & halls.

Approximately 79% of linear fluorescent fixtures use standard-grade T8s on electronic ballasts on standard series normal ballast factor ballasts. An additional 5.5% of linear fluorescent fixtures employ energy efficient 28w or 30w lamps with a mixture of ballast factors. For example the acrylic troffers found at the Fairbank Community Center were found to have 30w lamps running on energy efficient low ballast factor ballasts. Parabolic troffers at the DPW Offices building however, wer found to have existing 28w lamps running on standard series normal ballast factor ballasts. There are T5 lamps used in 15% of total fluorescent fixtures. T12s on magnetic ballasts. The remaining .5% of linear fluorescent fixtures use T12s on magnetic ballasts.

High-intensity discharge (HID) lamps are used in libraries, parking garages and storage areas as well as for the exterior. Color rendition is fair to poor depending on lamp quality and age, which unfortunately can be a characteristic of HID lamps.

Incandescent lamps are installed in 2% of fixtures. Compact fluorescents comprise 18% of the existing fixture total.

Final Investment Grade Audit

Although the lighting system is generally performing as designed, improvements are possible. Light levels are appropriate in the majority of areas. Most fixtures are in good condition.

Specific Information about the Existing System

The detailed description provided below is representative of our proposed scope, with predominant areas and fixtures mentioned first. We then proceed in descending order, with each subsequent area representing a smaller portion of the scope.

DPW Highway: Shops employ efficient 4' T8 28w strips, standard T8 strips, MH bay fixtures. Storage areas have standard T8 strips, MH surface fixtures. The parking garage employs MH bay fixtures. Building mounted fixtures use MH exterior fixtures, HPS floods.

Flynn Building: Offices have standard T8 wraps, troffers, strips, old surface fixtures, incandescent cans. Storage areas have standard T8 strips, wraps, old surface fixtures, incandescent surface fixtures, T12 strips. Halls employ standard T8 wraps, strips. Baths have standard T8 wraps, T12 valances. The kitchen use standard T8 troffers.

Public Library: The library use compact fluorescent cans, standard T8 troffers, T5 "biax" decorative fixtures, incandescent cans. Offices use standard T8 troffers, indirects, compact fluorescent cans, and T5 "biax" decorative fixtures. Halls employ compact fluorescent cans, incandescent cans, MH cans. Classrooms have compact fluorescent cans, incandescent cans, and standard T8 troffers. Storage areas use standard T8 wraps, strips, T12 wraps, strips. Baths use standard T8 strips. Building mounts use incandescent cans, compact fluorescent exterior fixtures. The parking lot use HPS parking/roadway fixtures.

Fire Dept. Headquarters: Offices use standard T8 troffers. The parking garage has standard T8 strips. Halls use standard T8 troffers, wraps. Baths employ compact fluorescent cans, standard T8 old wall mounted fixtures, troffers, T12 vanities. Storage areas use standard T8 troffers, strips. Bedrooms use standard T8 troffers. The gym use standard T8 troffers. Classrooms use standard T8 troffers. Building mounts use incandescent decorative fixtures, MH floods.

Curtis Middle School: Classrooms use standard T8 indirects, wallwash, troffers, compact fluorescent cans. Halls have standard T8 troffers, coves, valances, compact fluorescent cans. Offices use standard T8 troffers, indirects, compact fluorescent cans. Baths employ standard T8 troffers, valances, strips, compact fluorescent cans. The cafeteria use compact fluorescent cans, standard T8 troffers, and MH sconces. Storage areas use standard T8 troffers, strips. The library use standard T8 troffers, MH decorative fixtures, indirects, compact fluorescent sconces. The auditorium has compact fluorescent cans, sconces, standard T8 troffers. Labs use standard T8 indirects. The gym employs T5 bay fixtures. The kitchen use standard T8 troffers, compact fluorescent wall mounted fixtures. Building mounts use MH exterior fixtures, indirects, squares, led exterior fixtures.

Loring Elementary: Classrooms have T5 indirects, standard T8 troffers, and tubes. Halls use standard T8 troffers, boxes, strips, compact fluorescent cans, MH cans. The library use T5 indirects. Baths use standard T8 valances, troffers, compact fluorescent cans. The cafeteria uses standard T8 troffers, bay fixtures, compact fluorescent cans. Offices use standard T8 troffers, strips, and T5 indirects. Labs have T5 indirects. The gym

use T5 bay fixtures. Storage areas employ standard T8 troffers, strips, compact fluorescent drums. The kitchen use standard T8 troffers. Mechanical areas use standard T8 strips. The auditorium use standard T8 strips. Building mounts use led exterior fixtures, MH exterior fixtures, standard T8 vapor tights, compact fluorescent exterior fixtures, drums. The parking lot employs MH parking/roadway fixtures.

Haynes Elementary: Classrooms have standard T8 indirects, strips, wraps. Halls use compact fluorescent cans, sconces, standard T8 tubes, valances, troffers. The cafeteria use compact fluorescent decorative fixtures. Offices use standard T8 troffers, indirects, strips, vapor tights, compact fluorescent cans. The kitchen employs standard T8 troffers. The gym use T5 bay fixtures. Baths use standard T8 strips, vapor tights, compact fluorescent cans. Labs have standard T8 troffers. The auditorium use standard T8 wraps. Mechanical areas use standard T8 strips. Storage areas employ standard T8 strips, troffers. Building mounts use led exterior fixtures,

MH exterior fixtures, compact fluorescent cans. The parking lot use MH parking/roadway fixtures.

Nixon Elementary: Classrooms have standard T8 boxes. Halls use standard T8 boxes, strips, compact fluorescent wall mounted fixtures, cans. Offices use standard T8 boxes, troffers, wraps, compact fluorescent cans, and surface fixtures. The library use standard T8 boxes, strips, compact fluorescent cans. Baths employ standard T8 vanities, boxes, strips. The cafeteria use T5 bay fixtures. The kitchen has standard T8 troffers. Storage areas use standard T8 boxes, strips. The gym use T5 bay fixtures. The auditorium use standard T8 troffers. Mechanical areas employ compact fluorescent surface fixtures. Building mounts use compact fluorescent wall mounted fixtures, squares, exterior fixtures, MH wraps, led exterior fixtures. The parking lot use MH parking/roadway fixtures.

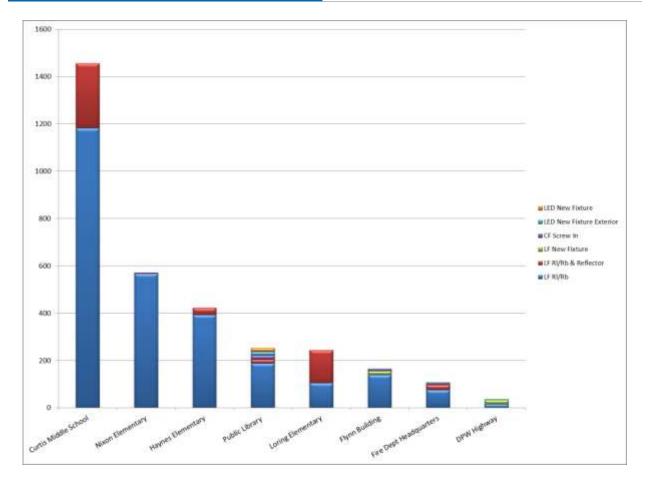
Proposed System

• General Information about the Proposed System

Ameresco standardized the lighting system where practical, reducing the number of different products the Town of Sudbury must purchase, stock and maintain. Most fixtures replaced or retrofitted with 4' T8 lamps will receive **28**-watt "energy-efficient" lamps and instant-start ballasts. This premium combination yields maximum energy savings without sacrificing light output or quality. These **28**-watt lamps use a superior mix of phosphors that allow them to consume less energy while matching the light output of standard T8's. The **28**-watt lamp also maintains light output better than T12 and typical T8 lamps.

Ballast outputs were tailored to deliver optimum light levels in each room. The new lighting system is designed to maintain lighting levels, while meeting IESNA standards in affected areas. All recommendations were made with the intent to optimize energy savings without compromising the quality and the level of light output.

Our project replaces or upgrades **3,259** existing fixtures. We consider two adjoining fixtures sharing a ballast to be a single fixture. This method provides a more precise assessment of energy consumption and material inventory, but sometimes results in a lower apparent fixture count.


Final Investment Grade Audit

Following are highlights of the proposed scope, with predominant applications presented first. We then proceed in descending order, with each subsequent item representing a smaller portion of the scope. Please refer to the "Lighting System Analysis" in Appendix I, as this is a complete list of work to be performed.

- Specific Information about the Proposed System, by Strategy
- Existing fixtures will receive T8 lamps and electronic ballasts in 3,152 existing fixtures. 484 of those fixtures will also receive new reflectors designed to improve fixture efficiency.
- A new LED shoebox shall replace 14 existing exterior fixtures.
- Compact fluorescent lamps will be installed in 25 existing exterior fixtures.
- New industrials shall replace 23 existing fixtures.
- A new LED wall pack shall replace 2 existing exterior fixtures.
- Compact fluorescent lamps will be installed in 10 existing interior fixtures.
- A new LED track head shall replace 16 existing fixtures.
- New vapor tight high-bays shall replace 7 existing fixtures.
- New wraps shall replace 7 existing fixtures.
- A new LED flood shall replace 3 existing exterior fixtures.

• Specific Information about the Proposed System, by Building

DPW Highway: Existing fixtures will receive T8 lamps and electronic ballasts in for shops. New industrials shall replace existing fixtures in storage areas, for shops. New vapor tight high-bays shall replace fixtures in the parking garage, for shops. New LED wall packs shall replace existing building mounted fixtures.

Flynn Building: Existing fixtures will receive T8 lamps and electronic ballasts in for offices, for storage areas, for halls, for baths, for the kitchen. New industrials shall replace existing fixtures in offices, for halls. Compact fluorescent lamps will be installed in storage areas and offices. New wraps shall replace existing fixtures for offices and storage areas.

Public Library: Existing fixtures will receive T8 lamps and electronic ballasts in for the library, offices, storage areas and bathrooms. Existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in offices and classrooms. New LED track heads shall replace some existing hallway lighting. Compact fluorescent lamps will be installed for building mounted fixtures. New LED shoeboxes shall replace existing parking lot fixtures.

Final Investment Grade Audit

Fire Department Headquarters: Existing fixtures will receive T8 lamps and electronic ballasts in the parking garage, offices, bedrooms, the gym, classrooms, storage areas, halls and bathrooms existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in halls, offices, storage areas, and bathrooms. New wraps shall replace existing fixtures in bathrooms. Compact fluorescent lamps will be installed in building mounted exterior fixtures. A new LED flood shall replace existing building mounted flood lights.

Curtis Middle School: Existing fixtures will receive T8 lamps and electronic ballasts in classrooms, halls, offices, storage areas, baths, labs, the cafeteria, the kitchen. Existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in halls, offices, baths, the library, classrooms and the auditorium.

Loring Elementary: Existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in halls, the cafeteria, offices, baths and classrooms. Existing fixtures will receive T8 lamps and electronic ballasts in baths, classrooms, offices, storage areas, halls, the kitchen, mechanical areas, and the auditorium.

Haynes Elementary: Existing fixtures will receive T8 lamps and electronic ballasts in classrooms, halls, offices, baths, the auditorium, labs, mechanical areas and storage areas. Existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in the kitchen, halls, labs and offices.

Nixon Elementary: Existing fixtures will receive T8 lamps and electronic ballasts in classrooms, halls, offices, baths, the library, the kitchen and storage areas. Existing recessed fixtures will receive T8 lamps, electronic ballasts, and reflectors in the stage area.

> Integration of Proposed Equipment with Existing Systems

The new lighting system, and all components thereof, will be fully integrated into the existing lighting systems. We assume the entire lighting and lighting controls systems comply with, but not limited to, the latest codes, the latest standards, local jurisdictions, and work was done in a quality workmanship manner, per NECA, and other applicable recommend best practices universally accepted throughout the electrical industry. Further we assume that all existing devices, which are defined in NEC, which includes but not limited to switches, outlets, wiring, etc. are in acceptable condition in order to implement our scope as outlined in the contract documents. All existing junction boxes, poles, mounting surfaces and structures are assumed to be in acceptable condition to allow the installation of the products indicated in the scope.

> Maintenance Savings

Implementation of this measure will result in annual maintenance savings, since installation of new equipment will extend service intervals. This is based on the calculated frequency of equipment replacement of the old system versus the new system. No current recycling, disposal, or labor costs were included in this calculation, so additional savings would be expected.

ECM 1: Lighting System Improvements

> Environmental Impact

There are no potential adverse environmental impacts associated with this lighting upgrade. During construction, Ameresco will remove, package, and recycle all existing lamps that contain mercury and ballasts that contain PCBs or DEHP according to applicable regulations.

> Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. The lighting system audit completed for each facility will be submitted as the basis for construction. The audit will include the existing descriptions, operating hours, and proposed retrofit description. These documents will be submitted for review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions, and submitted in multiple for record.

> Impact on Facility Operations and Performance

All installations will be conducted during normal business hours or after normal operating hours if interruption of functions is anticipated. Installations will be coordinated with appointed personnel.

Despite our best efforts, cataloguing every single fixture in every location is extremely difficult and time consuming. Therefore, fixtures or areas not listed are excluded from our scope, which typically include areas under renovation, low use areas such as closets and crawlspaces, areas inaccessible during the audit, and specialty fixtures such as medical or stage lighting.

This page is intentionally left blank.

Appendix for ECM 1: Lighting System Improvements

I. Energy Savings Calculations

Final Investment Grade Audit

This page is intentionally left blank.

MAPC - Sudbury	
Energy and Demand Savings Summary	
Measure ID:	1
Measure Name:	Lighting System Improvements
Measure Location:	
Engineers:	

Site Name:		DPW_Old	Flynn	Library	FDHQ	Curtis	Loring	Haynes	Nixon	Summary
Item	Units	Savings								
Electricity										
Energy On-Peak	kWh	5,525	9,447	32,641	7,574	81,590	14,395	24,331	33,765	209,268
Energy Off-Peak	kWh	0	0	0	0	0	0	0	0	0
Energy Total	kWh	5,525	9,447	32,641	7,574	81,590	14,395	24,331	33,765	209,268
Demand On-Peak, Monthly	kW	2.0	4.1	5.7	2.4	30.3	5.6	10.5	14.2	74.7
Demand On-Peak, Annual	kW	21.7	43.8	61.2	26.4	258.8	48.1	89.5	121.3	670.7
Demand Off-Peak, Monthly	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Demand Off-Peak, Annual	kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fossil Fuel										0
Natural Gas (NG)	Therms	-36	-74	-141	-49	-669	-123	-218	-287	-1,597
Liquid Propane Gas (LPG)	Gallons	0	0	0	0	0	0	0	0	0
Steam	Mlbs	0	0	0	0	0	0	0	0	0
Fuel Oil, #2	Gallons	0	0	0	0	0	0	0	0	0
Fuel Oil, #4	Gallons	0	0	0	0	0	0	0	0	0
Fuel Oil, #6	Gallons	0	0	0	0	0	0	0	0	0
Miscellaneous	Misc	0	0	0	0	0	0	0	0	0
Water										0
Water Savings	kGallons									0
Sewer										0
Sewer Savings	kGallons									0

MAPC - Sudbury Interactive Lighting Savings Calculation

	Lighting SavingsHeating PenaltyBCDEFAnnual kWHeat Gain to SpaceHeating MonthsSystem Efficiency2.04.40350.0%5.086.0%4.18.88550.0%5.085.0%5.715.85850.0%5.080.0%2.45.49550.0%5.080.0%						Cooling	Benefit		
Α	В	С	D	Е	F	G	Н	Ι	J	K
					Heating	Heating				Cooling
			Heat Gain to	Heating	System	Penalty	Total Space	Cooling	Cooling	Benefit
Facility	Annual kW	Annual kWh	Space	Months	Efficiency	MMBtu	Cooled	Months	System COP	MMBtu
DPW Highway	2.0	4,403	50.0%	5.0	86.0%	(3.6)	25.0%	5.0	3.22	0.2
Flynn Building	4.1	8,885	50.0%	5.0	85.0%	(7.4)	80.0%	5.0	2.64	1.9
Public Library	5.7	15,858	50.0%	5.0	80.0%	(14.1)	90.0%	5.0	2.93	3.5
Fire Dept Headquarters	2.4	5,495	50.0%	5.0	80.0%	(4.9)	20.0%	5.0	2.93	0.3
Curtis Middle School	30.3	77,199	50.0%	5.0	82.0%	(66.9)	80.0%	5.0	2.93	15.0
Loring Elementary	5.6	14,314	50.0%	5.0	83.0%	(12.3)	8.0%	5.0	2.93	0.3
Haynes Elementary	10.5	23,906	50.0%	5.0	78.0%	(21.8)	25.0%	5.0	2.93	1.5
Nixon Elementary	14.2	33,479	50.0%	5.0	83.0%	(28.7)	12.0%	5.0	2.93	1.0
Totals	74.7	183,538				(159.7)				23.6

Notes:		
А	Applicable building included in comprehensive energy audit	
В	Lighting demand savings {kW} associated with lighting retrofit measures	
С	Lighting energy savings {kWh} associated with lighting retrofit measures	
D	Estimated percentage of lighting energy transmitted to conditioned space	
Е	Estimated length of heating season	
F	Estimated heating system efficiency, interacted with other measures	
G	Resulting heating penalty due to lighting upgrades = $[col C] \times [col D] \times 3,413 \times ([col E] / 12) / [col F] / 1,000,000$	
Н	Estimated percentage of space cooled	
Ι	Estimated Length of cooling season	
J	Estimated cooling system efficiency, interacted with other measures	
K	Resulting cooling benefit due to lighting upgrades = $[col C] x [col D] x 3,413 x ([col I] / 12) / [col J] / 1,000,000$	

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watt	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
1	Flynn Building	Conference Top Of Stairs	2	4L4' T8/EL-8'	wrap	1	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	75	2,600
2	Flynn Building	Conference Top Of Stairs	2	2L4' T8/EL	wrap	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	187	2,600
3	Flynn Building	Office Open Board Of Selectman	2	2L4' T8/EL	wrap	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	47	2,600
4	Flynn Building	Office Open Board Of Selectman	2	2L4' T8/EL	trof acr	12	60	2L4' T8 28w/ELEE LO	rlrb	12	42	0.22	562	2,600
5	Flynn Building	Office Drafting	2	4L4' T8/EL-8'	wrap	4	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	302	2,600
6	Flynn Building	Office Drafting	2	2L4' T8/EL	wrap	2	60	2L4' T8 28w/ELEE LO	rIrb	2	42	0.04	94	2,600
7	Flynn Building	Storage Files	2	2L4' T8/EL	wrap	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	9	500
8	Flynn Building	Office Valente	2	2L4' T8/EL	wrap	6	60	2L4' T8 28w/ELEE LO	rlrb	6	42	0.11	281	2,600
9	Flynn Building	Kitchen Board Of Selctman	2	2L4' T8/EL	trof acr	2	60	2L4' T8 28w/ELEE LO	rIrb	2	42	0.04	37	1,040
10	Flynn Building	Conference	2	4L4' T8/EL-8'	wrap	6	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	452	2,600
11	Flynn Building	Conference	2	65W INCANDESCENT	can rec	4	65	15W COMPACT SI	screw in	4	15	0.20	520	2,600
12	Flynn Building	Office Open Hr	2	3L4' T8/EL	wrap	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	130	2,600
13	Flynn Building	Office Open Hr	2	2L4' T8/EL	wrap	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	94	2,600
14	Flynn Building	Office Hr	2	2L4' T8/EL	wrap	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	47	2,600
15	Flynn Building	Office Next To Hr	2	2L4' T8/EL	wrap	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	187	2,600
16	Flynn Building	Storage Copy	2	4L4' T8/EL-8'	wrap	2	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	60	1,040
17	Flynn Building	Office Peter Andersen	2	4L4' T8/EL-8'	wrap	2	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	151	2,600
18	Flynn Building	Office Social Worker	2	2L4' T8/EL	wrap	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	94	2,600
19	Flynn Building	Bath By Social Worker	2	1L4' T12 EE/EEMAG	valance	1	40		rlrb	1	22	0.02	47	2,600
20	Flynn Building	Office Rust	2	2L4' T8/EL	wrap	2	60		rlrb	2	42	0.04	94	2,600
21	Flynn Building	Office Ka Black	2	2L4' T8/EL	wrap	2	60		rlrb	2	42	0.04	94	2,600
22	Flynn Building	Office Ka Black	2	4L4' T8/EL-8'	wrap	1	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	75	2,600
23	Flynn Building	Office Ka Black	2	2L4' T8/EL	wrap	2	60		rlrb	2	42	0.04	94	2,600
24	Flynn Building	Hall 2Nd Floor	2	2L4' T8/EL	wrap	5	60	2L4' T8 28w/ELEE LO	rlrb	5	42	0.09	234	2,600
25	Flynn Building	Office Open Assessor	1	2L4' T8/EL	trof acr	9	60		rlrb	9	42	0.16	421	2,600
26	Flynn Building	Storage Files	1	4L4' T8/EL	wrap wide	2	112		rlrb	2	83	0.06	29	500
27	Flynn Building	Office Files	1	4L4' T8/EL-8'	wrap wide	1	112		rlrb	1	83	0.03	75	2,600
28	Flynn Building	Bath Girl'S	1	2L4' T8/EL	wrap	2	60		rlrb	2	42	0.04	94	2,600
29	Flynn Building	Lounge Staff	1	2L4' T8/EL	wrap	3	60		rlrb	3	42	0.05	140	2,600
30	Flynn Building	Office Director Assessing	1	4L4' T8/EL-8'	old wrap	3	112		new wrap	3	64	0.14	374	2,600
31	Flynn Building	Storage Copy	1	4L4' T8/EL-8'	wrap	2	112		rlrb	2	83	0.06	60	1,040
32	Flynn Building	Office Mail Room	1	4L4' T8/EL-8'	wrap	2	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	151	2,600
33	Flynn Building	Office Open Tech	1	4L4' T8/EL-8'	wrap	12	112		rlrb	12	83	0.35	905	2,600
34	Flynn Building	Bath Men'S	1	4L4' T8/EL-8'	wrap	1	112		rlrb	1	83	0.03	75	2,600
35	Flynn Building	Storage Server	1	2L4' T8/EL	wrap	2	_	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	37	1.040
36	Flynn Building	Office Open Tresury	1	2L4' T8/EL	wrap	2	60		rlrb	2	42	0.04	94	2,600
37	Flynn Building	Office Open Tresury	1	4L4' T8/EL-8'	wrap wide	6	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	452	2,600
38	Flynn Building	Office Tresury	1	4L4' T8/EL-8'	wrap wide	1	_	2 4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	75	2,600
39	Flynn Building	Office Tresury	1	4L4' T8/EL-8'	wrap	2	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	151	2,600
40	Flynn Building	Storage Safe	1	2L4' T8/EL	old wrap	1	60		new wrap	1	24	0.04	18	500
41	Flynn Building	Storage Files	1	2L4' T8/EL	old wrap wide	1	60		new wrap	1	24	0.04	37	1,040
41	Flynn Building	Office Open Accounting	1	2L4 T8/EL	wrap wide	5	60		rlrb	5	42	0.09	234	2,600
42	Flynn Building	Office Accounting	1	4L4' T8/EL-8'	wrap wide	2	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.09	151	2,600
43	Flynn Building	Hall 1St Floor	1	2L4' T8/EL	wrap	6	60		rlrb	6	42	0.00	281	2,600
44	Flynn Building	Storage Basement	h	60W INCANDESCENT	keyless	6	60		screw in	6	42 15	0.11	135	2,600
45 46	Flynn Building	Storage Basement	b	2L4' T8/EL	strip	7	60		rlrb	7	42	0.27	63	500
40	Flynn Building	Storage Bawsement	b	2L4 T0/EL 2L4' T12 EE/EEMAG	strip	2	70		rlrb	2	42	0.13	28	500
47	Flynn Building	Hall Basement	b	2L8' T8/EL	strip	4	_	2L4 18 28W/ELEE LO 9 4L4' T8 28w/ELEE LO/NEW-8'	new industrial	4	42 83	0.06	28	2,600
	· · · ·		р Р	2L8 18/EL 2L4' T8/EL			-		rirb	-	42			2,600
49	Flynn Building	Storage Basement	D h	2L4' 18/EL 2L8' T8/EL	strip	3	60			3		0.05	27	
50	Flynn Building	Office Open Basement	u o		strip	8		4L4' T8 28w/ELEE LO/NEW-8'	new industrial	8	83	0.21	541	2,600
134	Public Library	Library Reading Rotunda	2	4L2' F40 BIAX/EL	decorative	1	144	NO RETRO	no change needed		144			2,962

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
135	Public Library	Library Reading Rotunda	2	2x 13W COMPACT HARDWIRED	can rec	8	30	NO RETRO	no change needed		30			2,962
136	Public Library	Library Stacks By Reading Rotunda	2	4L4' T8 32w/ELEE-8'	trof para 1' wide	36	107	4L4' T8 28w/ELEE LO-8'	rlrb	36	83	0.86	2,559	2,962
137	Public Library	Library Stacks By Reading Rotunda	2	2x 13W COMPACT HARDWIRED	can rec	23	30	NO RETRO	no change needed		30			2,962
138	Public Library	Library Stacks By Reading Rotunda	2	2L2' F40 BIAX/EL	decorative	4	72	NO RETRO	no change needed		72			2,962
139	Public Library	Library Stacks By Study Area	2	4L4' T8 32w/ELEE-8'	trof para 1' wide	24	107	4L4' T8 28w/ELEE LO-8'	rlrb	24	83	0.58	1,706	2,962
140	Public Library	Library Stacks By Study Area	2	2x 13W COMPACT HARDWIRED	can rec	14	30	NO RETRO	no change needed		30			2,962
141	Public Library	Library Stacks By Study Area	2	2L2' F40 BIAX/EL	decorative	6	72	NO RETRO	no change needed		72			2,962
142	Public Library	Lounge Young Adult Room	2	4L4' T8 32w/ELEE-8'	indirect/direct	6	107	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.14	427	2,962
143	Public Library	Lounge Young Adult Room	2	2x 13W COMPACT HARDWIRED	can rec	5	30	NO RETRO	no change needed		30			2,962
144	Public Library	Library Stacks By Video & Audio	2	2L2' F40 BIAX/EL	decorative	5	72	NO RETRO	no change needed		72			2,962
145	Public Library	Library Stacks By Video & Audio	2	2x 13W COMPACT HARDWIRED	can rec	20	30	NO RETRO	no change needed		30			2,962
146	Public Library	Library Stacks By Video & Audio	2	4L4' T8 32w/ELEE-8'	trof para 1' wide	4	107	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.10	284	2,962
147	Public Library	Library Stacks By Video & Audio	2	2L4' T8 32w/ELEE	trof para 1' wide	4	53	2L4' T8 28w/ELEE LO	rlrb	4	42	0.04	130	2,962
148	Public Library	Office Tech Services	2	3L4' T8 32w/ELEE	trof parabolic	6	82	3L4' T8 28w/ELEE LO	rlrb	6	63	0.11	338	2,962
149	Public Library	Hall Paintingsantiques	2	2x 13W COMPACT HARDWIRED	can rec	9	30	NO RETRO	no change needed		30			2,962
150	Public Library	Hall Paintingsantiques	2	100W INCANDESCENT	track can	16	100	20 WATT LED/NEW	new LED track head	16	20	1.28	3,791	2,962
151	Public Library	Library Local Trustees Room	2	2L2' F40 BIAX/EL	decorative	6	72	NO RETRO	no change needed		72			2,962
152	Public Library	Library Local Trustees Room	2	2x 13W COMPACT HARDWIRED	can rec	8	30	NO RETRO	no change needed		30			2,962
153	Public Library	Lounge Staff	2	3L4' T8 32w/ELEE	trof parabolic	8	82	3L4' T8 28w/ELEE LO	rlrb	8	63	0.15	450	2,962
154	Public Library	Office Business	2	3L4' T8 32w/ELEE	trof parabolic	2	82	3L4' T8 28w/ELEE LO	rlrb	2	63	0.04	113	2,962
155	Public Library	Closet Cust	2	2L4' T12 EE/EEMAG	strip	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.03	14	500
156	Public Library	Bath Men'S (X2)	2	4L4' T8 32w/ELEE-8'	soffit	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.05	108	2,255
157	Public Library	Office Director	2	2L4' T8 U/EL	trof parabolic	6	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	6	40	0.12	355	2,962
158	Public Library	Hall Back Office	2	2x 13W COMPACT HARDWIRED	can rec	5		NO RETRO	no change needed	-	30	•••-		2,962
159	Public Library	Office Open Reception	2	2L4' T8 U/EL	trof parabolic	4	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	237	2,962
160	Public Library	Office Open Reception	2	2x 13W COMPACT HARDWIRED	can rec	8		NO RETRO	no change needed		30		_	2,962
161	Public Library	Office Open Reference Office	2	3L4' T8 32w/ELEE	trof parabolic	2	82	3L4' T8 28w/ELEE LO	rlrb	2	63	0.04	113	2,962
162	Public Library	Office Open Reference Office	2	2L2' F40 BIAX/EL	decorative	1		NO RETRO	no change needed		72			2,962
163	Public Library	Classroom Computer Room	2	2L4' T8 U/EL	trof parabolic	4		2L2' T8 15w/ELEE HI/RFL	rirb rfl	4	40	0.08	237	2,962
164	Public Library	Bath Men'S (X2)	2	4L4' T8 32w/ELEE-8'	soffit	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.05	108	2,255
165	Public Library	Office Study Room 1	2	3L4' T8 32w/ELEE	trof parabolic	2		3L4' T8 28w/ELEE LO	rlrb	2	63	0.04	113	2,962
166	Public Library	Stair Main	2	2x 13W COMPACT HARDWIRED	can rec	11		NO RETRO	no change needed		30			2,962
167	Public Library	Stair Main	2	50W METAL HALIDE	track can	9		NO RETRO	no change needed		65			2,962
168	Public Library	Library Stacks By Childrens Section	1	4L4' T8 32w/ELEE-8'	trof para 1' wide	22		4L4' T8 28w/ELEE LO-8'	rlrb	22	83	0.53	1,564	2,962
	Public Library	Library Stacks By Childrens Section	1	2x 13W COMPACT HARDWIRED	can rec	12		NO RETRO	no change needed		30	0100	.,	2,962
170	Public Library	Library Stacks By Childrens Section	1	2L2' F40 BIAX/EL	decorative	10		NO RETRO	no change needed		72			2,962
171	Public Library	Library Childrens Rotu Nda	1	4L2' F40 BIAX/EL	decorative	1		NO RETRO	no change needed		144			2,962
172	Public Library	Library Childrens Rotu Nda	1	2x 13W COMPACT HARDWIRED	can rec	8		NO RETRO	no change needed		30			2,962
172	Public Library	Library Stacks By Kids Lounge		2x 13W COMPACT HARDWIRED	can rec	12		NO RETRO	no change needed		30		1	2,962
173	Public Library	Library Stacks By Kids Lounge		2L4' T8 32w/ELEE	trof para 1' wide	5		2L4' T8 28w/ELEE LO	rlrb	5	42	0.06	163	2,962
174	Public Library	Library Stacks By Kids Lounge		4L4' T8 32w/ELEE-8'	trof para 1' wide	8		4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.19	569	2,962
176	Public Library	Lounge Kids		4L4' T8 32w/ELEE-8'	trof para 1' wide	6		4L4' T8 28W/ELEE LO-8'	rlrb	6	83	0.14	427	2,962
170	Public Library	Office Kids Section		4L4' T8 32w/ELEE-8'	trof para 1' wide	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.05	142	2,962
178	Public Library	Office Kids Section		2L4' T8 32w/ELEE	trof para 1' wide	3		2L4' T8 28w/ELEE LO	rlrb	3	42	0.03	98	2,962
179	Public Library	Library Stacks Fiction	1	2L2' F40 BIAX/EL	decorative	10		NO RETRO	no change needed	Ť	72	0.00		2,962
180	Public Library	Library Stacks Fiction	1	2x 13W COMPACT HARDWIRED	can rec	36		NO RETRO	no change needed		30			2,962
181	Public Library	Library Stacks Fiction	1	75W INCANDESCENT	track can	<u>я</u>		NO RETRO	no change needed		75			2,962
182	Public Library	Library Stacks Fiction	1	4L4' T8 32w/ELEE-8'	trof para 1' wide	16		4L4' T8 28w/ELEE LO-8'	rlrb	16	83	0.38	1,137	2,962
183	Public Library	Library Stacks Fiction		2L4' T8 32w/ELEE	trof para 1' wide	4		2L4' T8 28w/ELEE LO-8	rlrb	4	42	0.04	130	2,962
184	Public Library	Classroom Community Meeting Room		2x 13W COMPACT HARDWIRED	can rec	27		NO RETRO	no change needed		42 30	0.04	150	2,962
						-								
185	Public Library	Classroom Community Meeting Room	1	75W INCANDESCENT	track can	11	/5	NO RETRO	no change needed		75			2,962

Lighting Systems Analysis

Town of Sudbury, MA

Int Abstance 1 Normal Control 1	Line Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
Inst. Sec. Learn Control Contro Control Contro <th< td=""><td>186 Public Library</td><td>Office Open Reception</td><td>1</td><td>2L4' T8 U/EL</td><td>trof parabolic</td><td>3</td><td>60</td><td>2L2' T8 15w/ELEE HI/RFL</td><td>rlrb rfl</td><td>3</td><td>40</td><td>0.06</td><td>178</td><td>2,962</td></th<>	186 Public Library	Office Open Reception	1	2L4' T8 U/EL	trof parabolic	3	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	3	40	0.06	178	2,962
100 Nate Using Description 1 2 2 2 2 2 2 2 3	187 Public Library	Office Open Reception	1	2x 13W COMPACT HARDWIRED	can rec	6	30	NO RETRO	no change needed		30			2,962
Instrument Unit word Outo 1 et al stack Lay off 2 10 et al 0.0 0	188 Public Library	Office Reception	1	4L4' T8 32w/ELEE-8'	trof para 1' wide	1	107	4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.02	71	2,962
IPI Data Lange 1 Dis Workshop 1 Dis Workshop 4 30 Dis Rest. Schult Status Schult Statu	189 Public Library	Office Reception	1	2L4' T8 32w/ELEE	trof para 1' wide	1	53	2L4' T8 28w/ELEE LO	rlrb	1	42	0.01	33	2,962
100 Dirik Lacy Singe Fin-Accoult 1 n At Singe Fit A Singe Fit A in C 3 and A 3 and C 3 and C 3 and A 3 and C 3 and C 3 and A 3 and	190 Public Library	Bath Men'S (X2)	1	4L4' T8 32w/ELEE-8'	soffit	2	107	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.05	108	2,255
193 No. Link mage for the Stange 1 A. To Sourd.F.E. mage data 0 6.8 B. Mark Stange 1 A. To Sourd.F.E. mage data 1 A. To Sourd.F.E. No. To S	191 Public Library	Hall Front Of Bldg	1	2x 13W COMPACT HARDWIRED	can rec	4	30	NO RETRO	no change needed		30			2,962
164 Nation Lange 105 PLT TS OWER, FP wayse 2 8 PLT TS OWER, FP 0 0 0 0	192 Public Library	Storage Fire Control	1	2L4' T8 32w/ELEE	strip	3	53	2L4' T8 28w/ELEE LO	rlrb	3	42	0.03	17	500
168. Nois Losy Main Large Main A Part 79-Merry Pr1 (1) Main A Part Nois Losy 100 Abias Lowy Bigg MAN Vec A1 Main Lowy Bigg MAN Vec A1 Difference A	193 Public Library	Storage Frie Nds Storage	1	2L4' T8 32w/ELEE	wrap	8	53	2L4' T8 28w/ELEE LO	rlrb	8	42	0.09	44	500
Info None Resultance part	194 Public Library	Storage Electrical Closet	1	2L4' T8 32w/ELEE	wrap wide	2	53	2L4' T8 28w/ELEE LO	rlrb	2	42	0.02	11	500
1171 Disk Lawr Big MA Mar Vest. etc. 1 GV COMPACT PARCENTED unpublic. 5 15 NORTETON etc. 1.00 <	195 Public Library	Storage Old Books	1	2L4' T12 EE/EEMAG	wrap	6	70	2L4' T8 28w/ELEE LO	rlrb	6	42	0.17	84	500
Intel Lang Pering Lat print Hire Sackes Scaluel months print print Fill Sackes Scaluel months print print LikeNet months print print LikeNet prin LikeNet prin LikeNet	196 Public Library	Bldg Mt Main Vest	ext	100W INCANDESCENT	can rec	18	100	26W COMPACT SI	screw in	18	26	1.33	5,834	4,380
1999 Paking Lag DG, magnag eta BOM IN PRESENDE SOLUM Index package F. P.S. PAURT LENNEW Presendance I. A.2.70 A.2.70 2000 DWN Lighway Brong Sama I. ALT TABLE drag refare Drag refare ALT TABLE Drag refare <th< td=""><td>197 Public Library</td><td>Bldg Mt Main Vest</td><td>ext</td><td>13W COMPACT HARDWIRED</td><td>wallpack</td><td>5</td><td>15</td><td>NO RETRO</td><td>no change needed</td><td></td><td>15</td><td></td><td></td><td>4,380</td></th<>	197 Public Library	Bldg Mt Main Vest	ext	13W COMPACT HARDWIRED	wallpack	5	15	NO RETRO	no change needed		15			4,380
1999 Adda: Linter, Periading Lat (X3), eta. 2000 IMP (FigName) Sector Linter (X-1), Sector Lintex	198 Public Library	Parking Lot	ext	250W HI PRESSURE SODIUM	shoebox pole	8	295	133 WATT LED/NEW	new LED shoebox	8	133	1.30	5,676	4,380
DBM Upper Journey Stage Parts 1 4.4 To XineCLE Loc Xine for 10.00 10.00	199 Public Library		ext	250W HI PRESSURE SODIUM		6	295	133 WATT LED/NEW	new LED shoebox	6	133	0.97	1	4,380
DB DPM Highway Strange Parts 1 2.6 TPCL org 4.5 1.00 6.7 2.00 4.6 7.00 0.01 2.00 2.00 210 DPM Highway Storge Carage Longe 1 2.00 1.00 4.7 2.00 4.7 3.00 2.1 1.00 4.7 3.00 2.1 1.00 4.7 3.00 2.1 1.00 4.7 3.00 4.7 3.00 2.1 1.00 4.7 3.00 4.7 3.00 2.1 1.00 4.7 3.00 4.7			1	4L4' T8 28w/ELEE-8'		16	95	4L4' T8 28w/ELEE LO-8'	rlrb	16		0.19		2,080
Data Devir Hybery Beard Grage Longe 1 Storw FLAT, MALDE Storm C 200 K-T Simultaborn Merical Simultaborn Storm S			1			-								2,080
PAH Dev Highway Regul Gauge Lauge 1 Zeaw MATA 14, MUDE Upby Lay 2 28 44.75 Sinc.LEE LANKEY rew supportigh have 2.1 10.1 0.0.4 10.2 10.2 10.0 10.2 10.0		ů – Č	1		dome	2				2				2,080
122. DPV Hynow Restr Carage Longe 1 L.T. Tobel. prov Induct 4 100 L.V.T. To ZeverLEE LONEV+5 new notatifial 4.8 30.0 92.9 20.0 243. DPV Hynow Bdg M Sathed 61 SOW META HALDE NableA 2.2 2.8 2.8 0.0 3.1 3.0 0.0 3.2 3.0 0.0 3.1 3.0 0.0 3.2 3.0 0.0 3.1 3.0 0.0 3.2 3.0 0.0 3.0 0.0 3.2 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 0.0 2.0 0.0	•		1			-				-				2,080
DAD DPV Mghowy Day Mg Salahed I 200 MWTLA HAUDE Inp bay 5 2 85 4.17 B202HLE HANEW New Apport[h hang, Salahed 0.8 0.83 0.137 2.04 240 DPV Mghowy Big/M Salahed int 0.00 MTLA HAUDE onload. 1 200 0.00 <td></td> <td></td> <td>1</td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,080</td>			1		, ,									2,080
124. DPV Hghway Big Mt Sainhand edd SW METAL HAUDE weile Die Note: mowel LD Note: 13 0.00 0.00			1			5				5				2,340
1242 DPW lighway Big M Selend ext 2000/11 PRESSUES SOULAI food 1 295 33 WATLEDNEW ewt ID Buod 1 133 0.10 710 433 277 Find Dept Hesdyaters Clastroom Projector 2 34.77 EEL 107 de ac. 38 34.71 32 WHELE LO 100 6 43 0.13 0.03 502 502 277 Find Dept Hesdyaters Clastroom Projector 2 24.75 VEL 107 de ac. 6 88 34.71 32 WHELE LO 106 6 6 20.75 Sinchi EE HIRR 106 6 80 34.71 32 WHELE LO 2 BAL 116 do at without 0 6 83 34.71 32 WHELE LO 2 BAL 116 do at without 0 6 6 30 34.71 32 WHELE LO 2 BAL 116 do at without 0 64.4 0.07 127.5 107.02 MHELE LO 2 BAL 116 do at without 0 64.4 0.08 128.2 107.02 MHELE LO 2 BAL 116 do at without 1 40.0 0.02 127.5 107.02 MHELE LO 2 BAL 116 do at without 1<		- · ·	ext	50W METAL HALIDE		2			, , ,	2		0.08		4,380
1270 Fino Dayh Hoadquarters Oxargon Projector 2 34.7 BEL rofa ar 6 88 34.7 B 2000 ELE LO rédo 6 63 0.03 0.00 200 200 270 Fino Dayh Hoadquarters Hall 2M Fronz 2 34.7 BEL rofa ar 6 60 34.7 B 200 ELE LO rón dr. 6 63 0.01 200 200 270 Fino Dayh Hoadquarters Hall 2M Fronz 2 34.7 BEL rofa ar 6 60 34.7 B 200 ELE LO rón dr. 6 63 0.16 312 200 270 Fino Dayh Hoadquarters Berboorn L 2 34.7 BL rofa arcs 3 88 34.7 B 200 ELE LO 2 AlL rón dr. 16 0.42 0.60 16.0 16 0.00 16.0 12 16 0.00 16.0 16 0.00 16.0 16 0.00 16.0 16 0.00 16.0 16 0.00 16.0 16 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 </td <td> · _ · · · · · · · · · · · · · · ·</td> <td>Bldg Mt Saltshed</td> <td>ext</td> <td>250W HI PRESSURE SODIUM</td> <td>flood</td> <td>1</td> <td></td> <td></td> <td>new LED flood</td> <td>1</td> <td></td> <td>0.16</td> <td></td> <td>4,380</td>	· _ · · · · · · · · · · · · · · ·	Bldg Mt Saltshed	ext	250W HI PRESSURE SODIUM	flood	1			new LED flood	1		0.16		4,380
1270 Fine Dayt Handquanten Classcom Projector 2 44.7 SEL 10 af and 6 88 34.7 S29w/ELE LO rhb 6.5 6.0 0.1 0.0 </td <td> ÿ ,</td> <td>ů.</td> <td>2</td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td>2,600</td>	ÿ ,	ů.	2			8				8				2,600
272 Fire Dept Headquarters Hell 204 Flow 2 24 T8 UEL Ind arr 6 0 22.7 IS the Dept Headquarters 6 not 6 0 0 0.00 280 2.00 278 Fire Dept Headquarters Badroon 1 2 3.4 T8 EL trd acylic dol avalch 3 48 8.4 T8 2avelELE LO 2 BAL the dot avalched 3 6.0 0.10 250 187 Dept Headquarters Badroon 1 2 3.4 T8 EL trd acylic dol avalch 3 48 8.4 T8 2avelELE LO 2 BAL the dot avalched 2 6.4 0.07 187 2.00 280 Fire Dept Headquarters Bath Showers 2 3.4 T8 LE trd acylic dol avalch 2 88 3.4 T8 2avelELE LO 2 BAL the dot avalched 2 6.4 0.05 12.5 2.60 280 Fire Dept Headquarters Bath Showers 2 3.4 T8 LE 1.60 0.01 T8 2avelELE LO 7 no		•	2							5				1,040
Image Sum Sum </td <td></td> <td>· · · · ·</td> <td>2</td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>2,600</td>		· · · · ·	2			5				5				2,600
Image End Dept Headquarters Bedroom 1 2 4.4 TBEL Und anythe data watch 3 8.4 3.4 1.2 0.0 0.0 1.2 2.0 200 File Dept Headquarters Bath Showers 2 1.4 TBL tot of any 1.4 0.0 1.4 0.05 1.2 2.0 218 File Dept Headquarters Bath Showers 2 1.4 TBL tot of any 1.4 0.0 1.4 0.05 1.2 2.3 228 File Dept Headquarters Bath Min 2 1.0 OMAACT HARDWIRED can mec 4.4 15 No RelTRO rot charge meeded 1.5 - 2.3 1.5 - 2.4 2.4 0.06 1.51 2.4 2.4 2.4 0.06 1.51 2.4 2.4 2.4 0.06 1.51 2.6 2.4 1.5 0.4 4.0 0.06 1.51 2.60 2.4 1.5 1.6 2.4 1.5 1.6 2.4 1.5 </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>63</td> <td></td> <td></td> <td>2,080</td>			2							6	63			2,080
220 File Oppt Headquarters Bath Showers 2 3.4. T8L. rnd arg/ic abla witch 2 8.8 3.4.T a 2aw/ELE LO 2 BAL rnd b witched 2 6.4 0.05 1.25 20.0 281 Fire Oppt Headquarters Bath Showers 2 2.1.4 TBL tord arr 1 6.0 2.1.2 TB fise/LEE LO 2 BAL rnd b witched 1 4.0 0.0.2 4.7 2.3.4 282 Fire Oppt Headquarters Bath Mers 2 2.4.1 T8 ELE ENCM variant 2 7.0 2.4.1 T8 2aw/ELEE LO rifts 0.1.1 2.3.4 283 Fire Oppt Headquarters Star Main 2 2.4.1 T8 EL tord arr 3 60 2.4.7 T8 2aw/ELEE LO rifts M.1 2.2.1 T8 EL M.1 M.1 2.2.1 T8 EL M.1 M.1 M.1 M.2 M.2 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>2,600</td>			2			3				3				2,600
Part Fire Dept Hasdquarters Bath Showers 2 24.4 To UEL rod ar 1 60 22.7 To StructLEE HURFL rhto fhinge needed 1 40 0.02 47 2.34 288 Fire Dept Headquarters Bath Men*S 2 13W COMPACT HARDWIRED can rec 4 15 NO ETRO noh 2 42 0.06 131 2.34 284 Fire Dept Headquarters Bath Men*S 2 2.47 To ZELETAG vanity 2 70 2.4.178 28///ELEE LO nth 3 40 0.06 131 2.34 285 Fire Dept Headquarters Stair Main 2 2.4.77 BU/ELE 11 60 2.4.77 BS///ELE HURFL nth nf 4 40 0.06 47 2.60 286 Fire Dept Headquarters Stair Main 2 2.4.77 BU/ELE 11 60 2.4.77 BS///ELE HURFL nth nf 4 40 0.06 2.60 287 Fire Dept Headquarters Bath Constructure 13.47 Table 104 ar of table			2		,	-				2	64	0.05		2,600
222 Fire Dept Headquarters Bath Showers 2 13W COMPACT HARDWIRED can mc 4 15 NO RETRO no change needed 15 NO 2.3 283 Fire Dept Headquarters Bath Men S 2 2.14 'T3 2E Fire Dept Headquarters Stair Main 2 2.14 'T3 E Ut of a cr 3 60 2.14 'T3 2E 1.01 cont 3 4.00 0.06 1.15 2.84 285 Fire Dept Headquarters Stair Main 2 2.44 'TB VEL und ar 3 60 2.14 'T3 2E 1.01 cont 1.42 0.02 4.7 2.86 286 Fire Dept Headquarters Stair Main 2 2.44 'TB VEL und ar 4 60 2.14 'T3 2E 1.01 cont 4.4 60 2.14 'T3 2E 1.01 cont 2.24 0.04 0.03 2.65 2.66 286 Fire Dept Headquarters Office Open Dispatch 1 3.44 'TB 2L 1.01 dort 1.63 0.03 65 2.60 286 Fire Dept Headquarters </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td>2,340</td>			2			1				1	-			2,340
283 Fire Dept Headquarters Bath MenS 2 2.1.4 T3 EVEREMAG vanity 2 7.0 2.4.4 T3 28/WELEE LO rinb 2 4.2 0.0.6 131 2.34 224 Fire Dept Headquarters Stair Main 2 2.4.4 T8 EVER trol acr 3 60 2.4.4 T8 28/WELEE LO rinb 1 4.2 0.0.6 131 2.34 226 Fire Dept Headquarters Stair Main 2 2.4.4 T8 UVEL tord acr 3 60 2.4.4 T8 28/WELEE LO rinb 1 4.2 0.0.0 4.7 2.60 226 Fire Dept Headquarters Bitl Stoor 1 2.4.4 T8 UVEL wrap 1 60 2.4.7 T8 UVEL 0.0.0 1.4 4.2 0.0.0 4.7 2.60 228 Fire Dept Headquarters Office Open Dispatch 1 3.4.4 T8/EL wrap 4 88 3.4.4 T8 28/WELEE LO 2 BAL rinb did witched 4 64 0.10 2.50 2.60 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50			2			4					15			2,340
Park Ire Dept Headquarters Stair Main 2 24.4 T8/EL Irol acr 2 60 2/4 T8 28/vELEE LO rhb 2 4/2 0.04 9/4 2,60 286 Fire Dept Headquarters Stair Main 2 2/4 T8 UFL rhd 60 2/2 T8 15/vELE HWR-LE rhb 1 4/2 0.04 166 2/6 0 286 Fire Dept Headquarters Stair Main 2 2/4 T8 UFL wrap 1 0 2/4 T8 28/vELEE LO 1 rhb 1 4/4 0.02 4/7 2,60 287 Fire Dept Headquarters Office Open Dispatch 1 2/4 T8/EL trof acr 4 80 2/2 T8 15/wELEE LO 2 BAL rhb dhwitched 4 64 0.00 2/2 6 2/2 6 289 Fire Dept Headquarters Office Open Mary 1 3/4 T8/EL tord acr/tic db witch 2 88 3/4 T8 28/wELEE LO 2 BAL rhb db witched 2 64 0.05 1/2 5.260 2/2 6 291 Fire Dept Headquarters Office			2			2			v	2		0.06	131	2,340
285 Fire Dept Headquarters Stair Main 2 24.4 T8 U/EL trol acr 3 60 21.2 T8 15w/ELEE H/RFL rbr drl 3 40 0.06 156 2,60 286 Fire Dept Headquarters Stair Main 2 2/L4 T8/EL wrap 1 60 2/L4 T8 2w/ELEE LO rbr 1 4.2 0.02 4.7 2,80 287 Fire Dept Headquarters Office Open Dipatch 1 2/L4 T8/EL trof acr/Le d/B witch 4 60 2/L7 T8 5/W/ELEE H/RFL rbr 1 4.4 0.00 2/L 2/L 2/L 2/L 2/L 1/L 2/L 2/L 2/L 1/L 2/L 2/L 1/L 2/L 1/L 1/L 2/L 1/L 1/L 1/L 1/L 1/L 1/L 1/L 1/L 1/L 2/L 1/L 1/L </td <td></td> <td></td> <td>2</td> <td></td>			2											
286 Fire Dept Headquarters Stair Main 2 24/ T8/EL wrap 1 60 24/ T8 28w/ELEE LO rhb 1 42 0.02 47 2,60 287 Fire Dept Headquarters Hall 1St Floor 1 24/ T8 //LEL trof acr 4 60 22.7 T8 fsw/ELEE LO.2 RAL rhb db slwthed 4 64 0.08 22.80 2,60 288 Fire Dept Headquarters Bedroom Dispatch 1 3.4/ T8/EL trof acr/lic db switch 4 88 3.4/ T8 28w/ELEE LO.2 RAL rhb db switched 2 64 0.05 12.5 2,60 290 Fire Dept Headquarters Office Shift Commander 1 3.4/ T8/EL ofd varinic 2 88 3.4/ T8 28w/ELEE LO 2 RAL rhb db switched 2 64 0.05 12.5 2,60 290 Fire Dept Headquarters Office Open MenS 1 3.4/ T8/EL trof acrylic db switch 2 88 3.4/ T8 28w/ELEE LO 2 RAL rhb db switched 2 64 0.05 12.5 2,60			2										-	2,600
287 Fire Dept Headquarters Hall St Floor 1 24.4 T8 U/EL trof acr 4 60 24.2 T8 15w/ELEE HV/RFL rhb ffl 4 40 0.08 208 2.60 288 Fire Dept Headquarters Office Open Dispatch 1 3.44 T8/EL trof acr/it cbl switch 4 88 3.44 T8 28w/ELEE LO 2 BAL rhb dbl switched 4 64 0.03 62.60 289 Fire Dept Headquarters Office Shift Commander 1 3.44 T8/EL trof acr/it cbl switch 2 88 3.44 T8 28w/ELEE LO 2 BAL rhb dbl switched 2 64 0.03 652 2.60 291 Fire Dept Headquarters Office Open MenS 1 2.44 T8/EL ofd vaniy 2 60 1.44 T8 28w/ELEE LO 2 BAL rhb dbl switched 2 64 0.05 125 2.60 293 Fire Dept Headquarters Office Open Men'S 1 2.44 T8/LE rhf acr/it cbl switch 4 88 3.44 T8 28w/ELEE LO 2 BAL rhb dbl switched 4 64 0.00 2.60 2.24 T8			2			1				1				
288 Fire Dept Headquarters Office Open Dispatch 1 3L4 T8/EL trof acrylic dbl switch 4 88 3L4 T8 28w/ELEE LO 2 BAL rith dbl switched 4 64 0.10 250 2,60 290 Fire Dept Headquarters Bedroom Dispatch 1 3L4 T8/EL trof acrylic dbl switch 2 88 3L4 T8 28w/ELEE LO 2 BAL rith dbl switched 4 63 0.05 2,50 290 Fire Dept Headquarters Bath Men'S (X2) 1 2L4 T8/EL old vanity 2 60 1L4 T8 28w/ELEE LO 2 BAL rith dbl switched 2 64 0.05 125 2,60 291 Fire Dept Headquarters Office Open Men'S 1 3L4 T8/EL trof acrylic dbl switch 2 88 3L4 T8 28w/ELEE LO 2 BAL rith dbl switched 2 64 0.05 125 2,60 293 Fire Dept Headquarters Office Open Men'S 1 3L4 T8/L trof acrylic dbl switch 2 88 3L4 T8 28w/ELEE LO 2 BAL rith dbl switched 4 64 0.05 2,60						4				4				2,600
289 Fire Dept Headquarters Bedroom Dispatch 1 3.L4 'T8/EL trof acrylic del switch 2 8.8 3.L4 'T8 28w/ELEE LO 2 BAL rith del switched 2 6.4 0.05 1.25 2.60 290 Fire Dept Headquarters Office Shift Commander 1 3.L4 'T8/EL trof acrylic del switch 2 8.8 3.L4 'T8 28w/ELEE LO 2 BAL rith del switched 2 6.4 0.05 1.25 2.60 291 Fire Dept Headquarters Office Open Men'S 1 3.L4 'T8/EL trof acrylic del switch 2 6.0 1.L4 'T8 28w/ELEE LO 2 BAL rith del switched 2 6.4 0.05 1.25 2.60 292 Fire Dept Headquarters Office Open Men'S 1 3.L4 'T8/LL trof acrylic del switch 4 8.8 3.L4 'T8 28w/ELEE LO 2 BAL rith del switched 4 6.4 0.010 2.60 2.60 293 Fire Dept Headquarters Office Asst Fire Cief 1 3.L4 'T8/LL trof acrylic del switch 3 8.8 3.L4' 'T8 28w/ELEE LO 2 BAL rith del switched											1			
290 Fire Dept Headquarters Office Shift Commander 1 3.4' T8/EL trof acrylic dbl switch 2 8.8 3.4' T8 28w/ELEE LO 2 BAL rlrb dbl switched 2 6.4 0.05 125 2,60 291 Fire Dept Headquarters Bath Men'S (X2) 1 2.4' T8/EL old vanity 2 60 1.4' T8 28w/ELEE LO 2 BAL rlrb dbl switched 2 64 0.05 125 2,60 292 Fire Dept Headquarters Office Open Men'S 1 3.4' T8/EL trof acrylic dbl switch 2 88 3.4' T8 28w/ELEE LO 2 BAL rlrb dbl switched 2 64 0.05 125 2,60 293 Fire Dept Headquarters Office Open Men'S 1 2.4' T8 UEL trof acrylic dbl switch 2 88 3.4' T8 28w/ELEE LO 2 BAL rlrb dbl switched 4 64 0.10 26 60 2.2' T8 15w/ELE HU/RE rlrb dbl switched 3 8.4' 3.4' T8 28w/ELEE LO 2 BAL rlrb dbl switched 3 8.4' 64 0.00 2.60 2.60 2.60 2.6'						1			rirb	1				2,600
Part Pack Bath Men'S (X2) 1 2L4' T8/EL old vanity 2 60 1L4' T8 28W/ELEE/NEW new wrap 2 24 0.07 168 2.34 292 Fire Dept Headquarters Office Open Men'S 1 3L4' T8/EL troi acrylic dbl switch 2 88 3L4' T8 28w/ELEE L0 2 BAL rlrb dbl switched 2 64 0.05 125 2.60 293 Fire Dept Headquarters Office Open Men'S 1 2L4' T8 U/EL troi acrylic dbl switch 4 88 3L4' T8 28w/ELEE L0 2 BAL rlrb dbl switched 3 64 0.00 260 2.60 294 Fire Dept Headquarters Office Cheir 1 3L4' T8/EL troi acrylic dbl switch 4 8.8 3L4' T8 28w/ELEE L0 2 BAL rlrb dbl switched 3 64 0.007 187 2.60 295 Fire Dept Headquarters Storage Server 1 3L4' T8/EL 14' 82 8w/ELEE L0 2 BAL rlrb dbl switched 3 64 0.007 187 2.60 296 Fire Dept Headquarters	· · · · · · · · · · · · · · · · · · ·					2			rlrb dbl switched	2				2,600
292 Fire Dept Headquarters Office Open Men'S 1 3L4' Ta/EL trof acrylic dbl switch 2 8.8 3L4' Ta 28w/ELEE LO 2 BAL rhb dbl switched 2 6.4 0.05 125 6.0 233 Fire Dept Headquarters Office Open Men'S 1 2L4' TB U/EL trof acrylic dbl switch 5 60 2L2' TB 15w/ELEE HI/RFL rhb dbl switched 4 64 0.00 260 2.60 294 Fire Dept Headquarters Office Chief 1 3L4' TB/EL trof acrylic dbl switch 4 88 3L4' TB 28w/ELEE LO 2 BAL rhb dbl switched 4 64 0.00 250 2.60 295 Fire Dept Headquarters Office Asst Fire Clef 1 3L4' TB/EL trof acrylic dbl switch 3 88 3L4' TB 28w/ELEE LO 2 BAL rhb dbl switched 3 64 0.00 18 2.60 296 Fire Dept Headquarters Storage Server 1 3L4' TB/EL trof acrylic dbl switch 3 88 3L4' TB 28w/ELEE LO 2 BAL rhb dbl switched 2 64						-				2	-			2,340
293 Fire Dept Headquarters Office Open Men'S 1 2.4.' T8 U/EL trof acr 5 60 2.1.2' T8 15w/ELEE HI/RFL trh fnl 5 40 0.10 2.60 294 Fire Dept Headquarters Office Chief 1 3.4.' T8/EL trof acrylic dbl switch 4 88 3.4.' T8 28w/ELEE LO 2 BAL rh dbl switched 4 64 0.0.0 250 26.00 295 Fire Dept Headquarters Office Asst Fire Cief 1 3.4.' T8/EL trof acrylic dbl switch 3 88 3.4.' T8 28w/ELEE LO 2 BAL rh dbl switched 3 64 0.0.0 187 2.60 296 Fire Dept Headquarters Storage Server 1 3.4.' T8/EL trof acrylic dbl switch 1 88 3.4.' T8 28w/ELEE LO 2 BAL rh dbl switched 3 64 0.0.0 3.1.' T8 3.0.' 297 Fire Dept Headquarters Storage Filews 1 3.4.' T8 2/EL rh dbl switched 2 64 0.05 2.4.' T8 3.0.' T8 298 Fire Dept Headquarters	· · · · · · · · · · · · · · · · · · ·				,	-								2,600
294 Fire Dept Headquarters Office Chief 1 3L4' T8/EL trof acrylic dbl switch 4 88 3L4' T8 28w/ELEE LO 2 BAL rlib dbl switched 4 64 0.10 250 2.60 295 Fire Dept Headquarters Office Asst Fire Cief 1 3L4' T8/EL trof acrylic dbl switch 3 88 3L4' T8 28w/ELEE LO 2 BAL rlib dbl switched 3 64 0.00 187 2.60 296 Fire Dept Headquarters Storage Server 1 3L4' T8/EL trof acrylic dbl switch 2 88 3L4' T8 28w/ELEE LO 2 BAL rlib dbl switched 3 64 0.00 187 2.60 296 Fire Dept Headquarters Storage Server 1 3L4' T8/EL trof acrylic dbl switch 2 88 3L4' T8 28w/ELEE LO 2 BAL rlib dbl switched 2 64 0.05 24 500 297 Fire Dept Headquarters Closet Clean (X3) 1 2L4' T8 U/EL trof acr 3 60 2L2' T8 15w/ELEE H/RFL rlib dbl switched 2 64 0.06	i					-								2,600
295Fire Dept HeadquartersOffice Asst Fire Cief13.4' T8/ELtrof acrylic dbl switch3883.L4' T8 28w/ELEE LO 2 BALrlh dbl switched3640.071872.60296Fire Dept HeadquartersStorage Server13.L4' T8/ELtrof acr1883.L4' T8 28w/ELEE LO 2 BALrlhb dbl switched3640.071872.60297Fire Dept HeadquartersStorage Filews13.L4' T8/ELtrof acr1883.L4' T8 28w/ELEE LO 2 BALrlhb dbl switched2640.0524500298Fire Dept HeadquartersCloset Clean (X3)12.L4' T8 U/ELtrof acr3602.L2' T8 15w/ELEE HI/RFLrlhb fl3400.0630500299Fire Dept HeadquartersStorage Jackets12.L4' T8/EL-8'strip reflector2602.L4' T8 28w/ELEE LO 2rlhbrlhb3400.0630500300Fire Dept HeadquartersStorage Jackets12.L4' T8/EL-8'strip reflector2602.L4' T8 28w/ELEE LO.8'rlhb2420.0418500300Fire Dept HeadquartersParking Garage Trucks14.L4' T8/EL-8'strip reflector26114.L4' T8 28w/ELEE LO.8'rlhb26830.751.7642.34301Fire Dept HeadquartersBldg Mt Tru8Cksext60W INCANDESCENTdecorative76015W COMPACT SIscrew in </td <td>i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>2,600</td>	i									-				2,600
296Fire Dept HeadquartersStorage Server13.L4' Ta/LEtrof acr18.83.L4' Ta 28w/ELEE LO 2 BALIrb del switched16.30.0.31.35.00297Fire Dept HeadquartersStorage Filews13.L4' Ta/LEtrof acr/lic del switch28.83.L4' Ta 28w/ELEE LO 2 BALirb del switched26.40.0.52.45.00298Fire Dept HeadquartersCloset Clean (X3)12.L4' Ta U/ELtrof acr36.02.L2' Ta 15w/ELEE HI/RFLirb refl34.00.0.63.03.03.03.00299Fire Dept HeadquartersStorage Jackets12.L4' Ta/LEstrip reflector26.02.L4' Ta 28w/ELEE LO.2'sirb reflector14.03.01.85.00300Fire Dept HeadquartersParking Garage Trucks14.L4' Ta/LE.4'sstrip reflector26.02.L4' Ta 28w/ELEE LO.2'sirb reflector16.01.7642.4301Fire Dept HeadquartersBldg MT TuaBcksext6.0W INCANDESCENTdecorative76.015W COMPACT SIscrew inn71.50.321.3804.38	· · ·									· ·				
297Fire Dept HeadquartersStorage Filews13L4' T8/ELtrof acrylic dbl switch2883L4' T8 28w/ELEE LO 2 BALrlrb dbl switched2640.0524500298Fire Dept HeadquartersCloset Clean (X3)12L4' T8 U/ELtrof acr3602L2' T8 15w/ELEE HI/RFLrlrb fill3400.063030500299Fire Dept HeadquartersStorage Jackets12L4' T8/LEstrip reflector2602L4' T8 28w/ELEE LO 2'srlrb fill2420.0418500300Fire Dept HeadquartersParking Garage Trucks14L4' T8/LE-8'strip reflector261124L4' T8 28w/ELEE LO 2'srlrb26830.751,7642,34301Fire Dept HeadquartersBldg Mt Tru8Cksext60W INCANDESCENTdecorative76015W COMPACT SIscrew in7150.321,3804,380						1			rlrb	1				
298Fire Dept HeadquartersCloset Clean (X3)12.4' T8 U/ELtrof acr3602.2' T8 15W/ELEE H/RFLIrb rfl3400.0630500299Fire Dept HeadquartersStorage Jackets12.4' T8/ELstrip reflector2602.4' T8 28W/ELEE LOrlrb2420.0418500300Fire Dept HeadquartersParking Garage Trucks14.4' T8/EL-8'strip reflector26124.4' T8 28W/ELEE LO-8'rlrb26830.751,7642,34301Fire Dept HeadquartersBldg Mt Tru8Cksext60W INCANDESCENTdecorative76015W COMPACT SIscrew in7150.321,3804,38			1			2			rlrh dhl switched	2				
299Fire Dept HeadquartersStorage Jackets12L4' T8/EL-8'strip reflector2602L4' T8 28w/ELEE LOrlrb2420.0418500300Fire Dept HeadquartersParking Garage Trucks14L4' T8/EL-8'strip reflector26124L4' T8 28w/ELEE LO-8'rlrb26830.751,7642,34301Fire Dept HeadquartersBldg Mt Tru8Cksext60W INCANDESCENTdecorative76015W COMPACT SIscrew in7150.321,3804,38			1											
300 Fire Dept Headquarters Parking Garage Trucks 1 4L4' T8/EL-8' strip reflector 26 112 4L4' T8 28w/ELEE LO-8' rlrb 26 83 0.75 1,764 2,34 301 Fire Dept Headquarters Bldg Mt Tru8Cks ext 60W INCANDESCENT decorative 7 60 15W COMPACT SI screw in 7 15 0.32 1,380 4,38			1			-								
301 Fire Dept Headquarters Bldg Mt Tru8Cks ext 60W INCANDESCENT decorative 7 60 15W COMPACT SI screw in 7 15 0.32 1,380 4,380		ů – Č								-				-
						7				7				
	302 Fire Dept Headquarters	Bldg Mt Tru8Cks	ext	100W METAL HALIDE	flood	2		49 WATT LED/NEW	new LED flood	2	49	0.32	622	4,380
	i	Ť				-								2,414

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
304	Curtis Middle School	Classroom 306	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
305	Curtis Middle School	Classroom 306	3	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
306	Curtis Middle School	Classroom 306	3	2L2' T8/EL	wallwash	2	37	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
307	Curtis Middle School	Classroom 303	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
308	Curtis Middle School	Classroom 303	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
309	Curtis Middle School	Classroom 303	3	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
310	Curtis Middle School	Classroom 303	3	2L2' T8/EL	wallwash	2	37	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
311	Curtis Middle School	Classroom 309	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
312	Curtis Middle School	Classroom 309	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
313	Curtis Middle School	Classroom 309	3	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
314	Curtis Middle School	Classroom 309	3	2L2' T8/EL	wallwash	2	37	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
315	Curtis Middle School	Classroom 312	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
316	Curtis Middle School	Classroom 312	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
317	Curtis Middle School	Classroom 312	3	2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
318	Curtis Middle School	Classroom 312	3	2L2' T8/EL	wallwash	2	1	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
319	Curtis Middle School	Classroom 315	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
320	Curtis Middle School	Classroom 315	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
321	Curtis Middle School	Classroom 315	3	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
322	Curtis Middle School	Classroom 315	3	2L2' T8/EL	wallwash	2		2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
323	Curtis Middle School	Classroom 318	3	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
324	Curtis Middle School	Classroom 318	3	2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
325	Curtis Middle School	Classroom 318	3	2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
326	Curtis Middle School	Classroom 318	3	2L2' T8/EL	wallwash	2		2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
327	Curtis Middle School	Lab 319	3	4L4' T8/EL-8'	indirect/direct dbl switch	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	603	2,080
328	Curtis Middle School	Lab 319	3	2L4' T8/EL-8'	indirect/direct dbl switch	10	1	2L4' T8 28w/ELEE LO-8'	rlrb	10	42	0.18	374	2,080
329	Curtis Middle School	Classroom 321	3	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
330	Curtis Middle School	Classroom 321	0 २	2L4' T8/EL-8'	indirect/direct dbl switch	4	1	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
331	Curtis Middle School	Classroom 321		2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
332	Curtis Middle School	Classroom 321		2L2' T8/EL	wallwash	2		2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
333	Curtis Middle School	Classroom 324	0 २	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
334	Curtis Middle School	Classroom 324	3	2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
335	Curtis Middle School	Classroom 324	3	2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
336	Curtis Middle School	Classroom 324		2L2' T8/EL	wallwash	2		2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
	Curtis Middle School	Office 325		2L4' T8/EL	trof acr	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.02	174	2,414
	Curtis Middle School	Classroom 351		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
	Curtis Middle School	Classroom 351		2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
	Curtis Middle School	Classroom 351		2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
	Curtis Middle School	Classroom 351		2L2' T8/EL	wallwash	2	1	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
342	Curtis Middle School	Office 326		2L4' T8/EL	trof acr	4		2L2' T8 28w/ELEE LO	rlrb	4	42	0.02	174	2,414
342	Curtis Middle School	Classroom 327		4L4' T8/EL-8'	indirect/direct dbl switch	6	1	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.07	420	2,414
	Curtis Middle School	Classroom 327		2L4' T8/EL-8'		6	1	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11		2,414
	Curtis Middle School	Classroom 327		2L4 18/EL 2L4' T8/EL	indirect/direct dbl switch wallwash	2	1	2L4' T8 28w/ELEE LO-8	rirb	2	42	0.11	261 87	2,414
	Curtis Middle School	Classroom 327 Classroom 346		4L4' T8/EL-8'	indirect/direct dbl switch	5	1	4L4' T8 28w/ELEE LO-8'	rirb	2 5	42 83	0.04	350	2,414
	Curtis Middle School	Classroom 346		2L4' T8/EL-8'	indirect/direct dbl switch	5 5	1	2L4' T8 28w/ELEE LO-8'	rirb	5 5	42	0.15	217	2,414
						5 2	1	2L4 T8 28w/ELEE LO-8		5 2	42		87	2,414
348	Curtis Middle School	Classroom 346		2L4' T8/EL	wallwash			4L4' T8 28W/ELEE LO 4L4' T8 28W/ELEE LO-8'	rlrb drb			0.04	-	
	Curtis Middle School	Classroom 348		4L4' T8/EL-8'	indirect/direct dbl switch	6			rlrb	6	83	0.17	420	2,414
	Curtis Middle School	Classroom 348		2L4' T8/EL-8'	indirect/direct dbl switch	6	1	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
351	Curtis Middle School	Classroom 348		2L4' T8/EL	wallwash	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
352	Curtis Middle School	Classroom 349		4L4' T8/EL-8'	indirect/direct dbl switch	3	1	4L4' T8 28w/ELEE LO-8'	rlrb	3	83	0.09	210	2,414
	Curtis Middle School	Classroom 349		2L4' T8/EL-8'	indirect/direct dbl switch	3	1	2L4' T8 28w/ELEE LO-8'	rlrb	3	42	0.05	130	2,414
354	Curtis Middle School	Classroom 328	3	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
355	Curtis Middle School	Classroom 328	3	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
356	Curtis Middle School	Classroom 330	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
357	Curtis Middle School	Classroom 330	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
358	Curtis Middle School	Classroom 330	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
359	Curtis Middle School	Classroom 333	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
360	Curtis Middle School	Classroom 333	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
361	Curtis Middle School	Classroom 333	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
362	Curtis Middle School	Classroom 336	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
363	Curtis Middle School	Classroom 336	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
364	Curtis Middle School	Classroom 336	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
365	Curtis Middle School	Classroom 339	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
366	Curtis Middle School	Classroom 339	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
367	Curtis Middle School	Classroom 339	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
368	Curtis Middle School	Classroom 342	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
369	Curtis Middle School	Classroom 342	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
370	Curtis Middle School	Classroom 342	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
371	Curtis Middle School	Classroom 345	3	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
372	Curtis Middle School	Classroom 345	3	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
373	Curtis Middle School	Classroom 345	3	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
374	Curtis Middle School	Bath Staff (X4)	3	2L4' T8/EL	valance	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	223	3,094
375	Curtis Middle School	Closet Clean (X3)	3	2L4' T8/EL	trof acr	6	60	2L4' T8 28w/ELEE LO	rlrb	6	42	0.11	46	425
376	Curtis Middle School	Closet Data (X3)	3	4L4' T8/EL-8'	strip reflector	3	112	4L4' T8 28w/ELEE LO-8'	rlrb	3	83	0.09	37	425
377	Curtis Middle School	Closet Elect (X3)	3	4L4' T8/EL-8'	strip reflector	3	112	4L4' T8 28w/ELEE LO-8'	rlrb	3	83	0.09	37	425
378	Curtis Middle School	Classroom 301	3	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
379	Curtis Middle School	Classroom 301	3	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
380	Curtis Middle School	Lounge 353	3	3L4' T8/EL	trof parabolic	3	88	3L4' T8 28w/ELEE LO	rlrb	3	63	0.08	219	2,924
381	Curtis Middle School	Hall 3Rd Floor	3	2L4' T8 U/EL	trof acr	45	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	45	40	0.90	2,785	3,094
382	Curtis Middle School	Hall 3Rd Floor	3	2x 13W COMPACT HARDWIRED	can rec	20	30	NO RETRO	no change needed		30			3,094
383	Curtis Middle School	Hall 3Rd Floor	3	2L4' T8/EL	cove	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	223	3,094
384	Curtis Middle School	Stair 3 (X2)	3	2x 13W COMPACT HARDWIRED	can rec	12	30	NO RETRO	no change needed		30			3,094
385	Curtis Middle School	Stair 3 (X2)	3	2L4' T8/EL	valance	22	60	2L4' T8 28w/ELEE LO	rlrb	22	42	0.40	1,225	3,094
386	Curtis Middle School	Stair Main	3	2x 13W COMPACT HARDWIRED	can rec	11	30	NO RETRO	no change needed		30			3,094
387	Curtis Middle School	Stair Main	3	2L4' T8/EL	valance	10	60	2L4' T8 28w/ELEE LO	rlrb	10	42	0.18	557	3,094
388	Curtis Middle School	Classroom 219	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
389	Curtis Middle School	Classroom 219	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
390	Curtis Middle School	Classroom 218	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
391	Curtis Middle School	Classroom 218	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
392	Curtis Middle School	Classroom 218	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
393	Curtis Middle School	Classroom 215	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
394	Curtis Middle School	Classroom 215	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
395	Curtis Middle School	Classroom 215	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
396	Curtis Middle School	Classroom 212	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
397	Curtis Middle School	Classroom 212	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
398	Curtis Middle School	Classroom 212	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
399	Curtis Middle School	Classroom 209	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
400	Curtis Middle School	Classroom 209	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
401	Curtis Middle School	Classroom 209	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
402	Curtis Middle School	Classroom 206	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
403	Curtis Middle School	Classroom 206	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
404	Curtis Middle School	Classroom 206	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
405	Curtis Middle School	Classroom 203	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414

Town of Sudbury, MA

Line [Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
406 0	Curtis Middle School	Classroom 203	2	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
407 0	Curtis Middle School	Classroom 203	2	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
408 0	Curtis Middle School	Classroom 220	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
409 0	Curtis Middle School	Classroom 220	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
410 (Curtis Middle School	Bath Boy'S (X4)	2	2L4' T8 U/EL	trof acr	8	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	8	40	0.16	495	3,094
411 (Curtis Middle School	Bath Boy'S (X4)	2	2L4' T8/EL	valance	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	223	3,094
412 (Curtis Middle School	Bath Boy'S (X4)	2	2x 13W COMPACT HARDWIRED	can rec	4	30	NO RETRO	no change needed		30			3,094
413 (Curtis Middle School	Classroom 221	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
414 (Curtis Middle School	Classroom 221	2	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
415 (Curtis Middle School	Classroom 221	2	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			2,414
416 (Curtis Middle School	Office 221	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
417 (Curtis Middle School	Office 221	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
418 (Curtis Middle School	Classroom 224	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
419 (Curtis Middle School	Classroom 224	2	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
420 0	Curtis Middle School	Classroom 224	2	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			2,414
421 0	Curtis Middle School	Office 224	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
422 (Curtis Middle School	Office 224	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
423 0	Curtis Middle School	Bath Staff	2	2L4' T8/EL	valance	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	56	3,094
424 0	Curtis Middle School	Classroom 251	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
425 (Curtis Middle School	Classroom 251	2	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
426 (Curtis Middle School	Classroom 251	2	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			2,414
427 0	Curtis Middle School	Office 251	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
428 0	Curtis Middle School	Office 251	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
429 0	Curtis Middle School	Classroom 227	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
430 0	Curtis Middle School	Classroom 227	2	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
431 C	Curtis Middle School	Classroom 227	2	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			2,414
432 0	Curtis Middle School	Office 227	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
433 0	Curtis Middle School	Office 227	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
434 0	Curtis Middle School	Classroom 248	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
435 0	Curtis Middle School	Classroom 248	2	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
436 0	Curtis Middle School	Classroom 248	2	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			2,414
437 0	Curtis Middle School	Office 248	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
438 0	Curtis Middle School	Office 248	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
439 0	Curtis Middle School	Office 247	2	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
440 (Curtis Middle School	Office 247	2	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
441 C	Curtis Middle School	Classroom 229		4L4' T8/EL-8'	indirect/direct dbl switch	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
442 0	Curtis Middle School	Classroom 229	2	2L4' T8/EL	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
443 0	Curtis Middle School	Classroom 229	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
444 0	Curtis Middle School	Classroom 229	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
445 0	Curtis Middle School	Classroom 229	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
446 0	Curtis Middle School	Classroom 233	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
447 0	Curtis Middle School	Classroom 233	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
448 0	Curtis Middle School	Classroom 233	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
449 0	Curtis Middle School	Classroom 236	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
450 C	Curtis Middle School	Classroom 236	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
	Curtis Middle School	Classroom 236	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
	Curtis Middle School	Classroom 239		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
453 0	Curtis Middle School	Classroom 239	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
	Curtis Middle School	Classroom 239		2L2' T8/EL	wallwash	3		2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
	Curtis Middle School	Office 246		4L4' T8/EL-8'	indirect/direct dbl switch	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
	Curtis Middle School	Office 246		2L4' T8/EL-8'	indirect/direct dbl switch	2		2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
457	Curtis Middle School	Classroom 245	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
458	Curtis Middle School	Classroom 245	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
459	Curtis Middle School	Classroom 245	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
460	Curtis Middle School	Classroom 242	2	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
461	Curtis Middle School	Classroom 242	2	2L4' T8/EL	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	174	2,414
462	Curtis Middle School	Classroom 242	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
463	Curtis Middle School	Classroom 201	2	2L4' T8/EL	trof acr	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
464	Curtis Middle School	Classroom 201	2	2L4' T8 U/EL	trof acr	2	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	2	40	0.04	97	2,414
465	Curtis Middle School	Office Open 253	2	3L4' T8/EL	trof parabolic	3	88	3L4' T8 28w/ELEE LO	rlrb	3	63	0.08	219	2,924
466	Curtis Middle School	Classroom 254	2	4L4' T8/EL-8'	indirect/direct dbl switch	9	112	4L4' T8 28w/ELEE LO-8'	rlrb	9	83	0.26	630	2,414
467	Curtis Middle School	Classroom 254	2	2L4' T8/EL-8'	indirect/direct dbl switch	9	60	2L4' T8 28w/ELEE LO-8'	rlrb	9	42	0.16	391	2,414
468	Curtis Middle School	Classroom 257	2	4L4' T8/EL-8'	indirect/direct dbl switch	9	112	4L4' T8 28w/ELEE LO-8'	rlrb	9	83	0.26	630	2,414
469	Curtis Middle School	Classroom 257	2	2L4' T8/EL-8'	indirect/direct dbl switch	9	60	2L4' T8 28w/ELEE LO-8'	rlrb	9	42	0.16	391	2,414
470	Curtis Middle School	Classroom 260	2	2L4' T8/EL	trof acr	9	60	2L4' T8 28w/ELEE LO	rlrb	9	42	0.16	391	2,414
471	Curtis Middle School	Classroom 260	2	2L2' T8/EL	wallwash	3	37	2L2' T8 15w/ELEE LO	rlrb	3	27	0.03	72	2,414
472	Curtis Middle School	Storage 260	2	2L4' T8/EL	trof acr	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,074
473	Curtis Middle School	Office Open Guidance	2	3L4' T8/EL	trof parabolic	3	88	3L4' T8 28w/ELEE LO	rlrb	3	63	0.08	219	2,924
474	Curtis Middle School	Office Open Guidance	2	2L4' T8 U/EL	trof acr	5	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	5	40	0.10	292	2,924
475	Curtis Middle School	Office Mrs. Miller (X4)	2	3L4' T8/EL	trof parabolic	8	88	3L4' T8 28w/ELEE LO	rlrb	8	63	0.20	483	2,414
476	Curtis Middle School	Office House Administrator (X2)	2	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	121	2,414
477	Curtis Middle School	Bath Boy'S (X2)		2L4' T8 U/EL	trof acr	6	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	6	40	0.12	371	3,094
478	Curtis Middle School	Bath Boy'S (X2)	2	2L4' T8/EL	valance	2	-	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
479	Curtis Middle School	Classroom 263 (X2)	2	4L4' T8/EL-8'	indirect/direct dbl switch	18		4L4' T8 28w/ELEE LO-8'	rlrb	18	83	0.52	1,260	2,414
480	Curtis Middle School	Classroom 263	2	2L4' T8/EL-8'	indirect/direct dbl switch	9	-	2L4' T8 28w/ELEE LO-8'	rlrb	9	42	0.16	391	2,414
481	Curtis Middle School	Classroom 266	2	4L4' T8/EL-8'	indirect/direct dbl switch	6	_	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
482	Curtis Middle School	Classroom 266	2	2L4' T8/EL-8'	indirect/direct dbl switch	6		2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
483	Curtis Middle School	Classroom 266		2x 13W COMPACT HARDWIRED	can rec	3	1	NO RETRO	no change needed		30	-	-	2,414
484	Curtis Middle School	Library		2x 13W COMPACT HARDWIRED	sconce	13	_	NO RETRO	no change needed		30			2,414
485	Curtis Middle School	Library	-	2L4' T8 U/EL	trof parabolic	20	-	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	20	40	0.40	966	2,414
486	Curtis Middle School	Library	2	100W METAL HALIDE	decorative	10		NO RETRO	no change needed		120			2,414
487	Curtis Middle School	Library	2	150W METAL HALIDE	indirect	4	-	NO RETRO	no change needed		190			2,414
488	Curtis Middle School	Office Open Lib	2	3L4' T8/EL	trof parabolic	8	88	3L4' T8 28w/ELEE LO	rirb	8	63	0.20	585	2,924
489	Curtis Middle School	Hall 2Nd Floor		2x 13W COMPACT HARDWIRED	can rec	17	1	NO RETRO	no change needed	<u> </u>	30	0.20		3,094
	Curtis Middle School	Hall 2Nd Floor		2L4' T8 U/EL	trof acr	54	-	2L2' T8 15w/ELEE HI/RFL	rirb rfl	54	40	1.08	3,342	3,094
	Curtis Middle School	Hall 2Nd Floor		2L4' T8/EL	cove	22		2L4' T8 28w/ELEE LO	rirb	22	42	0.40	1,225	3,094
	Curtis Middle School	Stair Front Officve		2x 13W COMPACT HARDWIRED	can rec	6	1	NO RETRO	no change needed		30		, -	3,094
	Curtis Middle School	Stair Front Officve		2L4' T8/EL	valance	4	_	2L4' T8 28w/ELEE LO	rirb	4	42	0.07	223	3,094
	Curtis Middle School	Classroom 110	1	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
495	Curtis Middle School	Classroom 110		2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
496	Curtis Middle School	Classroom 110		2L2' T8/EL	wallwash	4	_	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
497	Curtis Middle School	Classroom 115		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
498	Curtis Middle School	Classroom 115		2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
499	Curtis Middle School	Classroom 115		2L2' T8/EL	wallwash	4		2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
	Curtis Middle School	Classroom 112		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
	Curtis Middle School	Classroom 112	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	1	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
	Curtis Middle School	Classroom 112		2L2' T8/EL	wallwash	4	-	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
	Curtis Middle School	Classroom 109		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
	Curtis Middle School	Classroom 109		2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
504	Curtis Middle School	Classroom 109		2L2' T8/EL	wallwash	4		2L2' T8 15w/ELEE LO-8	rlrb	4	42	0.04	97	2,414
	Curtis Middle School	Classroom 106		4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.04	280	2,414
						1	1	2L4' T8 28w/ELEE LO-8'						
507	Curtis Middle School	Classroom 106	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4 Ιδ 28W/ELEE LU-δ'	rlrb	4	42	0.07	174	2,414

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
508	Curtis Middle School	Classroom 106	1	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
509	Curtis Middle School	Classroom 103	1	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
510	Curtis Middle School	Classroom 103	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
511	Curtis Middle School	Classroom 103	1	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
512	Curtis Middle School	Classroom 119	1	3L4' T8/EL	trof parabolic	3	88	3L4' T8 28w/ELEE LO	rlrb	3	63	0.08	181	2,414
513	Curtis Middle School	Office 119B	1	3L4' T8/EL	trof parabolic	1	88	3L4' T8 28w/ELEE LO	rlrb	1	63	0.03	60	2,414
514	Curtis Middle School	Office 119A	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	121	2,414
515	Curtis Middle School	Bath Boy'S (X2)	1	2L4' T8 U/EL	trof acr	4	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	248	3,094
516	Curtis Middle School	Bath Boy'S (X2)	1	2L4' T8/EL	valance	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
517	Curtis Middle School	Bath Boy'S (X2)	1	2x 13W COMPACT HARDWIRED	can rec	2	-	NO RETRO	no change needed		30			3,094
518	Curtis Middle School	Classroom 121	1	4L4' T8/EL-8'	indirect/direct dbl switch	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
519	Curtis Middle School	Classroom 121	1	2L4' T8/EL-8'	indirect/direct dbl switch	6	60	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
520	Curtis Middle School	Classroom 121	1	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
521	Curtis Middle School	Storage 121	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,074
522	Curtis Middle School	Bath Staff (X2)	1	2L4' T8/EL	valance	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
523	Curtis Middle School	Classroom 151	1	4L4' T8/EL-8'	indirect/direct dbl switch	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
524	Curtis Middle School	Classroom 151	1	2L4' T8/EL-8'	indirect/direct dbl switch	6		2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
525	Curtis Middle School	Classroom 151	1	2L4' T8/EL	wallwash	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
526	Curtis Middle School	Storage 151	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,074
527	Curtis Middle School	Classroom 124	1	4L4' T8/EL-8'	indirect/direct dbl switch	6	1	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
528	Curtis Middle School	Classroom 124	1	2L4' T8/EL-8'	indirect/direct dbl switch	6	-	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
529	Curtis Middle School	Classroom 124	1	2L4' T8/EL	wallwash	2	-	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
530	Curtis Middle School	Storage 124	1	3L4' T8/EL	trof parabolic	2		3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,074
531	Curtis Middle School	Office 150	1	2L4' T8/EL	trof acr	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
532	Curtis Middle School	Storage 149	1	2L4' T8/EL	trof acr	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	15	425
533	Curtis Middle School	Classroom 127	1	4L4' T8/EL-8'	indirect/direct dbl switch	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
534	Curtis Middle School	Classroom 127	1	2L4' T8/EL-8'	indirect/direct dbl switch	6		2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
535	Curtis Middle School	Classroom 127	1	2L4' T8/EL	wallwash	2	1	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
536	Curtis Middle School	Storage 127	1	3L4' T8/EL	trof parabolic	2	1	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,074
537	Curtis Middle School	Classroom 148	1	4L4' T8/EL-8'	indirect/direct dbl switch	6	1	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
538	Curtis Middle School	Classroom 148	1	2L4' T8/EL-8'	indirect/direct dbl switch	6	1	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
539	Curtis Middle School	Classroom 148	1	2L4' T8/EL	wallwash	2	1	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	87	2,414
540	Curtis Middle School	Storage 148	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,074
541	Curtis Middle School	Classroom 147	1	4L4' T8/EL-8'	indirect/direct dbl switch	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
	Curtis Middle School	Classroom 147	1	2L4' T8/EL-8'	indirect/direct dbl switch	2		2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
	Curtis Middle School	Classroom 129	1	4L4' T8/EL-8'	indirect/direct dbl switch	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
	Curtis Middle School	Classroom 129	1	2L4' T8/EL-8'	indirect/direct dbl switch	2		2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
	Curtis Middle School	Classroom 130	1	4L4' T8/EL-8'	indirect/direct dbl switch	4	1	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
	Curtis Middle School	Classroom 130	1	2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
547	Curtis Middle School	Classroom 130	1	2L2' T8/EL	wallwash	4		2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
548	Curtis Middle School	Classroom 133	1	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
549	Curtis Middle School	Classroom 133	1	2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
	Curtis Middle School	Classroom 133	1	2L2' T8/EL	wallwash	4	1	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
	Curtis Middle School	Classroom 136	1	4L4' T8/EL-8'	indirect/direct dbl switch	4	1	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
552	Curtis Middle School	Classroom 136	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	_	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
553	Curtis Middle School	Classroom 136	1	2L2' T8/EL	wallwash	4	1	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
554	Curtis Middle School	Classroom 139	1	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
555	Curtis Middle School	Classroom 139	1	2L4' T8/EL-8'	indirect/direct dbl switch	4		2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
556	Curtis Middle School	Classroom 139	1	2L2' T8/EL	wallwash	4		2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
	Curtis Middle School	Classroom 142	1	4L4' T8/EL-8'	indirect/direct dbl switch	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
558	Curtis Middle School	Classroom 142	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
559	Curtis Middle School	Classroom 142	1	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
560	Curtis Middle School	Classroom 145	1	4L4' T8/EL-8'	indirect/direct dbl switch	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	280	2,414
561	Curtis Middle School	Classroom 145	1	2L4' T8/EL-8'	indirect/direct dbl switch	4	60	2L4' T8 28w/ELEE LO-8'	rlrb	4	42	0.07	174	2,414
562	Curtis Middle School	Classroom 145	1	2L2' T8/EL	wallwash	4	37	2L2' T8 15w/ELEE LO	rlrb	4	27	0.04	97	2,414
563	Curtis Middle School	Classroom 146	1	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	140	2,414
564	Curtis Middle School	Classroom 146	1	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	87	2,414
565	Curtis Middle School	Classroom 146	1	2L2' T8/EL	wallwash	2	37	2L2' T8 15w/ELEE LO	rlrb	2	27	0.02	48	2,414
566	Curtis Middle School	Lounge 153	1	2L4' T8 U/EL	trof acr	4	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	234	2,924
567	Curtis Middle School	Lounge 101	1	4L4' T8/EL-8'	indirect/direct dbl switch	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	170	2,924
568	Curtis Middle School	Lounge 101	1	2L4' T8/EL-8'	indirect/direct dbl switch	2	60	2L4' T8 28w/ELEE LO-8'	rlrb	2	42	0.04	105	2,924
569	Curtis Middle School	Office 152	1	3L4' T8/EL	trof parabolic	1	88	3L4' T8 28w/ELEE LO	rlrb	1	63	0.03	60	2,414
570	Curtis Middle School	Hall Recieving	1	3L4' T8/EL	trof parabolic	5	88	3L4' T8 28w/ELEE LO	rlrb	5	63	0.13	387	3,094
571	Curtis Middle School	Closet Clean	1	2L4' T8/EL	trof acr	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	8	425
572	Curtis Middle School	Office Open Cust	1	3L4' T8/EL	trof parabolic	6	88	3L4' T8 28w/ELEE LO	rlrb	6	63	0.15	439	2,924
573	Curtis Middle School	Storage Parts	1	2L4' T8/EL	trof acr	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	23	425
574	Curtis Middle School	Lounge Staff Dining	1	4L4' T8/EL-8'	indirect/direct dbl switch	3	112	4L4' T8 28w/ELEE LO-8'	rlrb	3	83	0.09	254	2,924
575	Curtis Middle School	Lounge Staff Dining	1	2L4' T8/EL-8'	indirect/direct dbl switch	3	60	2L4' T8 28w/ELEE LO-8'	rlrb	3	42	0.05	158	2,924
576	Curtis Middle School	Classroom 154 (X2)	1	4L4' T8/EL-8'	indirect/direct dbl switch	12	112	4L4' T8 28w/ELEE LO-8'	rlrb	12	83	0.35	840	2,414
577	Curtis Middle School	Classroom 154 (X2)	1	2L4' T8/EL-8'	indirect/direct dbl switch	12	60	2L4' T8 28w/ELEE LO-8'	rlrb	12	42	0.22	521	2,414
578	Curtis Middle School	Classroom Art	1	4L4' T8/EL-8'	indirect/direct dbl switch	11	112	4L4' T8 28w/ELEE LO-8'	rlrb	11	83	0.32	770	2,414
579	Curtis Middle School	Classroom Art	1	2L4' T8/EL-8'	indirect/direct dbl switch	11	60	2L4' T8 28w/ELEE LO-8'	rlrb	11	42	0.20	478	2,414
580	Curtis Middle School	Storage Kiln	1	2L4' T8/EL	trof acr	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	37	2,074
581	Curtis Middle School	Storage Supplies	1	2L4' T8/EL	trof acr	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	31	425
582	Curtis Middle School	Cafeteria	1	2x 13W COMPACT HARDWIRED	can rec	42	30	NO RETRO	no change needed		30			2,924
583	Curtis Middle School	Cafeteria	1	2L4' T8/EL	trof para 1' wide	18	60	2L4' T8 28w/ELEE LO	rlrb	18	42	0.32	947	2,924
584	Curtis Middle School	Cafeteria	1	250W METAL HALIDE	sconce	14	295	NO RETRO	no change needed		295			2,924
585	Curtis Middle School	Kitchen	1	3L4' T8/EL	trof acr	9	88	3L4' T8 28w/ELEE LO	rlrb	9	63	0.23	543	2,414
586	Curtis Middle School	Kitchen Dishes	1	3L4' T8/EL	trof acr	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	121	2,414
587	Curtis Middle School	Storage Dry Goods	1	2L4' T8/EL	trof acr	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,074
588	Curtis Middle School	Kitchen Hood	1	18W COMPACT HARDWIRED	jar	8	20	NO RETRO	no change needed		20			2,414
589	Curtis Middle School	Storage Pans	1	2L4' T8/EL	trof acr	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,074
590	Curtis Middle School	Office Kitch	1	3L4' T8/EL	trof parabolic	1	88	3L4' T8 28w/ELEE LO	rlrb	1	63	0.03	60	2,414
591	Curtis Middle School	Bath Kitch	1	2L4' T8/EL	valance	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	56	3,094
592	Curtis Middle School	Office Open Health	1	2L4' T8 U/EL	trof parabolic	9		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	9	40	0.18	526	2,924
593	Curtis Middle School	Office Open Health	1	2x 13W COMPACT HARDWIRED	can rec	4	30	NO RETRO	no change needed		30			2,924
594	Curtis Middle School	Office Nurse	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	121	2,414
595	Curtis Middle School	Office Nurse	1	2L4' T8 U/EL	trof parabolic	1	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	1	40	0.02	48	2,414
596	Curtis Middle School	Bath Nurse (X2)	1	2L4' T8/EL	valance	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
597	Curtis Middle School	Office Treatment	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	121	2,414
598	Curtis Middle School	Storage Nurse	1	2L4' T8/EL	trof acr	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	8	425
599	Curtis Middle School	Office Open Main	1	2x 13W COMPACT HARDWIRED	can rec	6	30	NO RETRO	no change needed		30			2,924
600	Curtis Middle School	Office Open Main	1	2L4' T8 U/EL	trof parabolic	14	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	14	40	0.28	819	2,924
	Curtis Middle School	Office Princ	1	2L4' T8 U/EL	trof parabolic	4		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	193	2,414
602	Curtis Middle School	Conference Princ	1	4L4' T8/EL-8'	indirect/direct dbl switch	1	112	4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	70	2,414
	Curtis Middle School	Conference Princ		2L4' T8/EL-8'	indirect/direct dbl switch	1		2L4' T8 28w/ELEE LO-8'	rlrb	1	42	0.02	43	2,414
604	Curtis Middle School	Conference Princ	1	2x 13W COMPACT HARDWIRED	can rec	8	30	NO RETRO	no change needed		30			2,414
605	Curtis Middle School	Storage Paper	1	2L4' T8/EL	trof acr	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	8	425
606	Curtis Middle School	Lounge Staff	1	2L4' T8 U/EL	trof parabolic	7	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	7	40	0.14	409	2,924
	Curtis Middle School	Bath Staff (X2)		2L4' T8/EL	valance	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
608	Curtis Middle School	Bath Boy'S (X2)	1	2L4' T8 U/EL	trof acr	6	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	6	40	0.12	371	3,094
609	Curtis Middle School	Bath Boy'S (X2)	1	2L4' T8/EL	valance	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watt	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
610	Curtis Middle School	Bath Boy'S (X2)	1	2x 13W COMPACT HARDWIRED	can rec	4	30	NO RETRO	no change needed		30			3,094
611	Curtis Middle School	Locker Men & Women (X2)	1	2L4' T8 U/EL	trof acr	12	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	12	40	0.24	743	3,094
612	Curtis Middle School	Locker Men & Women (X2)	1	2L4' T8/EL	trof acr	12	60	2L4' T8 28w/ELEE LO	rlrb	12	42	0.22	668	3,094
613	Curtis Middle School	Locker Men & Women (X2)	1	2L4' T8/EL	soffit	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	111	3,094
614	Curtis Middle School	Locker Mens (X2)	1	2x 13W COMPACT HARDWIRED	can rec	2	30	NO RETRO	no change needed		30			3,094
615	Curtis Middle School	Office Coach (X2)	1	2L4' T8 U/EL	trof parabolic	8	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	8	40	0.16	386	2,414
616	Curtis Middle School	Auditorium	1	2x 13W COMPACT HARDWIRED	sconce	9	30	NO RETRO	no change needed		30			2,754
617	Curtis Middle School	Auditorium	1	26W COMPACT HARDWIRED	can rec	36	28	NO RETRO	no change needed		28			2,754
618	Curtis Middle School	Auditorium	1	2L4' T8 U/EL	trof acr	1	60		rlrb rfl	1	40	0.02	55	2,754
619	Curtis Middle School	Closet Data	1	4L4' T8/EL-8'	strip reflector	1	112	2 4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	12	425
620	Curtis Middle School	Classroom 181	1	3L4' T8/EL	trof parabolic	3	88	3L4' T8 28w/ELEE LO	rlrb	3	63	0.08	181	2,414
621	Curtis Middle School	Storage 184	1	2L4' T8/EL	trof acr	4	60		rlrb	4	42	0.07	149	2,074
622	Curtis Middle School	Storage 187	1	3L4' T8/EL	trof parabolic	3	88		rlrb	3	63	0.08	156	2,074
623	Curtis Middle School	Classroom 190	1	4L4' T8/EL-8'	indirect/direct dbl switch	6	1	2 4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
624	Curtis Middle School	Classroom 190	1	2L4' T8/EL-8'	indirect/direct dbl switch	6	-	2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	261	2,414
625	Curtis Middle School	Classroom 175	1	4L4' T8/EL-8'	indirect/direct dbl switch	6	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	420	2,414
626	Curtis Middle School	Classroom 175	1	2L4' T8/EL-8'	indirect/direct dbl switch	6	60		rlrb	6	42	0.11	261	2,414
627	Curtis Middle School	Gym	1	4L4' T5 HO/EL	high bay	20	-	NO RETRO	no change needed	Ű	234	0.11	201	2,924
628	Curtis Middle School	Hall 1St Floor	1	2L4' T8 U/EL	trof acr	64	60		rlrb rfl	64	40	1.28	3,960	3,094
629	Curtis Middle School	Hall 1St Floor	1	2x 13W COMPACT HARDWIRED	can rec	56	30		no change needed	04	30	1.20	3,300	3,094
630	Curtis Middle School	Hall 1St Floor	1	2x 18W COMPACT HARDWIRED /EL	wallpack	12	40		no change needed		40			3,094
631	Curtis Middle School	Hall 1St Floor	1	2L4' T8/EL	cove	44	60		rlrb	44	40	0.79	2,450	3,094
632	Curtis Middle School	Bldg Mt 1St Floor	ı ovt	50W METAL HALIDE	indirect	3	65		no change needed	44	42 65	0.79	2,430	3,094
	Curtis Middle School	Bldg Mt 1St Floor	ext	3 WATT LED	wallpack	<u> </u>	3	NO RETRO	ő		3			3,723
633		<u> </u>	ext	50W METAL HALIDE		0 2	-		no change needed		-			
634	Curtis Middle School	Bldg Mt Canopy	ext		square surface mt.	2	65		no change needed		65			3,723
635	Curtis Middle School	Bldg Mt Canopy	ext		wallpack	6	65		no change needed		65			3,723
636	Loring Elementary	Conference 239	2		indirect/direct	6	117		no change needed		117			2,088
637	Loring Elementary	Classroom 33	2		indirect/direct	12	-		no change needed		117			2,268
638	Loring Elementary	Classroom 32	2	2L4' T5 HO/EL	indirect/direct	12			no change needed		117			2,268
639	Loring Elementary	Classroom 31	2	2L4' T5 HO/EL	indirect/direct	12	-	NO RETRO	no change needed		117			2,268
640	Loring Elementary	Classroom 29 (X15)	2	2L4' T5 HO/EL	indirect/direct	180	-	NO RETRO	no change needed		117			2,268
641	Loring Elementary	Classroom 230	2	3L4' T8/EL	trof parabolic	6	88		rlrb	6	63	0.15	340	2,268
642	Loring Elementary	Storage 230		3L4' T8/EL	trof parabolic	2	88		rlrb	2	63	0.05	95	1,908
	Loring Elementary	Storage 229		4L4' T8/EL-8'	strip	2		2 4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	111	1,908
	Loring Elementary	Bath Boy'S (X6)		4L4' T8/EL-8'	valance	12		2 4L4' T8 28w/ELEE LO-8'	rlrb	12	1 1	0.35	1,040	2,988
	Loring Elementary	Bath Boy'S (X6)		2x 13W COMPACT HARDWIRED	can rec	12		NO RETRO	no change needed		30			2,988
	Loring Elementary	Bath Boy'S (X6)		2L4' T8 U/EL	trof acr	6	-	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	6	40	0.12	359	2,988
	Loring Elementary	Closet Clean		2x 13W COMPACT HARDWIRED	drum	1		NO RETRO	no change needed		30			450
	Loring Elementary	Classroom 208		2L4' T8 U/EL	trof parabolic	3		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	3	40	0.06	136	2,268
	Loring Elementary	Classroom 208		4L4' T8/EL-8'	tube light	8		2 4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	526	2,268
	Loring Elementary	Storage 208		3L4' T8/EL	trof acr	1	-	3L4' T8 28w/ELEE LO	rlrb	1	63	0.03	11	450
651	Loring Elementary	Classroom 244		3L4' T8/EL	trof parabolic	4		3L4' T8 28w/ELEE LO	rlrb	4	63	0.10	227	2,268
652	Loring Elementary	Storage 245		4L4' T8/EL-8'	strip	1	-	2 4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
	Loring Elementary	Hall 2Nd Floor		2x 13W COMPACT HARDWIRED	can rec	42	-	NO RETRO	no change needed		30			3,258
	Loring Elementary	Hall 2Nd Floor	2	2L4' T8 U/EL	trof acr	24		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	24	40	0.48	1,564	3,258
	Loring Elementary	Hall 2Nd Floor	2	4L4' T8/EL-8'	box acrylic	8		2 4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	756	3,258
656	Loring Elementary	Hall 2Nd Floor	2	2L4' T8/EL	box acrylic	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	59	3,258
657	Loring Elementary	Classroom 164 (X2)	1	2L4' T5 HO/EL	indirect/direct	32	117	NO RETRO	no change needed		117			2,268
658	Loring Elementary	Office 165 (X2)	1	3L4' T8/EL	trof parabolic	4	88	3L4' T8 28w/ELEE LO	rlrb	4	63	0.10	209	2,088
659	Loring Elementary	Classroom 12 (X12)	1	2L4' T5 HO/EL	indirect/direct	144	117	NO RETRO	no change needed		117			2,268
660	Loring Elementary	Office 149 (X2)	1	3L4' T8/EL	trof parabolic	4	88	3L4' T8 28w/ELEE LO	rlrb	4	63	0.10	209	2,088

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
661	Loring Elementary	Bath Boy'S (X4)	1	2L4' T8 U/EL	trof acr	4	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	239	2,988
662	Loring Elementary	Bath Boy'S (X4)	1	4L4' T8/EL-8'	valance	8	112	4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	693	2,988
663	Loring Elementary	Bath Boy'S (X4)	1	2x 13W COMPACT HARDWIRED	can rec	8	30	NO RETRO	no change needed		30			2,988
664	Loring Elementary	Gym	1	4L4' T5 HO/EL	high bay	16	234	NO RETRO	no change needed		234			2,628
665	Loring Elementary	Office Coach	1	4L4' T8/EL-8'	strip	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	121	2,088
666	Loring Elementary	Library	1	2L4' T5 HO/EL	indirect/direct	48	117	NO RETRO	no change needed		117			2,268
667	Loring Elementary	Library	1	2L4' T5 HO/EL	indirect/direct	4	117	NO RETRO	no change needed		117			2,268
668	Loring Elementary	Office 121	1	2L4' T5 HO/EL	indirect/direct	2	117	NO RETRO	no change needed		117			2,088
669	Loring Elementary	Storage 119	1	3L4' T8/EL	trof acr	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	23	450
670	Loring Elementary	Storage 117	1	4L4' T8/EL-8'	strip	1	112	4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
671	Loring Elementary	Storage 116	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	95	1,908
672	Loring Elementary	Lab 115	1	2L4' T5 HO/EL	indirect/direct	24	117	NO RETRO	no change needed		117			2,080
673	Loring Elementary	Office Open 111	1	3L4' T8/EL	trof acr	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	122	2,448
674	Loring Elementary	Office Open 111	1	2L4' T8 U/EL	trof acr	1	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	1	40	0.02	49	2,448
675	Loring Elementary	Office 112	1	3L4' T8/EL	trof parabolic	1	88	3L4' T8 28w/ELEE LO	rlrb	1	63	0.03	52	2,088
676	Loring Elementary	Office Guidance	1	3L4' T8/EL	trof parabolic	2	88	3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,088
677	Loring Elementary	Office Open 107	1	2L4' T8 U/EL	trof parabolic	3	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	3	40	0.06	147	2,448
678	Loring Elementary	Office Open 107	1	2L4' T8/EL	trof parabolic	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	44	2,448
679	Loring Elementary	Office Exam	1	2L4' T8 U/EL	trof parabolic	2		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	2	40	0.04	84	2,088
680	Loring Elementary	Office Open Main	1	2L4' T8 U/EL	trof parabolic	8		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	8	40	0.16	392	2,448
681	Loring Elementary	Office 103	1	2L4' T8 U/EL	trof parabolic	4		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	167	2,088
682	Loring Elementary	Office 102	1	3L4' T8/EL	trof parabolic	2		3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	104	2,088
683	Loring Elementary	Cafeteria	1	2x 13W COMPACT HARDWIRED	can rec	4		NO RETRO	no change needed		30			2,448
684	Loring Elementary	Cafeteria	1	2L4' T8 U/EL	trof parabolic	39		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	39	40	0.78	1,909	2,448
685	Loring Elementary	Cafeteria	1	4L4' T8/EL	high bay	8		NO RETRO	no change needed		112		,	2,448
686	Loring Elementary	Storage 190	1	4L4' T8/EL-8'	strip	1		4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
687	Loring Elementary	Stage	1	4L4' T8/EL-8'	strip reflector	5		4L4' T8 28w/ELEE LO-8'	rlrb	5	83	0.15	303	2,088
688	Loring Elementary	Kitchen	1	3L4' T8/EL	trof acr	12		3L4' T8 28w/ELEE LO	rirb	12	63	0.30	518	1,728
689	Loring Elementary	Storage 178	1	3L4' T8/EL	trof acr	2		3L4' T8 28w/ELEE LO	rlrb	2	63	0.05	95	1,908
690	Loring Elementary	Bath Kitch	1	4L4' T8/EL-8'	valance	1		4L4' T8 28w/ELEE LO-8'	rirb	1	83	0.03	87	2,988
691	Loring Elementary	Hall 183	1	3L4' T8/EL	trof acr	2		3L4' T8 28w/ELEE LO	rirb	2	63	0.05	163	3,258
692	Loring Elementary	Hall 183	1	4L4' T8/EL-8'	strip	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	189	3,258
693	Loring Elementary	Mechanical 182	1	4L4' T8/EL-8'	strip	1		4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
694	Loring Elementary	Hall 1St Floor	1	2x 13W COMPACT HARDWIRED	can rec	37		NO RETRO	no change needed		30	0.00		3,258
	Loring Elementary	Hall 1St Floor		2L4' T8 U/EL	trof acr	44		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	44	40	0.88	2,867	3,258
	Loring Elementary	Hall 1St Floor		50W METAL HALIDE	can rec	8		NO RETRO	no change needed		65		_,	3,258
	Loring Elementary	Mechanical Boiler		4L4' T8/EL-8'	strip	4		4L4' T8 28w/ELEE LO-8'	rirb	4	83	0.12	52	450
	Loring Elementary	Bldg Mt Canopy		2L4' T8/EL	vapor tight	4		NO RETRO	no change needed		60	•••=		3,942
	Loring Elementary	Bldg Mt Canopy		2x 13W COMPACT HARDWIRED	drum	1		NO RETRO	no change needed		30			3,942
	Loring Elementary	Bldg Mt		3 WATT LED	wallpack	8		NO RETRO	no change needed		3			3,942
	Loring Elementary	Bldg Mt		100W METAL HALIDE	wallpack	4		NO RETRO	no change needed		120			3,942
	Loring Elementary	Bldg Mt		2x 13W COMPACT HARDWIRED	wallpack	2		NO RETRO	no change needed		30		1	3,942
	Loring Elementary	Parking Lot		250W METAL HALIDE	shoebox pole	12		NO RETRO	no change needed		295			3,942
	Haynes Elementary	Classroom 8		4L4' T8/EL-8'	indirect/direct	8		4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	526	2,268
704	Haynes Elementary	Classroom 8		2L4' T8/EL	indirect/direct	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	41	2,268
705	Haynes Elementary	Classroom 9		4L4' T8/EL-8'	indirect/direct	9		4L4' T8 28w/ELEE LO-8'	rlrb	9	83	0.26	592	2,268
700	Haynes Elementary	Classroom 9	1	2L4' T8/EL	indirect/direct	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	41	2,268
707	Haynes Elementary	Bath Boy'S (X2)	1	2x 13W COMPACT HARDWIRED	can rec	2		NO RETRO	no change needed		42 30	0.02	+1	2,208
708	Haynes Elementary	Bath Boy'S (X2)	1	4L4' T8/EL-8'	soffit	8		4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	693	2,988
709	Haynes Elementary	Classroom Ot/Pt		4L4 T8/EL-8 4L4' T8/EL-8'	indirect/direct	° 3		4L4' T8 28w/ELEE LO-8'	rlrb	0 3	83	0.09	197	2,968
				2L4' T8/EL		3		2L4' T8 28w/ELEE LO-6		_				
711	Haynes Elementary	Classroom Ot/Pt	1	ZL4 Ið/EL	indirect/direct	3	60	ZL4 18 Z8W/ELEE LU	rlrb	3	42	0.05	122	2,268

Town of Sudbury, MA

Line	Building Name	Location	FI Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
712	Haynes Elementary	Classroom Art	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
713	Haynes Elementary	Classroom Art	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
714	Haynes Elementary	Storage Art (X2)	1 2L4' T8/EL	strip	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	16	450
715	Haynes Elementary	Classroom 10	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
716	Haynes Elementary	Classroom 10	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
717	Haynes Elementary	Gym	1 4L4' T5 HO/EL	high bay	16	234	NO RETRO	no change needed		234			2,628
718	Haynes Elementary	Classroom 7	1 4L4' T8/EL-8'	indirect/direct	7	112	4L4' T8 28w/ELEE LO-8'	rlrb	7	83	0.20	460	2,268
719	Haynes Elementary	Classroom 7	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
720	Haynes Elementary	Classroom 6	1 4L4' T8/EL-8'	indirect/direct	7	112	4L4' T8 28w/ELEE LO-8'	rlrb	7	83	0.20	460	2,268
721	Haynes Elementary	Classroom 6	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
722	Haynes Elementary	Classroom 12	1 4L4' T8/EL-8'	indirect/direct	7	112	4L4' T8 28w/ELEE LO-8'	rlrb	7	83	0.20	460	2,268
723	Haynes Elementary	Classroom 12	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
724	Haynes Elementary	Classroom 13 (X2)	1 4L4' T8/EL-8'	indirect/direct	12	112	4L4' T8 28w/ELEE LO-8'	rlrb	12	83	0.35	789	2,268
725	Haynes Elementary	Classroom 13 (X2)	1 2L4' T8/EL	indirect/direct	6	60	2L4' T8 28w/ELEE LO	rlrb	6	42	0.11	245	2,268
726	Haynes Elementary	Closet Cust (X4)	1 4L4' T8/EL-8'	strip	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	52	450
727	Haynes Elementary	Classroom 4	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
728	Haynes Elementary	Classroom 4	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
729	Haynes Elementary	Classroom 14	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
730	Haynes Elementary	Classroom 14	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
731	Haynes Elementary	Classroom 3	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
732	Haynes Elementary	Classroom 3	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
733	Haynes Elementary	Classroom 15	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
734	Haynes Elementary	Classroom 15	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
735	Haynes Elementary	Office Open Guidance	1 2L4' T8/EL	trof parabolic	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	132	2,448
736	Haynes Elementary	Office Guidanhce	1 2L4' T8/EL	trof parabolic	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	150	2,088
737	Haynes Elementary	Office Speech	1 2L4' T8/EL	trof parabolic	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	150	2,088
738	Haynes Elementary	Classroom 2	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
739	Haynes Elementary	Classroom 2	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
740	Haynes Elementary	Classroom 16	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
741	Haynes Elementary	Classroom 16	1 2L4' T8/EL	indirect/direct	3	-	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
742	Haynes Elementary	Classroom 1	1 4L4' T8/EL-8'	indirect/direct	6	112	4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
743	Haynes Elementary	Classroom 1	1 2L4' T8/EL	indirect/direct	3	60	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
744	Haynes Elementary	Classroom By Kitch	1 2L4' T8/EL	strip	6	60	2L4' T8 28w/ELEE LO	rlrb	6	42	0.11	245	2,268
	Haynes Elementary	Classroom 17	1 4L4' T8/EL-8'	indirect/direct	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
746	Haynes Elementary	Classroom 17	1 2L4' T8/EL	indirect/direct	3	1	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
747	Haynes Elementary	Lounge Staff	1 4L4' T8/EL-8'	indirect/direct	7		4L4' T8 28w/ELEE LO-8'	rlrb	7	83	0.20	497	2,448
748	Haynes Elementary	Lounge Staff	1 2L4' T8/EL	indirect/direct	3		2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	132	2,448
749	Haynes Elementary	Bath Boy'S (X4)	1 4L4' T8/EL-8'	soffit	4	112	4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	347	2,988
750	Haynes Elementary	Classroom 18	1 4L4' T8/EL-8'	indirect/direct	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	395	2,268
751	Haynes Elementary	Classroom 18	1 2L4' T8/EL	indirect/direct	3	-	2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	122	2,268
	Haynes Elementary	Classroom 27 (X9)	1 4L4' T8/EL-8'	indirect/direct	54		4L4' T8 28w/ELEE LO-8'	rlrb	54	83	1.57	3,552	2,268
	Haynes Elementary	Classroom 27 (X9)	1 2L4' T8/EL	indirect/direct	27	1	2L4' T8 28w/ELEE LO	rlrb	27	42	0.49	1,102	2,268
	Haynes Elementary	Conference	1 4L4' T8/EL-8'	trof parabolic	2	1	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	121	2,088
	Haynes Elementary	Cafeteria (X18)	1 42W COMPACT HARDWIRED	decorative	108	1	NO RETRO	no change needed		44			2,448
	Haynes Elementary	Stage	1 2L4' T8/EL	wrap wide	12	1	2L4' T8 28w/ELEE LO	rlrb	12	42	0.22	451	2,088
	Haynes Elementary	Kitchen	1 4L4' T8/EL	trof acr	18	1	2L4' T8 28w/ELEE HI/RFL	rlrb rfl	18	64	0.86	1,493	1,728
	Haynes Elementary	Bath Kitch	1 2L4' T8/EL	vapor tight	1	1	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	54	2,988
	Haynes Elementary	Office Kitch	1 2L4' T8/EL	vapor tight	1	1	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	38	2,088
	Haynes Elementary	Storage Dry7 Goods	1 2L4' T8/EL	trof acr	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	69	1,908
	Haynes Elementary	Office Open Cust	1 2L4' T8/EL	strip	3		2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	132	2,448
762	Haynes Elementary	Mechanical Elect	1 4L4' T8/EL-8'	strip	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	26	450

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
763	Haynes Elementary	Mechanical Boiler	1	2L4' T8/EL	strip	7	60	2L4' T8 28w/ELEE LO	rlrb	7	42	0.13	57	450
764	Haynes Elementary	Office Cust	1	2L4' T8/EL	strip	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,088
765	Haynes Elementary	Lab Computers	1	2L4' T8/EL	trof parabolic	11	60	2L4' T8 28w/ELEE LO	rlrb	11	42	0.20	412	2,080
766	Haynes Elementary	Lab Computers	1	2L4' T8 U/EL	trof parabolic	1	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	1	40	0.02	42	2,080
767	Haynes Elementary	Classroom A/V 1	1	2L4' T8/EL	wrap wide	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	82	2,268
768	Haynes Elementary	Office Psych	1	2L4' T8/EL	trof parabolic	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,088
769	Haynes Elementary	Hall 1St Floor	1	2L4' T8 U/EL	trof acr	10	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	10	40	0.20	652	3,258
770	Haynes Elementary	Hall 1St Floor	1	4L4' T8/EL-8'	valance	15	112	4L4' T8 28w/ELEE LO-8'	rlrb	15	83	0.44	1,417	3,258
771	Haynes Elementary	Hall 1St Floor	1	2L4' T8/EL	valance	6	60	2L4' T8 28w/ELEE LO	rlrb	6	42	0.11	352	3,258
772	Haynes Elementary	Hall 1St Floor	1	2x 13W COMPACT HARDWIRED	can rec	56	30	NO RETRO	no change needed		30			3,258
773	Haynes Elementary	Hall 1St Floor	1	2L4' T8/EL-8'	tube light	15	60	2L4' T8 28w/ELEE LO-8'	rlrb	15	42	0.27	880	3,258
774	Haynes Elementary	Hall 1St Floor	1	1L4' T8/EL	tube light	8	30	1L4' T8 28w/ELEE LO	rlrb	8	22	0.06	209	3,258
775	Haynes Elementary	Lobby Main	1	2x 42W COMPACT HARDWIRED /EL	sconce	16	88	NO RETRO	no change needed		88			3,258
776	Haynes Elementary	Office Open Main	1	2x 13W COMPACT HARDWIRED	can rec	4	30	NO RETRO	no change needed		30			2,448
777	Haynes Elementary	Office Open Nurse	1	2L4' T8 U/EL	trof parabolic	1	60	2L2' T8 15w/ELEE HI/RFL	rlrb rfl	1	40	0.02	49	2,448
778	Haynes Elementary	Office Open Nurse	1	2L4' T8/EL	trof parabolic	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	44	2,448
779	Haynes Elementary	Office Open Nurse	1	2L4' T8/EL	soffit	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	44	2,448
780	Haynes Elementary	Office Princ	1	2L4' T8/EL	trof parabolic	2	60	2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	75	2,088
781	Haynes Elementary	Bldg Mt	ext	3 WATT LED	wallpack	14	3	NO RETRO	no change needed		3			3,942
782	Haynes Elementary	Bldg Mt	ext	2x 13W COMPACT HARDWIRED	can rec	5	30	NO RETRO	no change needed		30			3,942
783	Haynes Elementary	Bldg Mt	ext	50W METAL HALIDE	wallpack	14	65	NO RETRO	no change needed		65			3,942
784	Haynes Elementary	Parking Lot	ext	250W METAL HALIDE	shoebox pole	8		NO RETRO	no change needed		295			3,942
785	Nixon Elementary	Classroom 34	1	4L4' T8/EL-8'	box acrylic	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
786	Nixon Elementary	Classroom 34	1	2L4' T8/EL	box acrylic	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
787	Nixon Elementary	Classroom 19	1	4L4' T8/EL-8'	box acrylic	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
788	Nixon Elementary	Classroom 19	1	2L4' T8/EL	box acrylic	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
789	Nixon Elementary	Classroom 32	1	4L4' T8/EL-8'	box acrylic	10		4L4' T8 28w/ELEE LO-8'	rirb	10	83	0.29	658	2,268
790	Nixon Elementary	Classroom 32	1	2L4' T8/EL	box acrylic	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
791	Nixon Elementary	Bath Boy'S (X2)	1	2L4' T8/EL-8'	vanity	6		2L4' T8 28w/ELEE LO-8'	rlrb	6	42	0.11	323	2,988
792	Nixon Elementary	Bath Boy'S (X2)	1	2L4' T8/EL	soffit	2		2L4' T8 28w/ELEE LO	rlrb	2	42	0.04	108	2,988
793	Nixon Elementary	Classroom 30	1	4L4' T8/EL-8'	box acr 1' wide	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
794	Nixon Elementary	Classroom 30	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
795	Nixon Elementary	Classroom 17 B	1	4L4' T8/EL-8'	box acr 1' wide	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
796	Nixon Elementary	Classroom 17 B	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
	Nixon Elementary	Classroom 28	1	4L4' T8/EL-8'	box acr 1' wide	_		4L4' T8 28w/ELEE LO-8'	rirb	10	83	0.29	658	2,268
798	Nixon Elementary	Classroom 28	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
	Nixon Elementary	Classroom 17A	1	4L4' T8/EL-8'	box acr 1' wide	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
800	Nixon Elementary	Classroom 17A	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
800	Nixon Elementary	Classroom 26	1	4L4' T8/EL-8'	box acr 1' wide	4		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
802	Nixon Elementary	Classroom 26	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.29	163	2,208
803	Nixon Elementary	Classroom 24		4L4' T8/EL-8'	box acr 1' wide	4		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
804	Nixon Elementary	Classroom 24	-	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO-8	rlrb	4	42	0.29	163	2,268
805	Nixon Elementary	Office Open Learning Center		4L4' T8/EL-8'	box acr 1' wide	4		4L4' T8 28w/ELEE LO-8'	rlrb	7	83	0.20	497	2,208
805	Nixon Elementary	Storage Av	-	4L4 T8/EL-8 4L4' T8/EL-8'	box acr 1' wide	1		4L4 T8 28w/ELEE LO-8	rlrb	1	83	0.03	55	1,908
807	Nixon Elementary	Library	-	4L4' T8/EL-8'	soffit	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	263	2,268
808	Nixon Elementary	Library		2x 13W COMPACT HARDWIRED	can rec	9		NO RETRO	no change needed		30	0.12	200	2,268
	Nixon Elementary	Library	-	2L4' T8/EL	box acr 1' wide	9 14		2L4' T8 28w/ELEE LO	rlin	14	42	0.25	572	2,268
_	Nixon Elementary	Library		4L4' T8/EL-8'	box acr 1' wide	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	42 83	0.25	395	2,268
	Nixon Elementary	Closet Server		4L4 18/EL-8 4L4' T8/EL-8'	box acr 1' wide	1		4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.17	13	450
_	Nixon Elementary	Closet Server		2L4' T8/EL 2L4' T8/EL	box acr 1' wide	1		2L4' T8 28w/ELEE LO-8		1	42	0.03	8	450 450
	· · · · · · · · · · · · · · · · · · ·					0			rlrb	0			•	_
813	Nixon Elementary	Classroom 22	1	4L4' T8/EL-8'	box acr 1' wide	8	112	4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	526	2,268

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre Qty	Pre Watts	Post Fixture Description	Post Fixture Style	Post Qty	Post Watts	kW Saved	kWh Saved	Annual Hours
814	Nixon Elementary	Classroom 22	1	2L4' T8/EL	box acr 1' wide	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
815	Nixon Elementary	Storage Art	1	4L4' T8/EL-8'	strip reflector	1	112	4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
816	Nixon Elementary	Storage Kiln	1	2L4' T8/EL	strip	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	34	1,908
817	Nixon Elementary	Classroom 23	1	4L4' T8/EL-8'	box acr 1' wide	8	112	4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	526	2,268
818	Nixon Elementary	Classroom 23	1	2L4' T8/EL	box acr 1' wide	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
819	Nixon Elementary	Classroom 21	1	4L4' T8/EL-8'	box acr 1' wide	8	112	4L4' T8 28w/ELEE LO-8'	rlrb	8	83	0.23	526	2,268
820	Nixon Elementary	Classroom 21	1	2L4' T8/EL	box acr 1' wide	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
821	Nixon Elementary	Conference (X2)	1	2x 13W COMPACT HARDWIRED	can rec	8	30	NO RETRO	no change needed		30			2,088
822	Nixon Elementary	Classroom 23 (X2)	1	4L4' T8/EL-8'	box acr 1' wide	24	112	4L4' T8 28w/ELEE LO-8'	rlrb	24	83	0.70	1,579	2,268
823	Nixon Elementary	Bath Boy'S (X2)	1	4L4' T8/EL-8'	soffit	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	173	2,988
824	Nixon Elementary	Bath Boy'S (X2)	1	2L4' T8/EL-8'	vanity	10	60	2L4' T8 28w/ELEE LO-8'	rlrb	10	42	0.18	538	2,988
825	Nixon Elementary	Gym	1	3L4' T5 HO/EL	high bay	8	177	NO RETRO	no change needed		177			2,628
826	Nixon Elementary	Office P.E	1	4L4' T8/EL-8'	box acr 1' wide	2	112	4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	121	2,088
827	Nixon Elementary	Office P.E	1	2L4' T8/EL	box acr 1' wide	1	60	2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	38	2,088
828	Nixon Elementary	Classroom 20	1	4L4' T8/EL-8'	box acr 1' wide	16	112	4L4' T8 28w/ELEE LO-8'	rlrb	16	83	0.46	1,052	2,268
829	Nixon Elementary	Classroom 20	1	2L4' T8/EL	box acr 1' wide	4	60	2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
830	Nixon Elementary	Storage Tech Services	1	4L4' T8/EL-8'	box acr 1' wide	1		4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	55	1,908
831	Nixon Elementary	Storage Tech Services	1	2L4' T8/EL	box acr 1' wide	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	34	1,908
832	Nixon Elementary	Classroom 18	1	4L4' T8/EL-8'	box acr 1' wide	16		4L4' T8 28w/ELEE LO-8'	rlrb	16	83	0.46	1,052	2,268
833	Nixon Elementary	Classroom 18	1	2L4' T8/EL	box acr 1' wide	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	163	2,268
834	Nixon Elementary	Classroom 1	1	4L4' T8/EL-8'	box acr 1' wide	10		4L4' T8 28w/ELEE LO-8'	rlrb	10	83	0.29	658	2,268
835	Nixon Elementary	Classroom 2 (X14)	1	4L4' T8/EL-8'	box acr 1' wide	140		4L4' T8 28w/ELEE LO-8'	rlrb	140	83	4.06	9,208	2,268
836	Nixon Elementary	Office Open Speech	1	4L4' T8/EL-8'	box acr 1' wide	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	142	2,448
837	Nixon Elementary	Office Speech	1	2L4' T8/EL	wrap	3		2L4' T8 28w/ELEE LO	rlrb	3	42	0.05	113	2,088
838	Nixon Elementary	Bath Boy'S (X2)	1	4L4' T8/EL-8'	box acr 1' wide	4		4L4' T8 28w/ELEE LO-8'	rlrb	4	83	0.12	347	2,988
839	Nixon Elementary	Closet Cust	1	4L4' T8/EL-8'	strip reflector	1		4L4' T8 28w/ELEE LO-8'	rlrb	1	83	0.03	13	450
840	Nixon Elementary	Office Open Main	1	2L4' T8/EL	wrap	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	44	2,448
841	Nixon Elementary	Office Open Main	1	23W COMPACT HARDWIRED /EL	dome	4		NO RETRO	no change needed	1	25	0.02		2,448
842	Nixon Elementary	Office Priunc	1	4L4' T8/EL-8'	box acr 1' wide	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	121	2,088
843	Nixon Elementary	Cafeteria	1	3L4' T5 HO/EL	high bay	15		NO RETRO	no change needed	2	177	0.00	121	2,088
844	Nixon Elementary	Stage	1	2L4' T8 U/EL	trof minicube	4		2L2' T8 15w/ELEE HI/RFL	rlrb rfl	4	40	0.08	167	2,448
	,	Kitchen	1			-		3L4' T8 28w/ELEE LO						
845	Nixon Elementary Nixon Elementary		1	3L4' T8/EL	trof acr	10			rlrb	10	63	0.25	432	1,728
846	· · · · · · · · · · · · · · · · · · ·	Conference By Main Office	1	4L4' T8/EL-8'	box acr 1' wide	2		4L4' T8 28w/ELEE LO-8'	rlrb	2	83	0.06	121	2,088
	Nixon Elementary Nixon Elementary	Office Open Nurse		4L4' T8/EL-8' 2L4' T8/EL	box acr 1' wide	3		4L4' T8 28w/ELEE LO-8' 2L4' T8 28w/ELEE LO	rlrb	3	83 42	0.09	213	2,448
	· ·	Storage Supplies	1	42W COMPACT HARDWIRED	box acrylic	4				1	42	0.02	34	1,908 450
	Nixon Elementary	Mechanical Boiler	1		dome	4			no change needed	4		0.00	54	-
	Nixon Elementary	Bath Staff		2L4' T8/EL	box acr 1' wide	1		2L4' T8 28w/ELEE LO	dili	1	42	0.02	54	2,988
	Nixon Elementary	Lounge Staff		4L4' T8/EL-8'	box acr 1' wide	2		4L4' T8 28w/ELEE LO-8'		2	83	0.06	142	2,448
	Nixon Elementary	Lounge Staff		2L4' T8/EL	box acr 1' wide	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	44	2,448
	Nixon Elementary	Office By Teachers Lounge		2L4' T8/EL	box acrylic	1		2L4' T8 28w/ELEE LO	rlrb	1	42	0.02	38	2,088
	Nixon Elementary	Conference By Teachers Lounge		3L4' T8/EL	trof acr	8		3L4' T8 28w/ELEE LO	rlrb	8	63	0.20	418	2,088
	Nixon Elementary	Office Open Cust		2L4' T8/EL	wrap	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	176	2,448
	Nixon Elementary	Hall 1St Floor		2L4' T8/EL	box acr 1' wide	47		2L4' T8 28w/ELEE LO	rlrb	47	42	0.85	2,756	3,258
	Nixon Elementary	Hall 1St Floor		2x 13W COMPACT HARDWIRED	can rec	17		NO RETRO	no change needed		30		_	3,258
858	Nixon Elementary	Hall 1St Floor		4L4' T8/EL-8'	soffit	6		4L4' T8 28w/ELEE LO-8'	rlrb	6	83	0.17	567	3,258
859	Nixon Elementary	Hall 1St Floor	1	2L4' T8/EL	soffit	4		2L4' T8 28w/ELEE LO	rlrb	4	42	0.07	235	3,258
860	Nixon Elementary	Hall 1St Floor	1	13W COMPACT HARDWIRED	jar	28		NO RETRO	no change needed	ļ	15			3,258
	Nixon Elementary	Hall 1St Floor		4L3' T8/EL-6'	box acr 1' wide	28		4L3' T8 21w/ELEE LO-6'	rlrb	28	80	0.22	730	3,258
	Nixon Elementary	Bldg Mt		2x 26W COMPACT HARDWIRED /EL	square surface mt.	10		NO RETRO	no change needed		54			3,942
863	Nixon Elementary	Bldg Mt		2x 26W COMPACT HARDWIRED /EL	wallpack	2		NO RETRO	no change needed		54			3,942
864	Nixon Elementary	Bldg Mt	ext	3 WATT LED	wallpack	1	3	NO RETRO	no change needed		3			3,942

Lighting Systems Analysis

Town of Sudbury, MA

Line	Building Name	Location	FI	Pre Fixture Description	Pre Fixture Style	Pre	Pre	Post Fixture Description	Post Fixture Style	Post	Post	kW Saved	kWh Saved	Annual
						Qty	Watts			Qty	Watts			Hours
865	Nixon Elementary	Bldg Mt	ext	26W COMPACT HARDWIRED	jar	60	28	NO RETRO	no change needed		28			3,942
866	Nixon Elementary	Bldg Mt	ext	50W METAL HALIDE	wrap	4	65	NO RETRO	no change needed		65			3,942
Total	S											79.01	202,359	

Lighting Systems Analysis

Appendix for ECM 1: Lighting System Improvements

II. Manufacturer Specification Sheets

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 1

This page is intentionally left blank.

www.sylvania.com

OCTRON[®] 800 XP[®] SUPERSAVER[®] ECOLOGIC[®]3 **EXtended Performance Fluorescent Lamps**

The OCTRON 800 XP SUPERSAVER T8 fluorescent offering includes a full complement of lengths and wattages, ensuring there is an energy-saving lamp to satisfy nearly all applications. These lamps operate on standard T8 instant start systems and provide up to 22 percent energy savings over 32 Watt lamps. At 11¢/kWh and 4000 hours of operation per year, the 22 percent energy savings translate to a savings of \$12.32 per fixture per year for a 4-lamp fixture. The initial lumen output, lumen maintenance and high color rendering of the OCTRON 800 XP SUPERSAVER/ECO3 lamps help ensure that lighting quality is maintained while energy is saved. These lamps pass the Federal TCLP test, classifying them as non-hazardous waste in most states and feature lead-free glass, bases and manufacturing process, reducing overall environmental impact.

For optimal performance and system warranty, pair with QUICKTRONIC® electronic ballast systems.

in lamp starting and stabilization problems, or system compatibility issues.

5. F096 types are not dimmable. For all other types, contact OSRAM SYLVANIA for approved dimming ballasts.

4. Fixture must conform to ANSI C78.81-2005 requirements for luminaire design.

2. F096 SUPERSAVER lamps are recommended to be used on F96T8 instant start ballast with minimum open circuit voltage of 725V.

Application Information

Applications

Application Notes

lamp to normal operation.

- Cove Direct/indirect
- luminaires
- Recessed

Key Features & Benefits

- · Energy savings compared to standard 32W T8 lamp
 - 22% with the 25W XP®/SS
 - 12% with the 28W XP®/SS
 - 6% with the 30W XP®/SS
- 94% mean lumens
- Lead free
- · Made in the USA
- Dimmable (see application note 5)
- TCLP and RoHS compliant

- Retrofit lamp for existing T8 instant start systems - 40,000 hours rated life
 - @ 12 hours per start
- Increased life on SYLVANIA QUICKTRONIC® PROStart® PSX and PSN programmed rapid start ballasts
 - 42,000 hours rated life @ 12 hours per start
- QUICK60+[®] system warranty when lamps are paired with QUICKTRONIC electronic ballasts

SYLVANIA OCTRON ECOLOGIC3 T8 fluorescent lamps pass the Federal Toxic Characteristic Leaching Procedure (TCLP)¹ criteria for classification as non-hazardous waste in most states². ECOLOGIC3 represents a more comprehensive approach to sustainability encompassing high efficiency, long life and RoHS/TCLP compliance.

- 1. TCLP test results are based on NEMA LL Series standards and are available on request. 2. Lamp disposal regulations may vary: check your local & state regulations.

Product Offering

USA

Lamp Type	Wattage	CCT
F017/15W/800XP/SS/EC03	15	3000K, 3500K, 4100K, 5000K
F025/21W/800XP/SS/EC03	21	3000K, 3500K, 4100K, 5000K
F032/25W/800XP/SS/EC03	25	3000K, 3500K, 4100K, 5000K
F028/800XP/SS/EC03	28	3000K, 3500K, 4100K, 5000K
F030/800XP/SS/EC03	30	3000K, 3500K, 4100K, 5000K
F032/25W/800/XP/XL/SS/EC03	25	3000K, 3500K, 4100K
F028/800/XP/XL/SS/EC03	28	3000K, 3500K, 4100K, 5000K
F096/50W/800/XP/SS/EC03	50	3500K, 4100K, 5000K
F096/54W/800/XP/SS/EC03	54	3500K, 4100K, 5000K

- 1. F025, F028 and F030 SUPERSAVER lamps are recommended to be used on F32T8 instant start ballast with minimum open circuit voltage of 550V RMS at the lamp.
 - a. Electronically ballasted fixture configurations which operate lamps remotely, such as Master/Satellite applications, can cause reduction of lamp open circuit voltage, in the remote fixture, below the minimum required for reliable lamp starting. For more information, please call 1-800-LIGHTBULB and ask for Ballast Technical Assistance or call your fixture manufacturer.

3. If a 28W SUPERSAVER lamp is exposed to drafts or the ambient temperature falls below 60°F (70°F for 25W), striation (a rhythmic pulsing pattern of light running down the tube) and/or reduction in lamp brightness may occur. While visually disconcerting, neither behavior is damaging to the lamp and removing the cause (draft or temperature) will return the

(4) inverter operated emergency lighting systems unless any of the above equipment is specifically listed for SUPERSAVER (SS) lamps. Any of the above situations could result

- b. Not recommended to be used: (1) in remotely ballasted fixtures with lamp open circuit voltages below 550V, (2) in air handling fixtures, (3) on low power factor ballasts or
- troffers
- Schools
- Valance

SEE THE WORLD IN A NEW LIGHT

Specification Data

Project/Job: SYLVANIA lamp: SYLVANIA ballast:	
· · · · · · · · · · · · · · · · · · ·	
SYLVANIA ballast:	
Notes:	

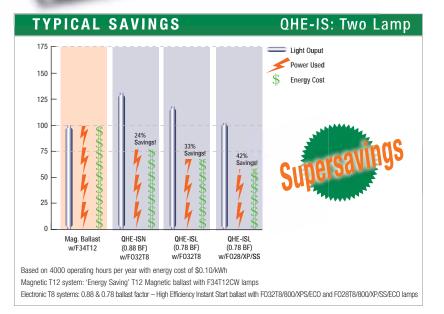
Ordering Information

							Average Rated Life							
			Nominal					t Start		pid Start				
Item	Ordering		Length	Initial	Mean	Lumens	3 hrs/	12 hrs/	3 hrs/	12 hrs/				
Number	Abbreviation	Watts	(in)	Lumens	Lumens ¹	per Watt	start	start	start	start	CCT	CRI		
	00 XP® SUPERSAVER®													
22405	F017/15W/830/XP/SS/EC03	15	24	1200	1130	80	24,000	40,000	40,000	42,000	3000K	85		
22406	F017/15W/835/XP/SS/EC03	15	24	1200	1130	80	24,000	40,000	40,000	42,000	3500K	85		
22407	F017/15W/841/XP/SS/EC03	15	24	1200	1130	80	24,000	40,000	40,000	42,000	4100K	85		
22408	F017/15W/850/XP/SS/EC03	15	24	1200	1130	80	24,000	40,000	40,000	42,000	5000K	81		
22394	F025/21W/830/XP/SS/EC03	21	36	1925	1810	92	24,000	40,000	40,000	42,000	3000K	85		
22395	F025/21W/835/XP/SS/EC03	21	36	1925	1810	92	24,000	40,000	40,000	42,000	3500K	85		
22396	F025/21W/841/XP/SS/EC03	21	36	1925	1810	92	24,000	40,000	40,000	42,000	4100K	85		
22397	F025/21W/850/XP/SS/EC03	21	36	1925	1810	92	24,000	40,000	40,000	42,000	5000K	81		
22232	F032/25W/830/XP/SS/EC03	25	48	2500	2350	100	24,000	40,000	40,000	42,000	3000K	85		
22233	F032/25W/835/XP/SS/EC03	25	48	2500	2350	100	24,000	40,000	40,000	42,000	3500K	85		
22234	F032/25W/841/XP/SS/EC03	25	48	2500	2350	100	24,000	40,000	40,000	42,000	4100K	85		
22235	F032/25W/850/XP/SS/EC03	25	48	2500	2350	100	24,000	40,000	40,000	42,000	5000K	81		
22177	F028/830/XP/SS/EC03	28	48	2725	2560	97	24,000	40,000	40,000	42,000	3000K	85		
22178	F028/835/XP/SS/EC03	28	48	2725	2560	97	24,000	40,000	40,000	42,000	3500K	85		
22179	F028/841/XP/SS/EC03	28	48	2725	2560	97	24,000	40,000	40,000	42,000	4100K	85		
22184	F028/850/XP/SS/EC03	28	48	2725	2560	97	24,000	40,000	40,000	42,000	5000K	81		
22063	F030/830/XP/SS/EC03	30	48	2850	2680	95	24,000	40,000	40,000	42,000	3000K	85		
22060	F030/835/XP/SS/EC03	30	48	2850	2680	95	24,000	40,000	40,000	42,000	3500K	85		
22062	F030/841/XP/SS/EC03	30	48	2850	2680	95	24,000	40,000	40,000	42,000	4100K	85		
22202	F030/850/XP/SS/EC03	30	48	2850	2680	95	24,000	40,000	40,000	42,000	5000K	81		
OCTRON 800) XP XL SUPERSAVER													
22349	F032/25W/830/XP/XL/SS/EC03	25	48	2400	2305	96	36,000	52,000	60,000	62,000	3000K	85		
22222	F032/25W/835/XP/XL/SS/EC03	25	48	2400	2305	96	36,000	52,000	60,000	62,000	3500K	85		
22223	F032/25W/841/XP/XL/SS/EC03	25	48	2400	2305	96	36,000	52,000	60,000	62,000	4100K	85		
21528	F028/830/XP/XL/SS/EC03	28	48	2600	2495	93	36,000	52,000	60,000	62,000	3000K	85		
22166	F028/835/XP/XL/SS/EC03	28	48	2600	2495	93	36,000	52,000	60,000	62,000	3500K	85		
22167	F028/841/XP/XL/SS/EC03	28	48	2600	2495	93	36,000	52,000	60,000	62,000	4100K	85		
22326	F028/850/XP/XL/SS/EC03	28	48	2600	2495	93	36,000	52,000	60,000	62,000	5000K	81		
OCTRON FOS	96 XP SUPERSAVER													
22420	F096/50W/835/XP/SS/EC03	50	96	5400	5075	108	24,000	36,000			3500K	85		
22421	F096/50W/841/XP/SS/EC03	50	96	5400	5075	108	24,000	36,000			4100K	85		
22422	F096/50W/850/XP/SS/EC03	50	96	5400	5075	108	24,000	36,000			5000K	81		
22100	F096/54W/835/XP/SS/EC03	54	96	5700	5360	106	24,000	36,000			3500K	85		
22101	F096/54W/841/XP/SS/EC03	54	96	5700	5360	106	24,000	36,000			4100K	85		
22347	F096/54W/850/XP/SS/EC03	54	96	5700	5360	106	24,000	36,000			5000K	81		
-														

1. Measured at 40% of rated life.

Ordering G	uide								
F0	30	1	8	35	XP or XL	1	SS	1	ECO3
Fluorescent OCTRON	Actual Wat 15, 21,25, 28, 30, 50	U	Actual CRI 80 or 85	Color Temperature 30 = 3000K CCT, 35 = 3500K CCT 41 = 4100K CCT, 50 = 5000K CCT	XP=E <u>X</u> tended <u>P</u> erformance XL= <u>E</u> Xtreme <u>L</u> ife		SUPERS/	AVER	ECOLOGIC3

OHE High Efficiency Instant Start



QUICKTRONIC® High Efficiency QHE instant start ballasts operate OCTRON® T8 lamps with maximum efficacy and high lumen output, while providing **30-60% energy savings** when compared to F40T12 magnetic systems. The **QHE** energy saving electronic T8 ballasts save an additional 6% over standard electronic ballasts without compromising light output or lamp life, thus allowing for a quicker payback.

QHE-IS: High Efficiency Series utilizes high grade components and optimized ballast design, to ensure that >90% of the system power is provided to the lamps. Enhanced efficiency inductors and semiconductors play a critical role.

Key System Features:

- Highest ballast efficiency over 90%
- NEMA Premium Ballast
 Program Compliant
- Highest system efficiency available
- Lowest power instant start systems
- Universal input voltage (120-277V)
- 30-60% energy savings
- SAME LIGHT, LESS POWER
- Available ballast factors:
 - Low (0.78)
- Normal (0.88)
- High (1.15-1.20)

Applications:

- Meeting stringent energy codes
- Energy retrofits
- Commercial & retail
- · Hospitality & institutional

QUICKTRONIC® High Efficiency T8 Systems

32 T8 Instant Start Universal Voltage (120-277V)

ltem Number	OSRAM SYLVANIA Description	Input Current (AMPS) @120/277V	Ccologic 3 Lamp Type 1	Rated Lamp Lumens (Im)	No. of Lamps	Ballast Factor (BF)	Initial System Lumens	Mean System Lumens	Input Power (W) @120/277V	System Efficacy (Im/W) @120/277V	BEF ²
			LOW	BALLAS	ST FACT	OR					
49837 49861 49862	QHE 1x32T8/UNV ISL-SC Banded Pack 10-Pack Pallet Pack	0.21/0.09 0.19/0.08 0.19/0.08 0.17/0.08 0.17/0.08	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	1 1 1 1	0.78 0.78 0.78 0.78 0.78	2420 2125 2030 1930 1870	2275 2000 1945 1815 1795	25 22 22 20 20	97 97 92 97 94	3.12 3.55 3.55 3.90 3.90
49838 49863 49864	QHE 2x32T8/UNV ISL-SC Banded Pack 10-Pack Pallet Pack	0.41/0.18 0.35/0.15 0.35/0.15 0.32/0.14 0.32/0.14	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	2 2 2 2 2	0.78 0.78 0.78 0.78 0.78	4835 4250 4055 3860 3745	4545 3995 3895 3630 3595	48 42 42 38 38	101 101 97 102 99	1.63 1.86 1.86 2.05 2.05
49839 49865 49866	QHE 3x32T8/UNV ISL-SC Banded Pack 10-Pack Pallet Pack	0.61/0.27 0.53/0.23 0.53/0.23 0.48/0.21 0.48/0.21	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	3 3 3 3 3	0.78 0.78 0.78 0.78 0.78	7255 6380 6085 5790 5615	6820 5995 5840 5445 5390	73/72 63 63 57 57	99/101 101 97 102 99	1.08 1.24 1.24 1.37 1.37
49840 49867 49868	QHE 4x32T8/UNV ISL-SC Banded Pack 10-Pack Pallet Pack	0.80/0.35 0.71/0.31 0.71/0.31 0.62/0.27 0.62/0.27	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	4 4 4 4	0.78 0.78 0.78 0.78 0.78	9670 8500 8110 7720 7490	9090 7990 7790 7260 7190	95 84 84 76/75 76/75	102 101 97 102/103 99/100	0.82 0.93 0.93 1.04 1.04
			NORM	AL BALL	AST FA	CTOR					
49968 49851 49852	QHE 1x32T8/UNV ISN-SC Banded Pack 10-Pack Pallet Pack	0.25/0.11 0.21/0.09 0.21/0.09 0.19/0.09 0.19/0.09	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	1 1 1 1	0.88 0.88 0.88 0.88 0.88 0.88	2730 2400 2290 2175 2110	2565 2255 2195 2045 2030	28 25 25 22 22 22	98 96 92 99 96	3.14 3.52 3.52 4.00 4.00
49969 49853 49854	QHE 2x32T8/UNV ISN-SC Banded Pack 10-Pack Pallet Pack	0.47/0.20 0.40/0.18 0.40/0.18 0.36/0.16 0.36/0.16	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	2 2 2 2 2	0.88 0.88 0.88 0.88 0.88	5455 4800 4575 4355 4225	5130 4510 4395 4095 4055	55 48 48 43 43	99 100 95 101 98	1.60 1.83 1.83 2.05 2.05
49970 49855 49856	QHE 3x32T8/UNV ISN-SC Banded Pack 10-Pack Pallet Pack	0.69/0.30 0.61/0.26 0.61/0.26 0.55/0.23 0.55/0.23	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	3 3 3 3 3	0.88 0.88 0.88 0.88 0.88	8185 7195 6865 6530 6335	7695 6760 6590 6140 6085	83/82 72 72 65/64 65/64	99/100 100 95 101/102 97/99	1.07 1.22 1.22 1.38 1.38
49971 49857 49858	QHE 4x32T8/UNV ISN-SC Banded Pack 10-Pack Pallet Pack	0.91/0.39 0.80/0.35 0.80/0.35 0.71/0.30 0.71/0.30	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	4 4 4 4	0.88 0.88 0.88 0.88 0.88	10,910 9590 9150 8710 8450	10,255 9015 8785 8190 8110	108/107 95 95 85 85	101/102 101 96 102 99	0.82 0.93 0.93 1.04 1.04
			HIGH	BALLAS	ST FACT	OR					
49919 <i>49871</i> <i>49872</i>	QHE 1x32T8/UNV ISH-SC Banded Pack 10-Pack Pallet Pack	0.32/0.14 0.27/0.12 0.27/0.12 0.26/0.12 0.26/0.12	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	1 1 1 1 1	1.20 1.20 1.20 1.20 1.20 1.20	3720 3270 3120 2970 2880	3495 3075 2995 2790 2765	38 33 33 30 30	98 99 95 99 96	3.16 3.64 3.64 4.00 4.00
49920 49873 49874	QHE 2x32T8/UNV ISH-SC Banded Pack 10-Pack Pallet Pack	0.65/0.28 0.55/0.23 0.55/0.23 0.50/0.22 0.50/0.22	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	2 2 2 2 2	1.20 1.20 1.20 1.20 1.20	7440 6540 6240 5940 5760	6995 6150 5990 5585 5530	74/73 65/64 65/64 58/57 58/57	101/102 101/102 96/98 102/104 99/101	1.64 1.88 1.88 2.11 2.11
49921 49875 49876	QHE 3x32T8/UNV ISH-SC Banded Pack 10-Pack Pallet Pack	0.93/0.40 0.82/0.35 0.82/0.35 0.72/0.31 0.72/0.31	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	3 3 3 3 3	1.18 1.18 1.18 1.18 1.18 1.18	10,975 9650 9205 8760 8495	10,315 9070 8835 8235 8155	111/109 98/96 98/96 87/86 87/86	99/101 98/101 94/96 101/102 98/99	1.08 1.23 1.23 1.37 1.37
49922 49877 49878	QHE 4x32T8/UNV ISH Banded Pack 10-Pack Pallet Pack	1.21/0.52 1.06/0.46 1.06/0.46 0.94/0.41 0.94/0.41	F032/XPS F028XP/SS F028XP/XL/SS F032/25W/XP/SS F032/25W/XP/XL/SS	3100 2725 2600 2475 2400	4 4 4 4 4	1.15 1.15 1.15 1.15 1.15 1.15	14,260 12,535 11,960 11,385 11,040	13,405 11,785 11,480 10,700 10,600	144/141 127/124 127/124 112/111 112/111	99/101 99/101 94/96 102/103 99/100	0.82 0.93 0.93 1.04 1.04

1: CEE compliant lamps 2: Ballast Efficiency Factor (BEF) shown = (Ballast Factor x 100) divided by Input Power (Note: calculation based on lowest wattage value).

Instant Start OHE ballasts operate additional T8 lamp types. Complete performance data is in the Ballast Technology Applications & Specification Guide and at www.sylvania.com

ecologic3

T8 INSTANT START SYSTEMS

SYLVANIA OCTRON® ECOLOGIC3 fluorescent lamps are designed to satisfy the Federal Toxicity Characteristic Leaching Procedure (TCLP) criteria for classification as non-hazardous waste in most states.* ECOLOGIC3 represents a more comprehensive approach to sustainability encompassing high efficiency, long life and RoHS/TCLP compliance. *Regulations may vary. Check your local and state regulations.

NEMA Premium

NEMA Premium Ballast (NPB) program compliant. The NPB program promotes the use of high efficiency T8 electronic ballasts by meeting or exceeding the Ballast Efficiency Factors, (BEF) established by the CEE, (Consortium for Energy Efficiency). For additional information on this program go to: www.cee1.org or www.nema.org

10

The CUCK60+ System Warranty

It's the simple way to make sure you're completely covered Just call 1-800-LIGHTBULB

Simply better coverage

QUICK60+® is the industry's original and most comprehensive system warranty, providing coverage for QUICKTRONIC® ballasts and the SYLVANIA lamps they power. As the originator of the System Solution," we have unparalleled lamp and ballast technology - within one company - that enables us to produce systems that perform better and are more reliable. Of course we design our ballasts and lamps to be compatible with other manufacturers' products and back their operation accordingly, but our systems approach allows us to back our systems with a warranty that simply gives you better coverage.

It starts with the ballast. When you purchase any QUICKTRONIC ballast, it's warranted for a period of up to 60 months. Then, when you add SYLVANIA lamps, you benefit from additional coverage for those lamps; that's the PLUS.

More combinations and wider applications provide the broadest range of coverage available in the industry. Another benefit comes each time you group relamp, as the lamp portion of the warranty will extend for an additional term. In short, if you have SYLVANIA ballasts and lamps, you're covered - it's that simple.

Simply peace of mind

When you specify SYLVANIA electronic ballasts and lamps, your installation will enjoy the highest available levels of performance, and you will enjoy the added benefit of peace of mind. If there is an issue, you'll never need to worry about whether it's the lamp or it's the ballast, and you won't get caught in the middle of solving the problem (we may argue with ourselves, but you won't have to!). All it takes is a phone call and you can get back to business. The bottom line is these are our products, and we stand behind them as no one else can.

Simply better service

Only QUICK60+offers you a choice of three service options to resolve warranty claims for ballasts, including our unique "Fixtureside AssistanceSM" program from our own nation-wide service organization, SYLVANIA Lighting Services. At our discretion, we will dispatch a trained technician to make a service call to resolve any issues with our products. Our people taking care of our products ensure that you get the level of expert service you deserve. Of course, OSRAM SYLVANIA can also coordinate ballast replacement with an independent service provider, or you can manage the replacement yourself and we will determine labor reimbursement costs. OSRAM SYLVANIA will determine which option best suits your needs to make sure you're covered.

lamps to your facility (NO LABOR FOR LAMPS)

The QUICK60+[®] warranty is simple to put to work. If you have SYLVANIA electronic ballasts

request warranty service. Any installation of QUICKTRONIC® ballasts and SYLVANIA brand lamps is covered by QUICK60+ for periods defined in the warranty and by the date codes incorporated on all of our products. As an added value, by simply registering the installation, all warranty periods will be defined by the actual date of installation providing complete assurance that you'll receive the coverage you deserve. If there's ever a problem, it's not a problem - you won't have to look up old records and worry about who's responsible. It's that simple.

QUICK60+® LIMITED WARRANTY

The Heart of a Comprehensive System Service Program

Compare lighting system warranties - you'll see that our QUICK60+ warranty offers better coverage, more service options and, more important, peace of mind.

of manufacture if installation date is not periods and subject to the Terms an		fails to o replacem	nent lamp (but no labor allowadoperate within the warranty prent ballast and labor allowanc set forth below.	eriod, OSPI will provide a
System ^{3,4}	Lamp		Ballast Warranty Period	³ Lamp Warranty Peri
QUICKTRONIC® T81	OCTRON XPS [®] , XP & >		60 mos.	36 mos.
QUICKTRONIC T81	OCTRON XP/XL & XP/>	<l familia<="" ss="" td=""><td></td><td>48 mos.</td></l>		48 mos.
QUICKTRONIC T81	OCTRON family		60 mos.	30 mos.
QUICKTRONIC T8 High Ambient ^{1,9}			36/60mos.@<90°/70°C	36 mos.
QUICKTRONIC 59	OCTRON FO96/XP, FO	96/XP/SS	60 mos.	30 mos.
QUICKTRONIC 59	OCTRON FO96		60 mos.	24 mos.
QUICKTRONIC 86/T8HO High Ambi QUICKTRONIC 96IS/96HO & 40T			36/60mos.@<90°/70°C	30 mos. N/A
QUICKTRONIC 96/5/96/10 & 401 QUICKTRONIC T5 ¹ , T5/HO ¹	PENTRON® Family		60 mos. 60 mos.	24 mos.
QUICKTRONIC 54T5HO ¹ High Ambi		P54/C/HO	36/60 mos.@<90°/70°C	24 mos. 36 mos.
QUICKTRONIC 54T5/HO ¹	PENTRON [®] FP54/HO, FF		60 mos.	36 mos.
QUICKTRONIC 54PHO & DL40	DULUX [®] FT55DL, FT40			12 mos.
QUICKTRONIC CF ¹	DULUX [®] D/E, T/E, T/E/I		60 mos.	12 mos.
QUICKTRONIC FM	FM	,	24 mos.	6 mos.
QUICKTRONIC ICE ^{1, 5}	ICETRON®		60 mos.	60 mos.
QUICKTRONIC MH ⁷	METALARC [®] Family ⁶ (7к-			6 mos.
QUICKTRONIC MH ⁷ *NOTE: Fluorescent lamp warranty periods	METALARC [®] Family ⁶ (15k			12 mos.
Other operating cycles may affect warrant Occupancy sensor application, 15 r OCTRON SUPERSAVER* bipin lamp: QUICKTRONIC, Professional Serie Labor options must be pre-approve ICETRON Lamp Warranty Period allo Contact OSRAM SYLVANIA for detail QUICKTRONIC MH ballasts warranty details. Electronic HID system warrant Maximum Case Temperature <70°C Refer to product specifications for QUICKTRONIC T8 High Ambient (HT	y period. Lamp warranty can rene ninute/start minimum, allowed s operate on Instant Start & PR' s and High Efficiency Series in ed by OSPI. Any labor option of ws up to 8760 hrs per year (cor ed specifications of METALARC is 36 or 60 months, depending ty period is based on a minimum C, for normal environmental of details.	w when insta I with QUIC DStart (non- ncluding all or cost that trinuous opot * lamps. on maximu m cycle of 1 perating co	Illation is group relamped, contact KTRONIC PROStart® and wit dimming) models only. IS, PS & DIM models where is not pre-approved will not eration). m case temperature. Refer to Ohr/start up to a maximum op nditions (40°C max. ambient)	t OSRAM SYLVANIA for deta h QUICKTRONIC ICE ball a applicable. t be eligible for reimburse product specifications for veration of 6,000 hours/yea t) unless noted.
TERMS AND CONDITIONS			will provide full service of G SERVICES at no cost to t	
SYLVANIA lamps and QUICKTRONI				
together as a system and be ins			will contact a service provide	
suitable environmental conditions a			st to the user of the ballast, o	
	Underwriters Laboratory		will reimburse the purchase	
latest National Electrical Code,			wight charges required to i	install the ballast replacen
latest National Electrical Code, Bulletins, and ANSI Specifications. T			, ₁	
latest National Electrical Code, Bulletins, and ANSI Specifications. T in the event of conditions demon	strating abnormal use or	4. Labo	r options must be pre-ap	proved by OSPI. Any I
latest National Electrical Code, Bulletins, and ANSI Specifications. T in the event of conditions demor stress, such as operating term	nstrating abnormal use or operatures in excess of	4. Labo	r options must be pre-ap r cost that is not pre-app	proved by OSPI. Any I
latest National Electrical Code, Bulletins, and ANSI Specifications. T in the event of conditions demor stress, such as operating terr maximum rated temperatures, u	nstrating abnormal use or aperatures in excess of nder/over voltage condi-	4. Labo option c reimburs	r options must be pre-ap or cost that is not pre-appr sement.	proved by OSPI. Any I roved will not be eligibl
latest National Electrical Code, Bulletins, and ANSI Specifications. T in the event of conditions demor stress, such as operating term	nstrating abnormal use or operatures in excess of nder/over voltage condi- s (see above Note #1) or	4. Labor option of reimburs RETUR	r options must be pre-ap r cost that is not pre-app	proved by OSPI. Any proved will not be eligible

WARRANTY ACTIVATION / SERVICE CLAIMS

other ballast will void the entire warranty.

The QUICK 60+ warranty is automatically activated after OSPI receives a completed QUICK 60+ warranty registration form within 30 days after installation. An acknowledgment will be sent for each registration along with a reference number for future correspondence. Service claims can be made by contacting 1-800-LIGHTBULB to initiate the process for problem resolution. LABOR OPTIONS (Ballast and ICETRON lamps only)

lamps of other manufacturers will void the lamp portion of this

warranty. Replacement of the QUICKTRONIC ballast with any

No labor allowance is made for any lamp replacement except ICETRON, during the warranty period. OSPI provides for several labor options for service under the QUICK 60+ warranty program.

After contacting OSRAM SYLVANIA and receiving a return AUTHO-RIZATION NUMBER, the user shall promptly return the product at the user's expense to OSRAM SYLVANIA after receiving instructions as to if, when and where to ship product. Failure to follow this procedure shall void this warranty.

REPLACEMENT OF PRODUCT, LIMITS OF LIABILITY

The foregoing shall constitute the sole and exclusive remedy of the purchaser and the sole and exclusive liability of OSPI. NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS MADE OR IS TO BE IMPLIED. OSPI will not, under any circumstance, whether as a result of breach of contract or warranty, tort, or otherwise, be liable for any incidental, special or consequential damages, including lost profits or revenues or any other costs or damages.

OSPI reserves the right to examine all failed lamps and/or ballasts and reserves the right to be the sole judge as to whether any lamps and/or ballasts are defective and covered under this warranty.

15

Low Profile Wrap Series general purpose fluorescent luminaire

GENERAL DESCRIPTION

The Low Profile Wrap (LPW) Series has been developed for general illumination for surface or pendant mounted applications. This series utilizes computer designed reflector technology for optimal fixture efficiency, reduction of energy consumption and improved quality of light. It also provides instant-on operation and offers many other energy saving options.

Typical applications for this type of product are interior spaces where finished ceilings exist. Applications include:

- Corporate / Office Buildings
- · Hospitals, Government Facilities and Military Bases
- Retail and Industrial Facilities
- · Schools, Colleges and Universities

DESIGN FEATURES / SPECIFICATIONS

CONSTRUCTION

- Precision die formed from 22 ga. cold rolled steel.
- Mechanically fastened or resistance welded depending on model.
- Heavy gauge steel (CRS) may be custom ordered.
- Finish to be pre-painted gloss white polyester powder coat.
- Post-painted polyester powder coat finishes are available. Consult factory for all special colors and finishes.
- Heavy guage steel (NYC) and heavy guage aluminum are available as alternate materials.

REFLECTOR

- Precision die formed optics which has been designed for maximum efficiency and photometric properties using the latest CAD software.
- Choice of optics includes focused, normal and spread beam distribution. Consult factory for custom optics design and spacing criteria options.
- · Choice of materials include:
- Alanod Miro4[®] Enhanced Specular Aluminum, 95% total reflectance, 25 year warranty.
- Enhanced Specular Aluminum, 92% total (min.) reflectance, 25 year warranty.
- High Reflectance White Powder Coated Aluminum, 91% total reflectance, 10 year warranty.
- Polished Aluminum, 87% total (min.) reflectance, 25 year warranty.
- Consult factory for availability of all other material choices.

LAMPHOLDERS

- \bullet Vossloh-Schwabe^ premium type featuring:
- Anti-vibration internal lamp locking design
- High temperature resistant ("T" marking).
- Heat and UV blocking shield to prevent degradation of material.
- Multi-point contact design for optimum lamp pin contact.
- Produced in accordance with DIN ISO 9001 and IEC standards.

BALLASTS

 All standard ballasts are electronic, energy saving, thermally protected, Class-P, non-PCB, Sound Rated "A", 0 degree (Type 1 Outdoor). Verify with factory for latest information regarding High Temperature (HT) or Extreme Low Temperature (XLT) rated ballast options.

• UL/CSA certified, where applicable. Compliant with Federal Ballast Law (Public Law 100-357, 1988).

- Choice of ballast factors. L=Low, N=Normal, H=High.
- Choice of dedicated, universal or special voltage -Consult factory for available options.
- Warranted by ballast manufacturer. Typical ballast warranty is for 5 years (120-277v) and 3-years (347-480v). Consult factory for latest warranty information.

LAMPS

- Supplied by others unless otherwise specified.
- Factory installed if required Consult factory.
- Lamp type, CRI ratings, temperature colors, lamp life ratings are all viable options which can be supplied - Consult factory for information.

LENS (Diffuser)

- Extruded profile for precision fit.
- 100% virgin clear acrylic resin (for max. optical clarity).
- Linear prisms extruded into sides of lens.
- Pattern 12 prisms embossed into bottom of lens
 30% "DR" additive (standard) to resist breakage (50% "DR" additive optional).

- Consult factory for all available lens options.

MOUNTING

 The luminaire may be surface mounted or may be suspended by pendant, threaded rod, hook, chain or cable. (Mounting hardware supplied by others unless otherwise specified).

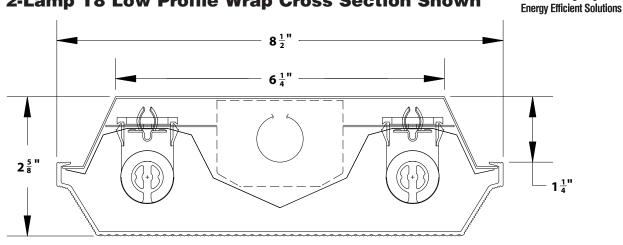
ELECTRICAL

- Luminaire is bi-national listed and labeled (UL 1598 and CSA C22.2 No. 250.0-00) and is suitable for damp locations.
- Product includes luminaire disconnect as specified in NEC 410.73(G), 2005 Edition, and CEC part I, rule 30-308(4), 2006 Edition.

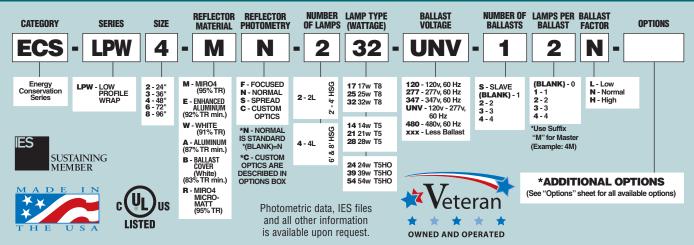
QUALITY CONTROL

 All fixtures and retrofit kits are designed, fabricated, assembled and tested at RENOVA's manufacturing facility. All fixtures are 100% lamp tested, inspected and labeled prior to shipment.

GUARANTEE


 RENOVA warrants all fixtures to be free of defects in manufacturing and workmanship for a period of (1) year from date of purchase. This warranty excludes damage of any kind resulting from improper installation, misuse, abuse, accidents, mis-application, or natural disasters. Please refer to the "Terms and Conditions" section of the RENOVA website for additional information.

Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting Systems, Inc. for the latest information.



2-Lamp T8 Low Profile Wrap Cross Section Shown

ORDERING GUIDE

Vossloh Locking Lampholders (Standard)

Multi-Faceted Reflector (Designed for Maximum Efficiency)

Standard Lens (Bottom: Pattern 12 Prismatic Embossment) (Side: Linear Prisms)

Innovative Lighting Ideas

Mounting Details (Included in all Housings)

Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting Systems, Inc. for the latest information.

RENOVA Lighting Systems, Inc. • 15 Wellstown Road • Ashaway, RI 02804 • (800) 635-6682 • www.renova.com

Standard Vapor Tight Series general purpose fluorescent luminaire

GENERAL DESCRIPTION

The Standard Vapor Tight (SVT) Series has been developed for all dust. damp/wet, vapor proof, cold weather and outdoor applications. Fixture can be surface (wall or ceiling), pendent, chain or cable mounted. This series utilizes computer designed reflector technology for optimal fixture efficiency, reduction of energy consumption and improved quality of light. It also provides instant-on operation and offers many other energy saving options.

Typical applications for this type of product are interior and exterior spaces where dust, moisture and vapor infiltration must be avoided. Applications include:

- Parking Garages, Car Washes, Shipping Docks and Outdoor Locations
- · Government / Industrial Facilities, Gas Stations and Subways
- Swimming Pool Facilities, Locker / Shower Rooms
- Food and Drug Handling Areas, Public Areas and Commercial Kitchens

DESIGN FEATURES / SPECIFICATIONS

CONSTRUCTION

- · Housing is precision injection molded from fiberglass reinforced polyester resin. Approval and / or listings as follows:
- UL/CUL/NSF International
- U.S. Department of Agriculture
- Canadian Standards Association
- Achieves IP65 / IP67 Rating (Certain models only)
- Housing matl. is self-extinguishable (ASTM D635-74) • Internal housing and brackets to be precision die formed from 22 ga. cold rolled steel. Finish to be
- pre-painted gloss white polyester powder coat. GASKETING
- New technology molecular structure gasket material is poured into pre-treated housing channel to insure stronger adhesion and to provide maximum protection against moisture and dust.

REFLECTOR

- · Precision die formed optics which has been designed for maximum efficiency and photometric properties using the latest CAD software.
- Choice of optics includes focused, normal and spread beam distribution. Consult factory for custom optics design and spacing criteria options.
- · Choice of materials include: - Alanod Miro4[®] Enhanced Specular Aluminum,
- 95% total reflectance, 25 year warranty.
- High Reflectance White Powder Coated Aluminum, 91% total reflectance, 10 year warranty.
- Consult factory for all other material choices.

LAMPHOLDERS

- Vossloh-Schwabe[®] premium type featuring:
- Anti-vibration internal lamp locking design
- High temperature resistant ("T" marking). Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting

- Heat and UV blocking shield to prevent
- degradation of material.
- L/H contact design for optimum lamp pin contact.
- Manufactured to DIN ISO 9001 and IEC standards.

BALLASTS

- All standard ballasts are electronic, energy saving, thermally protected, Class-P, non-PCB, Sound Rated "A", 0 degree (Type 1 Outdoor). Verify with factory for latest information regarding High Temperature (HT) or Extreme Low Temperature (XLT) rated ballast options.
- UL/CSA certified, where applicable. Compliant with Federal Ballast Law (Public Law 100-357, 1988).
- Choice of ballast factors. L=Low, N=Normal, H=High.
- · Choice of dedicated, universal or special voltage -Consult factory for available options.
- Warranted by ballast manufacturer. Typical warranty is for 5 years (120-277v) and 3-years (347-480v). Consult factory for latest warranty information.

LATCHES

- · Standard Latch Acetal copolymer offers increased strength over conventional plastic latches.
- Stainless Steel Latch Designed for maximum maintainability and corrosion resistance. Tamperproof screws & tool available as option.
- Additional latches to achieve IP65 and IP67 Rating. Consult factory for all available configurations.

LAMP SHIELDING (LENS)

- Clear Acrylic with an internal crepe pattern to provide general lamp obscurity. Lenses are thermoformed for precision fit.
- Smooth exterior surface for ease of cleaning.
- "HI" High Impact "DR" Additive to resist
- breakage is optional.

LAMPS

- Supplied by others unless otherwise specified.
- · Factory installed if required Consult factory.
- Lamp type, CRI ratings, temperature colors, lamp life ratings are all viable options which can be supplied - Consult factory for information.

MOUNTING

- . The luminaire may be surface mounted or may be suspended by pendant, threaded rod, chain or cable. (Mounting hardware supplied by others unless otherwise specified).
- · Custom mounting options / accessories are available - Consult factory.

ELECTRICAL

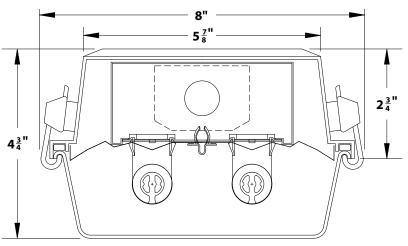
- Luminaire is bi-national listed and labeled (UL 1598 and CSA C22.2 No. 250.0-00) and is suitable for damp locations.
- · Product includes luminaire disconnect as specified in NEC 410.73(G), 2005 Edition, and CEC part I, rule 30-308(4), 2006 Edition.

QUALITY CONTROL

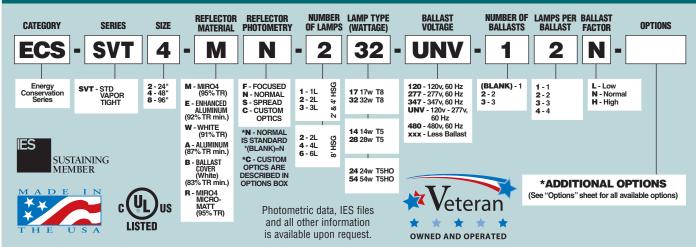
 All fixtures and retrofit kits are designed, fabricated, assembled and tested at RENOVA's manufacturing facility. All fixtures are 100% lamp tested, inspected and labeled prior to shipment.

GUARANTEE

• RENOVA warrants all fixtures to be free of defects in manufacturing and workmanship for a period of (1) year from date of purchase. This warranty excludes damage of any kind resulting from improper installation, misuse, abuse, accidents, mis-application, or natural disasters. Please refer to the "Terms and Conditions" section of the RENOVA website for additional information.



Energy Efficient Solutions


2-Lamp T8 Standard Vapor Tight Cross Section Shown

Innovative Lighting Ideas Energy Efficient Solutions

ORDERING GUIDE

Vossloh Locking Lampholders (Standard)

Multi-Faceted Reflector (Designed for Maximum Efficiency)

Standard Lens (Crepe pattern provides lamp obscurity)

Mounting Details (Included in all Housings)

Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting Systems, Inc. for the latest information.

RENOVA Lighting Systems, Inc. • 15 Wellstown Road • Ashaway, RI 02804 • (800) 635-6682 • www.renova.com

Standard Grade Industrial Series general purpose fluorescent luminaire

GENERAL DESCRIPTION

The Standard Grade Industrial (SGI) Series has been developed for general illumination for surface or pendant mounted applications. This series utilizes computer designed reflector technology for optimal fixture efficiency, reduction of energy consumption and improved quality of light. It also provides instant-on operation and offers many other energy saving options.

Typical applications for this type of product are interior spaces where appearance and performance are important. Applications include:

- Industrial, Commercial and Manufacturing Areas
- Warehouse Spaces Isle and Open Areas
- Storage Facilities and Specialized Retail Applications
- Schools, Colleges and Universities

DESIGN FEATURES / SPECIFICATIONS

CONSTRUCTION

- Precision die formed from 22 ga. cold rolled steel.
- Mechanically fastened or resistance welded depending on model.
- Heavy gauge steel (CRS) or aluminum alloy may be custom ordered.
- Finish to be pre-painted gloss white polyester powder coat.
- Post-painted polyester powder coat finishes are available. Consult factory for all special colors and finishes.
- Heavy guage steel (NYC) and heavy guage aluminum are available as alternate materials.

REFLECTOR

- Precision die formed optics which has been designed for maximum efficiency and photometric properties using the latest CAD software.
- Choice of optics includes focused, normal and spread beam distribution. Consult factory for custom optics design and spacing criteria options.
- · Choice of materials include:
- Alanod Miro4 $^{\scriptsize (\!8\!)}$ Enhanced Specular Aluminum, 95% total reflectance, 25 year warranty.
- Enhanced Specular Aluminum, 92% total (min.) reflectance, 25 year warranty.
- High Reflectance White Powder Coated Aluminum, 91% total reflectance, 10 year warranty.
- Polished Aluminum, 87% total (min.) reflectance, 25 year warranty.
- Consult factory for availability of all other material choices.

LAMPHOLDERS

- Vossloh-Schwabe[®] premium type featuring:
- Anti-vibration internal lamp locking design
- High temperature resistant ("T" marking).Heat and UV blocking shield to prevent
- degradation of material.
- Multi-point contact design for optimum lamp pin contact.
- Produced in accordance with DIN ISO 9001 and IEC standards.

BALLASTS

- All standard ballasts are electronic, energy saving, thermally protected, Class-P, non-PCB, Sound Rated "A", 0 degree (Type 1 Outdoor). Verify with factory for latest information regarding High Temperature (HT) or Extreme Low Temperature (XLT) rated ballast options.
- UL/CSA certified, where applicable. Compliant with Federal Ballast Law (Public Law 100-357, 1988).
- Choice of ballast factors. L=Low, N=Normal, H=High.
- Choice of dedicated, universal or special voltage -Consult factory for available options.
- Warranted by ballast manufacturer. Typical ballast warranty is for 5 years (120-277v) and 3-years (347-480v). Consult factory for latest warranty information.

LAMPS

- Supplied by others unless otherwise specified.
- · Factory installed if required Consult factory.
- Lamp type, CRI ratings, temperature colors, lamp life ratings are all viable options which can be supplied - Consult factory for information.

MOUNTING

- The luminaire may be surface mounted or may be suspended by pendant, threaded rod, hook, chain or cable. (Mounting hardware supplied by others unless otherwise specified).
- Custom mounting options / accessories are available Consult factory.

ELECTRICAL

- Luminaire is bi-national listed and labeled (UL 1598 and CSA C22.2 No. 250.0-00) and is suitable for damp locations.
- Product includes luminaire disconnect as specified in NEC 410.73(G), 2005 Edition, and CEC part I, rule 30-308(4), 2006 Edition.

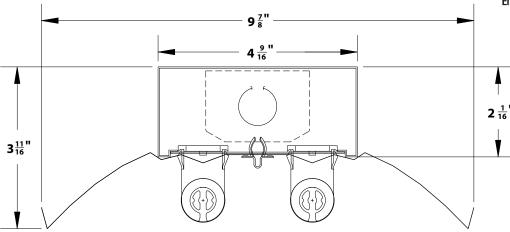
QUALITY CONTROL

 All fixtures and retrofit kits are designed, fabricated, assembled and tested at RENOVA's manufacturing facility. All fixtures are 100% lamp tested, inspected and labeled prior to shipment.

GUARANTEE

 RENOVA warrants all fixtures to be free of defects in manufacturing and workmanship for a period of (1) year from date of purchase. This warranty excludes damage of any kind resulting from improper installation, misuse, abuse, accidents, mis-application, or natural disasters. Please refer to the "Terms and Conditions" section of the RENOVA website for additional information.

Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting Systems, Inc. for the latest information.



Energy Efficient Solutions

2-Lamp T8 Std. Grade Industrial Cross Section Shown

Innovative Lighting Ideas **Energy Efficient Solutions**

REFLECTOR MATERIAL REFLECTOR PHOTOMETRY NUMBER LAMP TYPE (WATTAGE) BALLAST VOLTAGE NUMBER OF LAMPS PER BALLAST BALLAST FACTOR CATEGORY OPTIONS SERIES SIZE BALLASTS **OF LAMPS** ECS Δ 2 UN SGI 32 1 2 N N М F - FOCUSED N - NORMAL S - SPREAD C - CUSTOM OPTICS **S** - SLAVE (**BLANK**) - 1 **2** - 2 **3** - 3 **4** - 4 (BLANK) - 0 1 - 1 2 - 2 3 - 3 4 - 4 Energy Conservation Series **120** - 120v, 60 Hz **277** - 277v, 60 Hz **347** - 347v, 60 Hz **UNV** - 120v - 277v, L - Low N - Normal H - High M - MIRO4 (95% TR) 1 - 1L 2 - 2L 3 - 3L 4 - 4L - 4' HSG 17 17w T8 25 25w T8 32 32w T8 SGI - STANDARD GRADE INDUSTRIAL **2** - 24" **3** - 36" **4** - 48" **6** - 72" **8** - 96" E - ENHANCED ALUMINUM , N (92% TR min.) 60 Hz 480 - 480v, 60 Hz 14 14w T5 21 21w T5 28 28w T5 W - WHITE (91% TR) *N - NORMAL IS STANDARD *(BLANK)=N *Use Suffix **2** - 2L **4** - 4L 6' & 8' HSG xxx - Less Ballast "M" for Maste A - ALUMINUM (87% TR min.) IES 6 - 6L 8 - 8L (Example: 4M) *C - CUSTOM SUSTAINING MEMBER R - MIRO4 MICRO-MATT (95% TR) OPTICS ARE DESCRIBED IN OPTIONS BOX 24 24w T5HO 39 39w T5HO 54 54w T5HO * T5 LAMP ONLY ***ADDITIONAL OPTIONS** (See "Options" sheet for all available options) eteran US Photometric data, IES files and all other +

ORDERING GUIDE

ISTED

Vossloh Locking Lampholders (Standard)

information is available upon request.

Multi-Faceted Reflector (Designed for Maximum Efficiency) Captive Quarter-Turn Fastener (Allows Toolless Access to Ballast Compartment)

OWNED AND OPERATED

Mounting Details (Included in all Housings)

Note: RENOVA products are constantly being improved; therefore, the information shown is subject to change without notice. Always consult your lighting representative or RENOVA Lighting Systems, Inc. for the latest information.

RENOVA Lighting Systems, Inc. • 15 Wellstown Road • Ashaway, RI 02804 • (800) 635-6682 • www.renova.com

DULUX[®] EL

When considering your lighting options, Energy Savings, Long Life/Maintenance Cost Savings and Color Excellence are key factors. SYLVANIA products can help you make the right decision.

Compact Fluorescent Lamps

		ltem Number	Ordering Abbreviation	Replaced Incandescent Wattage	Nominal Wattage	Initial Lumens	Color Temp.	CRI	Average Rated Life (hr.)	ENERGYSTAR
	Micro Mini	29160	CF5EL/MICR0/827/RP	25	5	200	2700K	82	12,000	
	6	21095	CF5EL/MICRO/827/LS/RP	25	5	300	2700K	82	12,000	
		29133 21094	CF5EL/MICR0/827/C CF5EL/MICR0/827/LS/C	<u>25</u> 25	5	200 300	2700K 2700K	82 82	12,000	
	Ö	29401	CF10EL/MICR0/827	40	10	600	2700K	82	12,000	~
		27718	CF10EL/MICR0/827/LS/RP2	40	10	600	2700K	82	12,000	~
		29727	CF13EL/MICR0/827/RP2	60	13	825	2700K	82	12,000	~
		29759	CF13EL/MICR0/827/C/RP2	60	13	825	2700K	82	12,000	~
		27716	CF13EL/MICROC/827/LS/RP2	60	13	800	2700K	82	12,000	V
		29972 29734	CF13EL/MICRO/827/LS/RP2	60	13 13	800 800	2700K 2700K	82	12,000	<u> </u>
		29734	CF13EL/MICR0/C/827/RP2 CF13EL/MICR0/830/EC0	<u> </u>	13	825	3000K	82 82	12,000 12,000	4
		29728	CF20EL/MICRO/827/RP2	75	20	1280	2700K	82	12,000	~
		29973	CF20EL/MICR0/827/LS/RP2	75	20	1200	2700K	82	12,000	
		29899	CF20EL/MICR0/830/EC0	75	20	1280	3000K	82	12,000	
		29729	CF23EL/MICR0/827/RP2	100	23	1600	2700K	82	12,000	~
		29895	CF23EL/MICROLED/827/RP***	100	23	1600	2700K	82	12,000	
		29941	CF23EL/MICROLED/827/HVP/RP	100	23	1600	2700K	82	12,000	
		29974 29901	CF23EL/MICR0/827/LS/RP2 CF23EL/MICR0/830/EC0	100	23 23	1400 1640	2700K 3000K	82 82	12,000	
		29901	CF26EL/MICRO/827/RP2	100	26	1750	2700K	82	12,000	
		29023	CF26EL/MICRO/827/LS	100	26	1550	2700K	82	12,000	
		28990	CF26EL/MICR0/830/EC0	100	26	1280	3000K	82	12,000	
	Super Mini Twist	29707	CF7EL/SUPER/827/RP	25	7	375	2700K	82	10,000	
		29708	CF11EL/SUPER/827/RP	40	11	600	2700K	82	10,000	~
	Ŕ	29767	CF11EL/SUPER/827/RP3	40	11	600	2700K	82	10,000	V
	A	29710 29588	CF13EL/SUPER/827/RP	<u>60</u> 60	13 13	880 800	2700K 5000K	82	10,000	~
		29588	CF13EL/SUPER/850/BL CF13EL/SUPER/865/RP	60	13	800	6500K	82 82	10,000	
	2	29693	CF19EL/SUPER/827/RP	75	19	1200	2700K	82	10,000	~
Ð		29683	CF19EL/SUPER/850/RP	75	19	1200	5000K	82	10.000	•
S		29712	CF23EL/SUPER/827/RP	100	23	1600	2700K	82	10,000	~
0		29699	CF23EL/SUPER/850/RP	100	23	1600	5000K	82	10,000	
٩		29674	CF23EL/SUPER/865/RP	100	23	1600	6500K	82	10,000	
<u> </u>	Mini Twist	29733	CF4EL/MINI/827/RP	25	4	250	2700K	82	8000	~
3	Ø	29451 29379	CF7EL/MINI/827 CF7EL/MINI/830	<u>25</u> 25	7 7	375 375	2700K 3000K	82 82	8000 8000	
۵.	Ħ	29379	CF1EL/MINI/830	40	11	600	3000K	82	8000	~
		29409	CF13EL/MINI/827	60	13	800	2700K	82	10,000	
—		29376	CF13EL/MINI/830	60	13	800	3000K	82	8000	~
σ		29781	CF13EL/MINI/835/DAY/RP	60	13	800	3500K	82	8000	~
<u>s.</u>		29567	CF13EL/MINI/841	60	13	800	4100K	82	10,000	
Ð		29608	CF13EL/MINI/C/830/RP	60	13	800	3000K	82	8000	
c		29700	CF13EL/MINI/O CF13EL/MINI/R	60	13		Orange	_	8000	
۵ U		29701 29702	CF13EL/MINI/R CF13EL/MINI/B	<u> </u>	13 13		Red Blue		8000 8000	
		29702	CF13EL/MINI/G	60	13		Green	_	8000	
ບ		29704	CF13EL/MINI/Y	60	13		Yellow	_	8000	
		29705	CF13EL/MINI/BLB	60	13	_	Blacklight- blue	_	8000	
		29410	CF19EL/MINI/827	75	19	1200	2700K	82	10,000	~
		29396	CF19EL/MINI/830	75	19	1200	3000K	82	8000	~
		29411	CF23EL/MINI/827	100	23	1600	2700K	82	10,000	
		29397	CF23EL/MINI/830 CF23EL/MINI/835/DAY/RP	100	23 23	1600	3000K 3500K	82 82	8000	<i>v</i>
		29784 29564	CF23EL/MINI/835/DAY/RP CF23EL/MINI/841	100	23	1600 1600	4100K	82	8000	v
	Twist	29957	CF13EL/GU24/827/RP	60	13	800	2700K	82	8000	
		29172	CF23EL/GU24/827/RP	100	23	1600	2700K	82	8000	
	Ø	29162	CF13EL/GU24/TWIST/827/BL/10	60	13	800	2700K	82	8000	
	H	29969	CF14EL/TWIST/827/DIM/RP*	60	14	800	2700K	82	8000	v
	\Box	29163	CF23EL/GU24/TWIST/830/BL/10	100	23	1600	3000K	82	8000	
	J Wk	29968	CF24EL/TWIST/827/DIM/RP*	75	24	1500	2700K	82	8000	V
		29415 29792	CF30EL/TWIST/827 CF30EL/TWIST/827/RP	100	30 30	2000 2000	2700K 2700K	82 82	10,000 10,000	<i>v</i>
		29792	CF30EL/TWIST/827/RP CF30EL/TWIST/830	100	30	2000	3000K	82	10,000	~
		29793	CF30EL/TWIST/835/DAY/RP	100	30	2000	3500K	82	10,000	~
		29147	CF40EL/TWIST/827	150	40	2600	2700K	82	10,000	V
		29786	CF40EL/TWIST/827/RP	150	40	2720	2700K	82	10,000	v
		29508	CF65EL/TWIST/841	200	65	4200	4100K	82	8000	
	3-Way Twist	29913	CF33EL/3WAY/830/RP	50	12	600	3000K	82	10,000	~
	Ø			100	22	1200	3000K	82	10,000	V
	H	28974	CF33EL/3WAY/827/LS/RP	<u>150</u> 50	33 12	2000 600	3000K 2700K	82 82	10,000 10,000	~
	\Box	20314	UI JULL JWAI/UZ//LU/NF	100	22	1200	2700K	82	10,000	
	ĴWŀ			150	33	2150	2700K	82	10,000	
		29134	CF40EL/3WAY/TWIST/827	60	20	1000	2700K	82	8000	
				120	30	2050	2700K	82	8000	

DULUX[®] EL

Compact Fluorescent Lamps

			ltem Number	Ordering Abbreviation	Replaced Incandescent Wattage	Nominal Wattage	Initial Lumens	Color Temp.	CRI	Average Rated Life (hr.)	ENERGYSTAR
Ð	et	\bigcap	29196	CF14EL/B/830	60	14	700	3000K	82	6000	
Purpose	Bullet	Ţ,									
5			29743**	CF5EL/A15/DIM/827/BL*	15	5	200	2700K	82	25,000	
	Classic A-line		29665	CF9EL/FAN/827	40	9	450	2700K	82	8000	
a	-A		29526	CF9EL/FAN/830/BL2	40	9	450	3000K	82	8000	~
Ъ	i.		29575	CF14EL/A19/827	60	14	800	2700K	82	8000	~
Ē	ass	Į.	29468	CF14EL/A19/830	60	14	800	3000K	82	6000	~
General	5		29485	CF14EL/A19/830/BL	60	14	800	3000K	82	8000	<i>v</i>
		\frown	00405		40	0	405	07001/	00	0000	
Ø	G25		29495	CF9EL/G25/827/BL	40	9	495	2700K	82	8000	~
	5	¥	29414	CF9EL/G25/827	40	9	495	2700K	82	8000	
		e	29528	CF9EL/G25/830/BL2	40	9	495	3000K	82	8000	~
	630		29195	CF14EL/G30/830	60	14	700	3000K	82	6000	
		\cap	29121	CF4EL/B10/C/830/BL	15	4	170	3000K	82	6000	
0	5	()	29742**	CF5EL/B10/DIM/827/ADP/BL*	15	5	200	2700K	82	25,000	
ပ	Décor	\square	29750**	CF5EL/B10/DIM/827/C/ADP/RP*	15	5	200	2700K	80	25,000	
			29167	CF7EL/B10/830/BL	25	7	280	3000K	82	6000	
Δ		12	25986	CF9EL/B10/827/C/ADP/BL2	40	9	450	2700K	82	8000	
			29600	CF9EL/B10/C/ADP/830	40	9	450	3000K	82	8000	
Specialty	Bug	\bigcirc	29789	CF14EL/A19/YELLOW/RP	N/A	14	405	_	_	6000	
ŭ											
		\bigcirc	29638	CF9EL/R20/827	40	9	300	2700K	82	8000	
	R20		29624	CF14EL/R20/827	50	14	495	2700K	82	8000	<i>v</i>
		Y	29587 28998	CF14EL/R20/830/BL CF14EL/R20/DIM/827/RP*	50 50	14 14	495 500	3000K 2700K	82 82	8000 8000	V
		-	20990	CF14EL/R20/DIW/827/RP*	65	14	600	2700K	82	6000	~
			29405	CF15EL/BR30/DIM/827/RP*	65	15	600	2700K	82	6000	
	0	\bigcirc	29539	CF15EL/BR30/850/BL	65	15	560	5000K	82	6000	
	BR30	H	29565	CF16EL/BR30/827/BL	65	16	750	2700K	82	8000	~
	8	N	26937	CF16EL/BR30/LS/827/BL	65	16	650	2700K	82	8000	
			29590	CF16EL/BR30/830	65	16	750	3000K	82	8000	~
nal			29591	CF16EL/BR30/827	65	16	750	2700K	82	8000	~
			29359	CF23EL/PAR38/827	75	23	1200	2700K	82	8000	~
<u>.</u>			29625	CF23EL/PAR38/827/BL	75	23	1200	2700K	82	8000	~
сt С			29744	CF23EL/PAR38/GL/827/BL	75	23	1000	2700K	82	8000	
٦ ٩	œ	\bigcirc	29897	CF23EL/PAR38/GL/827	75	23	1000	2700K	82	8000	
Directio	PAR38		29140	CF23EL/PAR38/GL/830	75	23	1000	3000K	82	8000	
	A	The second secon	29902	CF23EL/PAR38/R/RP	75	23	_	Red	_	8000	
			29903 29904	CF23EL/PAR38/B/RP CF23EL/PAR38/G/RP	75 75	23 23		Blue Green	_	8000 8000	
			29904	CF23EL/PAR38/Y/RP	75	23		Yellow	_	8000	
			29906	CF23EL/PAR38/0/RP	75	23	_	Orange	_	8000	
			29907	CF23EL/PAR38/BLB/RP	75	23	_	Blacklight Blue	_	8000	
			28997	CF19EL/BR40/DIM/827/RP*	75	19	900	2700K	82	8000	~
	9	\bigcirc	29452	CF23EL/BR40/827/RP	90	23	1250	2700K	82	8000	· ·
	BR40	H	26926	CF23EL/BR40/LS/827/BL	90	23	1050	2700K	82	8000	
	-		29455	CF23EL/BR40/830	90	23	1250	3000K	82	8000	
			00440				1050	07001/		0000	

CF23EL/BR40/827/BL 90 23 1250 *Compatible with standard electronic incandescent dimmers. **Cold cathode technology ***2W during LED operation

CF034-INSERTR21

SYLVANIA is a registered trademark of OSRAM SYLVANIA Inc. SEE THE WORLD IN A NEW LIGHT is a registered trademark of OSRAM SYLVANIA Inc. ENERGY STAR is a registered trademark of the U.S. Government. DULUX is a registered trademark of OSRAM GmbH, used under license.

29442

8000

r

2700K

82

LED TRACK HEAD

FEATURES

- Available in 20 watt LED
- LED technology offers an unprecedented 80,000 hour lamp life. This fixture is virtually maintenance-free.
- Engineered for illumination of retail displays or any area where high efficiency and color rendering are desired.
- Designed to replace 35-150 watt fixtures which are commonly used for retail and display applications.
- Available with four different track adaptors to fit most existing line voltage systems.
- Also available with stand alone mono point mounting canopy.
- · Controllable with optional occupancy sensors.

LTH

JOB NAME:

FIXTURE TYPE:

SPECIFICATIONS

HOUSING

Heavy aluminum alloy housing provides durability and maximum heat sinking for longer life of electronic components.

ELECTRICAL

Highest quality driver, emitters and power supply for long life.

LED COLOR

Available in a variety of Kelvin temperatures Cool White in 5000K, 65000K & 7000K Warm White in 2750K, 3000K, 3500K & 4200K.

- OPTICS Available in 3 beam patterns: Spot, Medium, or Flood.
- FINISH Exterior housing is finished in architectural bronze as standard. Available in gloss white.
- CERTIFICATION CSA & UL Listed.

TOSHIBA

Dimmable LED PAR38 1100 Series

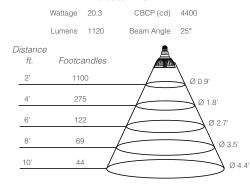
Project: Toshiba Lamp: Type: Notes:

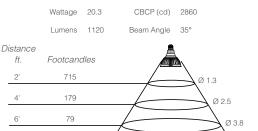
Ordering Information

Ordering Code	Input Voltage VAC	Lamp Shape	Base Type	Wattage W	CCT 1	Beam Angle	Initial Lumens <i>Im</i> ²	Lamp Efficacy <i>Im/W</i>	Rated Life hrs ³	CBCP cd	CRI	Power Factor	Equivalency⁴	Lamp Weight <i>Ibs. (g)</i>
20P38/27LNF-UP	120	PAR38	E26	20.3	2700K	25°	1090	53.7	40,000	4240	84	> 0.77	90W	1.18 (535)
20P38/27LFL-UP	120	PAR38	E26	20.3	2700K	35°	1090	53.7	40,000	2750	84	> 0.77	100W	1.18 (535)
20P38/30LNF-UP	120	PAR38	E26	20.3	3000K	25°	1120	55.2	40,000	4400	84	> 0.77	90W	1.18 (535)
20P38/30LFL-UP	120	PAR38	E26	20.3	3000K	35°	1120	55.2	40,000	2860	84	> 0.77	110W	1.18 (535)
20P38/35LNF-UP	120	PAR38	E26	20.3	3500K	25°	1120	55.2	40,000	4400	84	> 0.77	90W	1.18 (535)
20P38/35LFL-UP	120	PAR38	E26	20.3	3500K	35°	1120	55.2	40,000	2860	84	> 0.77	110W	1.18 (535)
20P38/40LNF-UP	120	PAR38	E26	20.3	4000K	25°	1170	57.6	40,000	4600	85	> 0.77	90W	1.18 (535)
20P38/40LFL-UP	120	PAR38	E26	20.3	4000K	35°	1170	57.6	40,000	2990	85	> 0.77	110W	1.18 (535)

1. CCT range complies with ANSI C78.377-2008

Thermally stable typical lumens (±10%)
 Rated life is based on 70% lumen maintenance and engineering testing and probability analysis
 Equivalency based on the Energy Star[®] Integral LED Lamp Program
 Note: All Information consistent with IESNA LM-80-08 results and IESNA LM-79-08 testing completed by a qualified third party facility


Note: All lamps meet Energy Star® Integral LED Lamp requirements and will be submitted for testing


Note: Five-year warranty based on 24 hr/day usage

Illuminance Cone Diagrams

Ø 5.0

Ø 6.3

20P38/30LFL-UP

Energy Savings

	45W Halogen	60W Halogen	75W Halogen	80W Halogen	90W Halogen	110W Halogen
20P38/30LNF-UP	\$67.95	\$109.18	\$150.43	\$164.18	\$191.68*	\$246.68
20P38/30LFL-UP	\$67.95	\$109.18	\$150.43	\$164.18	\$191.68	\$246.68*

*Actual equivalent replacement based on the Energy Star® Integral LED Lamp Program Note: Energy savings based on using one bulb for 25,000 hr rated life at 11¢/kWh; Does not include maintenance and replacement lamp savings

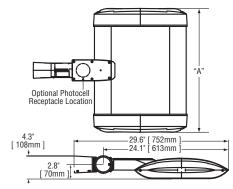
8'

10'

45

29

Ordering Guide


20	P38 /	27	L —	UP
Wattage 20.3 Watts = 20	Lamp Type PAR38 = P38	CRI + CCT 2700K = 27 3000K = 30 3500K = 35 4000K = 40	1100 Series = L	NF = Narrow Flood FL = Flood US Professional Package = UP

THE EDGE® LED Floodlight – 25° Optic

BetaLED Catalog #: FLD - EDG - 25 - AA -- C -

Notes:

# of LEDs	Dim. "A"
20	12.06"
40	12.06"
60	14.06"
80	16.06"
100	18.06"
120	20.06"
140	22.06"
160	24.06"
180	26.06"
200	28.06"
220	30.06"
240	32.06"

Product	Family	Optic in Degrees	Mounting	# of LEDs (x 10)	LED Series	Voltage	Color Options	Factory-Installed Options Please type additional options in manually on the lines provided above.
FLD	EDG	251		 02 04 06 08 10 12 14 16 18 20 22 24 	C	 UL Universal 120–277V UH Universal 347–480V 12 120V 24 240V 27 277V 34 347V 	SV Silver BK Black Bronze PB Platinum Bronze WH White	 43K 4300K Color Temperature³ 525 525mA Drive Current^{4,5} DIM5 0-10V Dimming (525mA maximum)^{6,7} F Fuse^{8,9} HL Hi/Low (175/350/525, dual circuit input)¹⁰ P Photocell^{11,12} R NEMA Photocell Receptacle^{8,12,13} TL Two-Level (175/525 w/ integrated sensor control)¹⁰ TL2 Two-Level (0/350 w/ integrated sensor control)¹⁰ TL3 Two-Level (0/525 w/ integrated sensor control)¹⁰

Footnotes

1. Distribution similar to narrow flood (25°)

2. Adjustable arm for mounting to 2" (2-3/8" [60mm] 0.D.) tenon

3. Color temperature per fixture; minimum 70 CRI

4. Driver operates at 525mA instead of the standard 350mA providing a higher lumen output and a shorter life

5. Available on fixtures with 20-120 LEDs

6. Control by others

- 7. Refer to dimming spec sheet for availability and additional information
- 8. Not available when UH voltage is selected
- 9. When code dictates fusing use time delay fuse

10. Refer to multi-level spec sheet for availability and additional information

11. Must specify voltage other than UL or UH $% \left({{{\rm{U}}}_{{\rm{A}}}} \right)$

12. This option not available with all multi-level options. Refer to multi-level spec sheet for more information

13. Intended for horizontal mounting

			LED) PERFORM/	ANCE SPECS	;							
# of LEDs	Initial Delivered Lumens – 25º Flood Optic @ 6000K	Initial Delivered Lumens – 25º Flood Optic @ 4300K	System Watts 120–277V	Total Current @ 120V	Total Current @ 230V	Total Current @ 277V	System Watts 347–480V*	Total Current @ 347V	Total Current @ 480V	L ₇₀ Hours** @ 25º C (77º F)			
	350mA (Standard) Fixture Operating at 25° C (77° F)												
20	1,937 (02)	1,699 (02)	25	0.23	0.11	0.10	30	0.09	0.08	105,000			
40	3,875 (04)	3,398 (04)	49	0.41	0.23	0.20	51	0.15	0.12	105,000			
60	5,812 (06)	5,098 (06)	71	0.60	0.32	0.28	74	0.22	0.17	105,000			
80	7,749 (08)	6,797 (08)	93	0.78	0.41	0.35	96	0.28	0.21	105,000			
100	9,686 (10)	8,496 (10)	116	0.98	0.52	0.43	119	0.35	0.26	105,000			
120	11,624 (12)	10,195 (12)	139	1.17	0.61	0.52	141	0.41	0.30	105,000			
140	13,561 (14)	11,895 (14)	164	1.39	0.74	0.63	170	0.49	0.35	105,000			
160	15,498 (16)	13,594 (16)	186	1.58	0.83	0.71	192	0.55	0.40	105,000			
180	17,436 (18)	15,293 (18)	211	1.77	0.93	0.79	215	0.62	0.45	105,000			
200	19,373 (20)	16,992 (20)	233	1.97	1.03	0.87	237	0.68	0.49	105,000			
220	21,310 (22)	18,692 (22)	256	2.16	1.13	0.95	259	0.75	0.54	105,000			
240	23,247 (24)	20,391 (24)	279	2.35	1.23	1.03	282	0.81	0.59	105,000			
			525mA	Fixture Operati	ing at 25º C (77	" F)							
20	2,518 (02)	2,209 (02)	37	0.31	0.18	0.17	43	0.13	0.15	61,000			
40	5,037 (04)	4,418 (04)	69	0.58	0.31	0.27	75	0.22	0.19	61,000			
60	7,555 (06)	6,627 (06)	110	0.92	0.49	0.41	116	0.33	0.27	61,000			
80	10,074 (08)	8,836 (08)	138	1.16	0.62	0.54	145	0.42	0.32	61,000			
100	12,592 (10)	11,045 (10)	177	1.49	0.79	0.68	186	0.53	0.40	61,000			
120	15,111 (12)	13,254 (12)	217	1.82	0.96	0.81	226	0.65	0.48	61,000			
	magnetic step-down transformer or multi-level options are selected		or recommended lun	nen depreciation	data see <u>TD-13</u>								

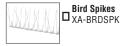
NOTE: All data subject to change without notice.

© 2010 BetaLED®, a division of Ruud Lighting • 1200 92nd Street • Sturtevant, WI 53177 • 800-236-6800 • www_hetal FD_com

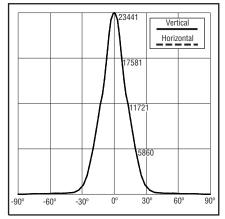
Made in the U.S.A. of U.S. and imported parts. Meets Buy American requirements within the ARRA.

THE EDGE® LED Floodlight – 25° Optic

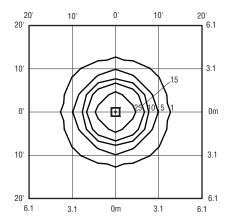
General Description

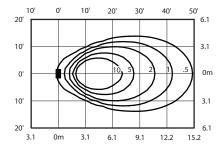

FLD-EDG-25-AA

Slim, low profile design minimizes wind load requirements. Fixture sides are rugged cast aluminum with integral, weather-tight LED driver compartments and high performance aluminum heatsinks. Adjustable mounting arm is rugged die cast aluminim and mounts to 2" tenon. Includes leaf/debris guard. Five year limited warranty on fixture.


Electrical

Modular design accommodates varied lighting output from high power, white, 6000K (+/- 500K per full fixture), minimum 70 CRI, long life LED sources. 120–277V 50/60 Hz, Class 1 LED drivers are standard. 347–480V 50/60 Hz option is available. LED drivers have power factor >90% and THD <20% at full load. Units provided with integral 9kV surge suppression protection standard. Integral weather-tight electrical box with terminal strip for easy power hook-up. Surge protection tested in accordance with IEEE C62.41.2 and ANSI standard 62.41.2.


Field-Installed Accessories



Photometrics

Independent Testing Laboratories certified test. Report No. ITL64084. Candlepower trace of 6000K, 60 LED 25° flood luminaire with 6,114 initial delivered lumens operating at 350mA. All published luminaire photometric testing performed to IESNA LM-79-08 standards.

Isofootcandle plot of 6000K, 60 LED 25° flood luminaire with 0° vertical tilt at 20' (6.1m) A.F.G. Luminaire with 5,812 initial delivered lumens operating at 350mA. Initial FC at grade.

Isofootcandle plot of 6000K, 60 LED 25° flood luminaire with 60° vertical tilt at 10' (3.1m) A.F.G. Luminaire with 5,812 initial delivered lumens operating at 350mA. Initial FC at grade.

NOTE: All data subject to change without notice.

© 2010 BetaLED[®], a division of Ruud Lighting • 1200 92nd Street • Sturtevant, WI 53177 • 800-236-6800 • <u>www.betaLED.com</u> Made in the U.S.A. of U.S. and imported parts.

Meets Buy American requirements within the ARRA.

# of LEDs	Approximate Weight 120–277V ¹	Single	2@ 180°	2@ 90°	3@ 90°	4@ 90°				
		r-		·	Ť					
Adjustable Fitter Mount 0°										
20	21.0 lbs.	0.66	1.31	0.98	1.64	1.97				
40	23.8 lbs.	0.66	1.31	0.98	1.64	1.97				
60	27.1 lbs.	0.66	1.31	1.02	1.68	2.05				
80	28.2 lbs.	0.66	1.31	1.07	1.72	2.13				
100	35.4 lbs.	0.66	1.31	1.11	1.76	2.21				
120	33.5 lbs.	0.66	1.31	1.15	1.80	2.29				
140	36.9 lbs.	0.66	1.31	1.19	1.84	2.38				
160	41.4 lbs.	0.66	1.31	1.23	1.89	2.46				
180	42.2 lbs.	0.66	1.31	1.27	1.93	2.54				
200	43.3 lbs.	0.66	1.31	1.31	1.97	2.62				
220	47.0 lbs.	0.70	1.39	n/a	n/a	n/a				
240	47.8 lbs.	0.74	1.48	n/a	n/a	n/a				
	5 lbs. for transform nt or multi-level op			ures whe	n 525mA	drive				

THE EDGE® EPA & Weight Calculations

Finish
Exclusive Colorfast DeltaGuard [®] finish features an E-Coat epoxy primer with an ultra-
durable silver powder topcoat, providing excellent resistance to corrosion, ultraviolet
degradation and abrasion. Bronze, black, white and platinum bronze powder topcoats are
also available. The finish is covered by our 10 year limited warranty

UL listed in the U.S. and Canada for wet locations and enclosure classified IP66 per IEC

compliant. International Dark-Sky Association approved.

529 when ordered without P or R options. Consult factory for CE Certified products. RoHS

also available. The finish is covered by our 10 year limited warranty.

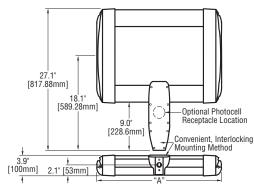
Fixture and finish are endurance tested to withstand 5,000 hours of elevated ambient salt fog conditions as defined in ASTM Standard B 117.

Patents

Testing & Compliance

U.S. and international patents granted and pending. BetaLED is a division of Ruud Lighting, Inc. For a listing of Ruud Lighting, Inc. patents, visit <u>www.uspto.gov</u>.

THE EDGE® LED Area Light – Type III Medium **ARE-EDG-3M-DA**


- D -

- DA -

Rev. Date: 8/23/11

BetaLED Catalog #: ARE - EDG -

# of LEDs	Dim. "A"
20	12.06" [306mm]
40	12.06" [306mm]
60	14.06" [357mm]
80	16.06" [408mm]
100	18.06" [459mm]
120	20.06" [510mm]
140	22.06" [560mm]
160	24.06" [611mm]
200	28.06" [713mm]
240	32.06" [814mm]

	Product	Family	Optic	Mounting	# of LEDs (x 10)	LED Series	Voltage	Color Options	Drive Current Not Field Adjustable	Factory-Installed Options Please type additional options in manually on the lines provided above.
_	ARE	EDG	3M ¹ 3MB ²	DA ³	 02 04 06 08 10 12 14 16 20 24 	D	■ UL Universal 120–277V ■ UH Universal 347–480V ■ 34 347V	SV Silver BK Black Bronze PB Platinum Bronze WH White	350 350mA 525⁴ 525mA 700⁵ 700mA	 43K 4300K Color Temperature⁶ DIM 0-10V Dimming^{7,8,9} F Fuse^{10,11,12} HL Hi/Low (175/350/525, dual circuit input)¹³ P Photocell^{12,14} R NEMA Photocell Receptacle^{12,15,16} ML Multi-Level (75/525)¹³

Footnotes

- 1. IESNA Type III Medium distribution
- 2. IESNA Type III Medium distribution w/ backlight control
- 3. Direct mounting arm for use with 3-6" (76-152mm) square or round pole
- 4. Available on fixtures with 20-160 LEDs
- 5. Available on fixtures with 20-60 LEDs
- 6. Color temperature per fixture; 6000K standard; minimum 70 CRI
- 7. Control by others
- 8. Refer to dimming spec sheet for availability and additional information
- 9. Not available when UH voltage is selected
- 10. When code dictates fusing use time delay fuse
- 11. Not available with all multi-level options. Refer to the multi-level spec sheet for availability and additional information
- 12. Refer to multi-level spec sheet for availability and additional information
- 13. Must specify voltage other than UH
- 14. Intended for horizontal mounting
- 15. Photocell by others

								LE	D PERFORM	٩N	ICE S	PECS							
# of LEDs	Initial Delivered Lumens – Type III Medium @ 6000K	B U G Rating''	Initial Delivered Lumens – Type III Medium w/ backlight control @ 6000K	В	U G	Initial Delivered Lumens – Type III Medium @ 4300K	Rati	•	Type III Medium w/ backlight control @ 4300K	Ra	U G	Watts 120–480V	Total Current @ 120V	Total Current @ 240V	Total Current @ 277V	Total Current @ 347	Total Current @ 480V	L ₇₀ Hours* @ 25° C (77° F)	50K Hours Lumer Maintenance Factor* @ 15° C (59° F)
							1	350m	A Fixture Operati	ng	at 25°								
20	1,814 (02)	1 1 1	1,342 (02)	0	11	1,672 (02)	1.	11	1,237 (02)	0	11	26	0.20	0.11	0.10	0.09	0.07	>150,000	
40	3,628 (04)	1 1 1	2,683 (04)	1	11	3,343 (04)	1		2,473 (04)	0	11	47	0.40	0.21	0.19	0.15	0.12	>150,000	4
60	5,371 (06)	222	3,973 (06)	1	2 1	4,950 (06)	2		3,662 (06)	1	21	68	0.58	0.30	0.26	0.20	0.16	>150,000	4
80		222	5,298 (08)	1	2 2	6,600 (08)		2 2	4,882 (08)		2 1	90	0.77	0.38	0.34	0.26	0.20	>150,000	1
100	8,929 (10)	3 3 3	6,605 (10)	1	3 2	8,230 (10)	2	212	<u>6,088 (10)</u>		22	111	0.95	0.47	0.42	0.32	0.24	>150,000	93%
120		3 3 3	7,926 (12)	1	3 2	9,876 (12)	3 3		7,305 (12)		32	132	1.15	0.56	0.50	0.38	0.28	>150,000	
140	12,444 (14)	3 3 3	9,205 (14)		3 2	11,469 (14)	3		8,484 (14)		32	157	1.34	0.67	0.61	0.47	0.35	149,000	4
160		3 3 3	10,520 (16)		3 2	13,108 (16)	3 3		9,696 (16)		32	179	1.54	0.76	0.68	0.53	0.39	149,000	4
200		3 3 3	<u>13,151 (20)</u> 15,781 (22)		3 3	16,385 (20)	3 3		12,120 (20)		32	221	1.92	0.95	0.84	0.65	0.48	149,000	4
240	21,333 (24)	3 3 3	15,781 (22)	12	3 3	19,662 (24)	3 3		14,544 (24) A Fixture Operati		3 3	264	2.30	1.12	1.00	0.77	0.56	149,000	1
20	2,539 (02)	1 1 1	1.878 (02)	0	1 1	2,340 (02)	1	2011	1.731 (02)	ЩIJ	at 25	37	0.31	0.17	0.16	0.12	0.10	136,000	1
40		2 2 2	3,757 (04)		2 1	4,681 (04)	2 2	$\frac{1}{2}$	3,462 (04)	1	2 1	70	0.57	0.17	0.16	0.12	0.10	136,000	{
60		2 2 2	5,562 (06)		2 2	6,930 (06)	$\frac{2}{2}$		5,127 (06)		$\frac{2}{2}$ 1	102	0.87	0.29	0.20	0.21	0.10	129,000	{
80	10.026 (08)	3 3 3	7.417 (08)	H	3 2	9.240 (08)	33		6,835 (08)		$\frac{2}{3}$ 2	133	1.14	0.44	0.39	0.30	0.22	129,000	1
100		3 3 3	9.247 (10)	H	3 2	11.521 (10)	3 3		8.523 (10)		3 2	172	1.47	0.75	0.43	0.55	0.23	128,000	92%
120		3 3 3	11.097 (12)	H	3 2	13.826 (12)	3		10.227 (12)	$\frac{1}{1}$	3 2	204	1.76	0.88	0.78	0.60	0.30	128,000	1
140		3 3 3	12.888 (14)	2	3 2	16,057 (14)	3		11.878 (14)	÷	3 2	233	2.01	0.99	0.87	0.69	0.51	123,000	1
160		3 3 3		$\frac{2}{2}$	3 2	18.351 (16)	3 3		13.575 (16)		3 3	265	2.29	1 11	0.98	0.78	0.57	123,000	1
100	15,511 (10)	0 0 0	14,725 (10)	14	0 2	10,331 (10)			A Fixture Operati				2.25		0.50	0.70	0.57	123,000	
20	3,102 (02)	1 1 1	2,281 (02)	0	1 1	2.858 (02)	1	111	2.102 (02)	0	11	50	0.42	0.22	0.20	0.15	0.12	111.000	
40		2 2 2	4,562 (04)		2 1	5.717 (04)	2 2	2 2	4,204 (04)	1	21	93	0.79	0.40	0.35	0.27	0.20	111,000	90%
60		3 3 3	6,754 (06)	1	3 2	8.465 (06)	2		6,225 (06)		22	137	1.18	0.59	0.51	0.39	0.29	111,000	1 20/0
	• • • • • •		nce factor data see	e TD	-13				on on the IES BUG (•	•			•	-	- endum.pdf_

NOTE: All data subject to change without notice.

© 2011 BetaLED®, a division of Ruud Lighting • 1200 92nd Street • Sturtevant, WI 53177 • 800-236-6800 • www.betaLED.com

Made in the U.S.A. of U.S. and imported parts. Meets Buy American requirements within the ARRA.

ARE-EDG-3M-DA

THE EDGE® LED Area Light – Type III Medium

Rev. Date: 8/23/11

General Description

Slim, low profile design minimizes wind load requirements. Fixture sides are rugged cast aluminum with integral, weather-tight LED driver compartments and high performance aluminum heatsinks. Convenient, interlocking mounting method. Mounting housing is rugged die cast aluminum and mounts to 3-6" (76-152mm) square or round pole. Fixture is secured by two (2) 5/16-18 UNC bolts spaced on 2" (51mm) centers. Includes leaf/debris guard. Five year limited warranty on fixture.

Electrical

Modular design accommodates varied lighting output from high power, white, 6000K (+/- 500K per full fixture), minimum 70 CRI, long life LED sources, Optional 4300K (+/- 300K per full fixture) also available. 120-277V 50/60 Hz, Class 1 LED drivers are standard. 347-480V 50/60 Hz driver is optional. LED drivers have power factor >90% and THD <20% at full load. Units provided with integral 10kV surge suppression protection standard. Integral weather-tight electrical box with terminal strips (12Ga - 20Ga) for easy power hook-up. Surge protection tested in accordance with IEEE/ANSI C62.41.2.

Testing & Compliance

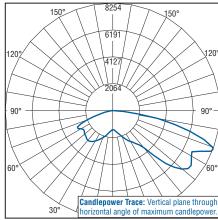
UL listed in the U.S. and Canada for wet locations and enclosure rated IP66 per IEC 60529 when ordered without P or R options. Consult factory for CE Certified products. Certified to ANSI C136.31-2001, 3G bridge and overpass vibration standards. Dark Sky Friendly. IDA Approved. RoHS Compliant.

Product qualified on the Design Lights Consortium ("DLC") Qualified Products List ("QPL") when ordered without backlight control shield.

Finish

Exclusive Colorfast DeltaGuard® finish features an E-Coat epoxy primer with an ultradurable silver powder topcoat, providing excellent resistance to corrosion, ultraviolet degradation and abrasion. Bronze, black, white and platinum bronze powder topcoats are also available. The finish is covered by our 10 year limited warranty.

Fixture and finish are endurance tested to withstand 5,000 hours of elevated ambient salt fog conditions as defined in ASTM Standard B 117.

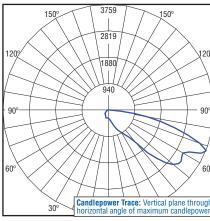

Patents

U.S. and international patents granted and pending. BetaLED is a division of Ruud Lighting, Inc. For a listing of Ruud Lighting, Inc. patents, visit www.uspto.gov.

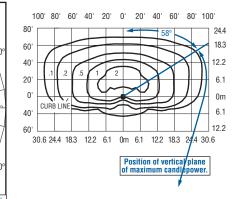
Field-Installed Accessories

Photometrics

305 56.6 80 24.4 60 18.3 40 12.2 20 6.1 0 0m CURB LINE 20 6.1 40 122 60' 18.3 30.5 24.4 18.3 12.2 6.1 0m 6.1 122 18.3 24.4 30.5 Position of vertical plane of maximum candlepower.


0'

20' 40' 60' 80' 100


100' 80' 60' 40' 20'

100

Independent Testing Laboratories certified test, Report No. ITL67871. Candlepower trace of 4300K, 160 LED Type III Medium area luminaire with 18,862 initial delivered lumens operating at 525mA. All published luminaire photometric testing performed to IESNA LM-79-08 standards.

Isofootcandle plot of 4300K, 120 LED Type III Medium area luminaire at 25' (7.6m) A.F.G. Luminaire with 13,826 initial delivered lumens operating at 525mA. Initial FC at grade.

Independent Testing Laboratories certified test. Report No. ITL68539. Candlepower trace of 4300K, 40 LED Type III Medium w/ backlight control area luminaire with 5,084 initial delivered lumens operating at 525mA. All published luminaire photometric testing performed to IESNA LM-79-08 standards. Isofootcandle plot of 4300K, 120 LED Type III Medium area luminaire at 25' (7.6m) A.F.G. Luminaire with 10,227 initial delivered lumens operating at 525mA. Initial FC at grade

NOTE: All data subject to change without notice.

© 2011 BetaLED®, a division of Ruud Lighting • 1200 92nd Street • Sturtevant, WI 53177 • 800-236-6800 • www.betaLED.com

Made in the U.S.A. of U.S. and imported parts. Meets Buy American requirements within the ARRA

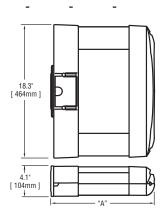
THE EDGE® EPA & Weight Calculations

# of LEDs	Weight 120–480V ¹	Single	2@ 180°	2@ 90°	3@ 90	4@ 90°
LLDS	120-4000	r∎	•			
Fixed	Arm Mount			-	-	_ _ _
20	21.0 lbs. (9.5kg)	0.60	1.20	0.87	1.47	1.75
40	23.7 lbs. (10.8g)	0.60	1.20	0.87	1.47	1.75
60	27.0 lbs. (12.3kg)	0.60	1.20	0.92	1.51	1.83
80	28.1 lbs. (12.8kg)	0.60	1.20	0.96	1.55	1.91
100	32.3 lbs. (14.7kg)	0.60	1.20	1.00	1.60	2.00
120	33.5 lbs. (15.2kg)	0.60	1.20	1.04	1.64	2.08
140	36.9 lbs. (16.7kg)	0.60	1.20	1.08	1.68	2.16
160	41.4 lbs. (18.8kg)	0.60	1.20	1.12	1.72	2.24
200	43.3 lbs. (19.6kg)	0.61	1.21	n/a²	n/a²	n/a²
240	47.8 lbs. (21.7kg)	0.69	1.38	n/a²	n/a²	n/a²

options are selected

2. For applications requiring 200 or more LEDs at 90 degrees refer to the DL mount version of our spec sheet

SEC-EDG-3M-WM


THE EDGE® LED Wall Pack

- D -

Rev. Date: 2/21/12

BetaLED Catalog #: SEC - EDG - - WM -

Notes:

# of LEDs	Dim. "A"
20	11.91" [303mm]
40	11.91" [303mm]
60	13.91" [353mm]
80	15.91" [404mm]
100	17.91" [455mm]
120	19.91" [505mm]

						· A″						
Product	Family	Optic	Mounting	# of LEDs (x 10)	LED Series	Voltage	Color Options	Drive Current Not Field Adjustable	Factory-Installed Options Please type additional options in manually on the lines provided ab			
SEC	EDG	3M ¹ 3MB ²	WM ³	02 04 06 08 10 12	D	 UL Universal 120–277V UH Universal 347–480V 12 120V 24 240V 27 277V 34 347V 	 SV Silver (Standard) BK Black BZ Bronze PB Platinum Bronze WH White 	☐ 350 350mA ☐ 5254 525mA ☐ 700 ^s 700mA	 40K 4000K Color Temperature⁶ DIM 0-10V Dimming^{7,8,9} F Fuse^{10,11,12} P Photocell^{11,12} ML Multi-Level (75/525)¹³ 			
,		m distribution m distribution	w/ backlight control		7. Control 8. Refer to	oy others dimming spec shee	t for availabilitv an	d additional	11. Not available with all multi-level options. Refer to multi-level spec sheet for availability and additional information			

2. IESNA Type III Medium distribution w/ backlight control

3. Wall mount

4. Available on fixtures with 20-80 LEDs

5. Available on fixtures with 20-60 LEDs

6. Color temperature per fixture; 5700K standard; minimum 70 CRI

Refer to <u>dimming spec sheet</u> for availability and additional information

9. Not available when UH voltage is selected

10. When code dictates fusing use time delay fuse $% \left(f_{1}, f_{2}, f_{3}, f$

sneet for availability and additional inform

12. Must specify voltage other than UL or UH

13. Refer to multi-level spec sheet for availability and additional information

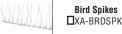
	LED PERFORMANCE SPECS															
# of LEDs	Initial Delivered Lumens – Type III Medium @ 5700K	BUG	Initial Delivered Lumens – Type III Medium with Backlight Control @ 5700K		Lumens – Type	B U G Rating**	Initial Delivered Lumens – Type III Medium with Backlight Control @ 4000K	Rating**	Watts 120–480V	Total Current @ 120V	Total Current @ 240V	Total Current @ 277V	Total Current @ 347V	Total Current @ 480V	L ₇₀ Hours [*] @ 25° C (77° F)	50K Hours Lumen Maintenance Factor [*] @ 15° C (59° F)
						350	mA Fixture Operat	ing at 25								
20	1,814 (02)	1 1 1	1,342 (02)	0 1	1,672 (02)	1 1 1	1,237 (02)	0 1 1	26	0.20	0.11	0.10	0.09	0.07	>150,000	
40	3,628 (04)	1 1 1	2,683 (04)	11	3,343 (04)	1 1 1	2,473 (04)	0 1 1	47	0.40	0.21	0.19	0.15	0.12	>150,000	
60		2 2 2	3,973 (06)	1 2	4,950 (06)	2 2 2	3,662 (06)	1 2 1	68	0.58	0.30	0.26	0.20	0.16	>150,000	93%
80		2 2 2	5,298 (08)	1 2		222	4,882 (08)	121	90	0.77	0.38	0.34	0.26	0.20	>150,000	
100		3 3 3	6,605 (10)	13		222	<u>6,088 (10)</u>	122	111	0.95	0.47	0.42	0.32	0.24	>150,000	
120	10,715 (12)	3 3 3	7,926 (12)	1 3 3	9,876 (12)	3 3 3	7,305 (12)	1 3 2	132	1.15	0.56	0.50	0.38	0.28	>150,000	
						5251	mA Fixture Operat	ing at 25								
20	2,539 (02)	1 1 1	1,878 (02)	0 1	2,340 (02)	111	1,731 (02)	0 1 1	37	0.31	0.17	0.16	0.12	0.10	136,000	
40	5,079 (04)	2 2 2	3,757 (04)	1 2		222	3,462 (04)	1 2 1	70	0.57	0.29	0.26	0.21	0.16	136,000	92%
60		2 2 2	5,562 (06)	1 2		222	5,127 (06)	121	102	0.87	0.44	0.39	0.30	0.22	129,000	02/0
80	10,026 (08)	3 3 3	7,417 (08)	1 3 3	9,240 (08)	3 3 3	6,835 (08)	1 3 2	133	1.14	0.56	0.49	0.39	0.29	129,000	
						700m		ing at 2t								
20	3,102 (02)	1 1 1	2,281 (02)	0 1	2,858 (02)	111	2,102 (02)	0 1 1	50	0.42	0.22	0.20	0.15	0.12	111,000	
40	6,203 (04)	2 2 2	4,562 (04)	12	5,717 (04)	222	4,204 (04)	121	93	0.79	0.40	0.35	0.27	0.20	111,000	90%
60	9,185 (06)	3 3 3	6,754 (06)	1 3	<u>8,465 (06)</u>	2 3 2	6,225 (06)	1 2 2	137	1.18	0.59	0.51	0.39	0.29	111,000	
* For	recommended lum	en mainter	nance factor data se	e <u>TD-13</u>	** For mo	re informat	tion on the IES BUG	(Backlight	-Uplight-Glare) Ratin visi	t <u>www.iesn</u>	a.org/PDF/	Erratas/TM	-15-07Bug	RatingsAdden	dum.pdf

© 2012 Ruud Lighting Inc. – A Cree Company. All rights reserved. The information in this document is subject to change without notice. 9201 Washington Ave • Racine, WI 53406-3772 • 800-236-6800 • <u>www.BetaLED.com</u>

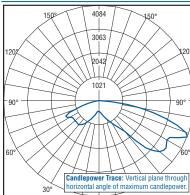
SEC-EDG-3M-WM

THE EDGE[®] LED Wall Pack

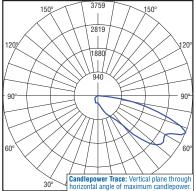
General Description


Slim, low profile design. Fixture sides are rugged cast aluminum with integral, weathertight LED driver compartments and high performance aluminum heatsinks specifically designed for LED applications. Housing is rugged aluminum. Furnished with low copper, lightweight mounting box designed for installation over standard and mud ring single gang J boxes. Secures to wall with four (4) 3/16" (4.8mm) screws (by others). Conduit entry from top, bottom, sides and rear. Allows mounting for uplight or downlight. Designed and approved for easy through-wiring. Includes leaf/debris guard. Five year limited warranty on fixture.

Electrical

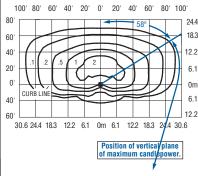

Modular design accommodates varied lighting output from high power, white, 5700K (+/- 500K per full fixture), minimum 70 CRI, long life LED sources. Optional 4000K (+/- 300K per full fixture) also available. 120-277V 50/60 Hz, Class 1 LED drivers are standard. 347-480V 50/60 Hz driver is optional. LED drivers have power factor >90% and THD <20% at full load. Integral weather-tight J-box with leads (wire nuts) for easy power hook-up. Units provided with integral 10kV surge suppression protection standard. Surge protection tested in accordance with IEEE/ANSI C62.41.2.

> 60 40 20 0 20 40 60'


Field-Installed Accessories

Photometrics

Independent Testing Laboratories certified test. Report No. ITL70203. Candlepower trace of 4000K, 60 LED Type III Medium security EDGE luminaire with 8,812 initial delivered lumens operating at 700mA. All published luminaire photometric testing performed to IESNA LM-79-08 standards.



Independent Testing Laboratories certified test. Report No. ITI 68539 Candlenower trace of 4300K 40 LED Type III Medium w/ backlight control area luminaire with 5,084 initial delivered lumens operating at 525mA. All published luminaire photometric testing performed to IESNA LM-79-08 standards.

60 18.3 40 12.2 20 6.1 0 0m 20 61 40 122 18.3 12.2 6.1 12.2 18.3 6.1 0m Position of vertical plane of maximum candlepower.

Isofootcandle plot of 4000K, 60 LED Type III Medium security EDGE luminaire at 10' (3m) A.F.G. Luminaire with 8,465 initial delivered lumens operating at 700mA. Initial FC at grade

Isofootcandle plot of 4000K, 80 LED Type III Medium initial delivered lumens operating at 525mA. Initial FC at grade

area luminaire at 25' (7.6m) A.F.G. Luminaire with 6.835

Testing & Compliance

UL listed in the U.S. and Canada for wet locations and enclosure rsted IP66 per IEC 60529. Consult factory for CE Certified products. Dark Sky Friendly. IDA Approved. RoHS compliant.

Product gualified on the Design Lights Consortium ("DLC") Qualified Products List ("QPL") when ordered without backlight control shield.

Finish

Exclusive Colorfast DeltaGuard® finish features an E-Coat epoxy primer with an ultradurable silver powder topcoat, providing excellent resistance to corrosion, ultraviolet degradation and abrasion. Bronze, black, white and platinum bronze powder topcoats are also available. The finish is covered by our 10 year limited warranty.

Fixture and finish are endurance tested to withstand 5,000 hours of elevated ambient salt fog conditions as defined in ASTM Standard B 117.

Patents

U.S. and international patents granted and pending. BetaLED is a division of Ruud Lighting, Inc. For a listing of Ruud Lighting, Inc. patents, visit www.uspto.gov.

© 2012 Ruud Lighting Inc. - A Cree Company. All rights reserved. The information in this document is subject to change without notice. 9201 Washington Ave • Racine, WI 53406-3772 • 800-236-6800 • www.BetaLED.com

> Made in the U.S.A. of U.S. and imported parts. Meets Buy American requirements within the ARRA

SYLVANIA ProPoint[™] Outdoor Luminaires LED Shoebox Fixture

Catalog #			
Туре			
Project			
Notes	 	 	
Date	 	 	

EPA: 1.8 ft. Length: 20" Width: 15" Height: 6.75" Weight: 28 lbs

The SYLVANIA ProPoint LED Shoebox luminaires, available from 55 Watts to 150 Watts, are suitable for replacing up to 400W existing architectural luminaires for illuminating roadways, area lighting, driveways, site lighting, entrance ways, parking areas, and walkways.

The SYLVANIA ProPoint LED Shoebox luminaire is your best choice for energy-efficient, environmentally preferable lighting for parking, area and site lighting. The Shoebox luminaire uses up to 68% less energy than traditional high pressure sodium and metal halide fixtures and maintains virtually all its luminosity for the 10+-year life of the light, significantly reducing replacement and maintenance costs. Cutting-edge "heat sink" technology keeps the LEDs at their optimum performance temperature and extends product life. And the proprietary photometric design technique will minimize glare and improve nighttime visibility to deliver superior illumination. SYLVANIA ProPoint Shoebox luminaires meet all LEED requirements for light pollution reduction credits by minimizing light trespass, reducing sky-glow, and reducing the impact on nocturnal environments.

The Shoebox optical is available with an acrylic lens. SYLVANIA LED Shoeboxes possess full cut-off and are Dark Sky friendly.

Specifications

LED Systems/Electrical: The SYLVANIA ProPoint LED Shoebox luminaire features efficacy up to 87 lumens per watt and is offered in 55 Watts, 80 Watts, 100 Watts, 120 Watts and 150 Watts. The Shoebox luminaire has a 120, 220, 240 or 277 VAC voltage range and incorporates SYLVANIA lightning surge protection in each unit, which is effective at suppressing most surges on the AC line and meets IEEE C62.41-2002 Category C low. The LED driver is a constant current device with a high-power factor correction to maximize power utilization. The driver meets UL1310 and UL48 Class 2 with built-in overtemperature protection. Input voltage ranges from 120-277 VAC. The driver passes FCC Part 15, Class A for both conducted and radiated emissions.

Optic: Light Distribution is available in Type II or Type III with a profiled acrylic lens for maximum transmission of light. The LED modules utilize an aluminum metal clad board for maximum heat transfer, thus leading to longer life. Direction and intensity of light is tightly controlled. Control of the LEDs allows the Shoebox fixtures to maintain light control of the LEDs to levels equal to or greater than MH or HPS at much lower energy consumption levels.

Listings: Testing and Compliances include: LM79, CE Certified, Dark Sky compliant, IP 55 Certified Optical Assembly, UL1310, FCC and RoHS Certified and meets IEEE C62.41-2002 Category C low.

Color Characteristics: The CRI is 70 or above with a CCT of 4500 or 6000K.

Installation: Fixture mounts horizontally with rectangular arm to round and square poles. **Life:** Life is >70,000 hours at L₇₀.

Construction: The luminaire is constructed of a one-piece cast, low copper (<0.4%CU) aluminum alloy. It has a TGIC thermoset polyester powder coat paint finish, 2.5-mil nominal thickness; standard colors are black and bronze.

Options: Twist lock photo cell is optional. Receptacle is included.

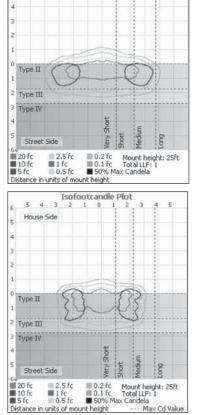
Warranty: SYLVANIA ProPoint LED Shoebox luminaires are covered by our standard five year outdoor LED Fixture Warranty.

Comparison

HID Source	LED Source	Energy Savings
100W HPS (120W)	55W	54%
100W MH (130W)	55W	58%
150W HPS (170W)	80W	53%
150W MH (185W)	80W	57%
175W MH (208 W)	80W	62%
200W MH (230W)	100W	57%
250W HPS (295W)	100W	66%
400W HPS (465W)	150W	68%
400W MH (452W)	150W	67%

Ordering Guide

SB	L	XX	7	XX	XX	MV	XX
Product Name	Lamp Type	Wattage	CRI	Color Temp	Photometric Distribution	Voltage	Finish/Color
Shoebox	L = LED	55 = 55 Watts 80 = 80 Watts 100 = 100 Watts 120 = 120 Watts 150 = 150 Watts	CRI>70	45 = 4500K 60 = 6000K	M2 = Medium Type II Distribution S3 = Short Type III Distribution	120-277 V	BL = Black BZ = Bronze


Ordering Information

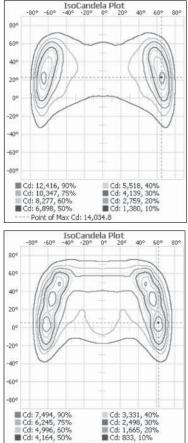
ltem Number	Ordering Abbreviation	Power (W)	CRI	Color Temp (CCT)	Distribution	Total Fixture Lumens	Lumens per Watt (LPW)	BUG Rating
70845	SB-L-55-760-M2-MV-BL	55	70+	6000K	Medium Type II	_	_	-
70846	SB-L-80-760-M2-MV-BL	80	70+	6000K	Medium Type II	_	_	_
70861	SB-L-100-760-M2-MV-BL	100	70+	6000K	Medium Type II	-	-	222
70847	SB-L-120-760-M2-MV-BL	120	70+	6000K	Medium Type II	-	_	-
70848	SB-L-150-760-M2-MV-BL	150	70+	6000K	Medium Type II	-	-	_
70849	SB-L-55-760-S3-MV-BL	55	70+	6000K	Short Type III	-	-	_
70850	SB-L-80-760-S3-MV-BL	80	70+	6000K	Short Type III	-	-	-
70862	SB-L-100-760-S3-MV-BL	100	70+	6000K	Short Type III	-	_	-
70851	SB-L-120-760-S3-MV-BL	120	70+	6000K	Short Type III	-	-	-
70852	SB-L-150-760-S3-MV-BL	150	70+	6000K	Short Type III	-	_	-
70853	SB-L-55-760-M2-MV-BZ	55	70+	6000K	Medium Type II	-	-	_
70854	SB-L-80-760-M2-MV-BZ	80	70+	6000K	Medium Type II	-	_	_
70863	SB-L-100-760-M2-MV-BZ	100	70+	6000K	Medium Type II	_	_	222
70855	SB-L-120-760-M2-MV-BZ	120	70+	6000K	Medium Type II	-	-	_
70856	SB-L-150-760-M2-MV-BZ	150	70+	6000K	Medium Type II	-	_	_
70857	SB-L-55-760-S3-MV-BZ	55	70+	6000K	Short Type III	-	-	-
70858	SB-L-80-760-S3-MV-BZ	80	70+	6000K	Short Type III	-	-	-
70864	SB-L-100-760-S3-MV-BZ	100	70+	6000K	Short Type III	-	_	-
70859	SB-L-120-760-S3-MV-BZ	120	70+	6000K	Short Type III	-	-	-
70860	SB-L-150-760-S3-MV-BZ	150	70+	6000K	Short Type III	-	-	-

Photometric Information

Shoebox – 120 watts Short Cutoff Type III BUG Rating – B2-U2-G2

Shoebox – 120 watts Medium Semi-cutoff Type II BUG Rating – B2-U2-G2

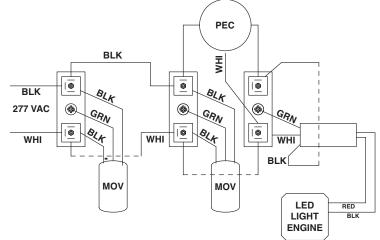
Isofootcandle Plot

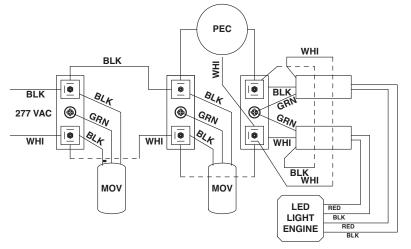

3

5 4 3

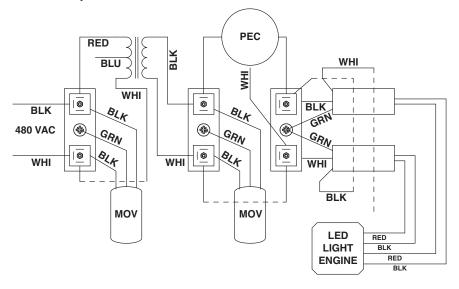
House Side

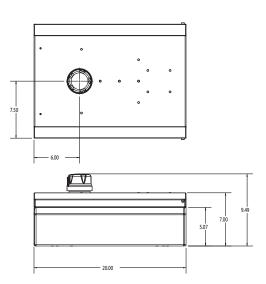
6

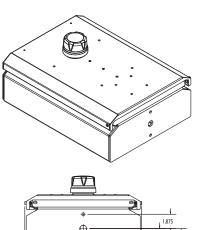

5

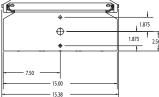

Point of Max Cd: 8,382.8

www.sylvania.com


100-277 VAC - Single Driver with LSP Device




100-277 VAC – Dual Driver with LSP Device



347 or 480 VAC with Step Down Transformer - Dual Driver with LSP Device

Measurements are in inches.

Safety Information

WARNING: ONLY QUALIFIED PERSONNEL SHOULD PERFORM INSTALLATION. TO AVOID ELECTRICAL SHOCK OR COMPONENT DAMAGE, DISCONNECT POWER BEFORE ATTEMPTING INSTALLATION OF THE FIXTURES.

Failure to install the fixtures in accordance with the National Electric Code (NEC), all applicable Federal, State and local electric codes as well as the specific Underwriters Laboratories (UL) safety standards for the installation, location and application may cause serious personal injury, death, property damage and/or product malfunction.

Design modification rights reserved

SYLVANIA is a registered trademark of OSRAM SYLVANIA Inc. SEE THE WORLD IN A NEW LIGHT is a registered trademark of OSRAM SYLVANIA Inc. ProPoint is a trademark of OSRAM SYLVANIA Inc. Specifications subject to change without notice.

LED159 4/11

United States OSRAM SYLVANIA

100 Endicott Street Danvers, MA 01923

Trade

Phone: 1-800-255-5042 Fax: 1-800-255-5043

National Accounts

Phone: 1-800-562-4671 Fax: 1-800-562-4674

OEM/Special Markets

Phone: 1-800-762-7191 Fax: 1-800-762-7192

Display/Optic

Phone: 1-888-677-2627 Fax: 1-800-762-7192

 SYLVANIA Lighting Services

 Phone:
 1-800-323-0572

 Fax:
 1-800-537-0784

Canada

OSRAM SYLVANIA LTD. 2001 Drew Road

Mississauga, ON L5S 1S4

Trade

Phone: 1-800-263-2852 Fax: 1-800-667-6772

 OEM/Special Markets/Display/Optic

 Phone:
 1-800-265-2852

 Fax:
 1-800-667-6772

ECM 3: Integrated and New Energy Management Systems

ECM Overview

Ameresco proposes to replace and/or integrate where possible the different existing EMS systems installed in Loring Elementary School, Noyes Elementary School, Haynes Elementary School and Nixon Elementary School.

The proposed EMS would be "open protocol" and "interoperable" with other manufacturer's products. This feature would allow products from any vendor to be installed as the system is maintained or expanded in the future. The recommended EMS would be accessible from any Internet-enabled personal computer with web browsing software and would provide reduced energy consumption, increase system

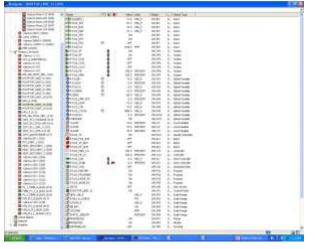


Figure 3.1: Ameresco proposes to expand and recommission the existing EMS.

reliability and improve occupant comfort for the Town. The proposed EMS will provide dynamic systems control and utility consumption reporting capabilities for the entire Town.

Under the proposed EMS, Ameresco would install a new open protocol Tridium^{AX} based EMS that would be installed on top of existing controls for the air handling units and other control valves, as well as exhaust fans and circulator pumps. All existing pneumatic logic controllers will be removed as well as existing pneumatic thermostats controlling unit ventilators and cabinet heaters.

ECM Detail

Existing System

Loring Elementary School:

The Loring Elementary School originally had a Johnson Controls Metasys EMS and Tekmar boiler controller installed to control all the HVAC equipment and boiler plant. The EMS was recently upgraded with a new Johnson Controls Facility Explorer EMS consisting of some new Facility Explorer field controllers and front end software. An FX60 Supervisory Controller was installed to manage all the existing Metasys and new Facility Explorer field controllers and provides web accessibility of the EMS front end software. All of the HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop

Final Investment Grade Audit

ECM 3

temperature and occupancy schedule adjustments. Metasys temperature sensors in each occupied zone communicate with the FX system and provide control of the rooftop units, VAV boxes, and finned tube radiators.

Noyes Elementary School:

A Johnson Controls Facility Explorer EMS was installed to control the building HVAC equipment. An FX60 Supervisory Controller was installed to manage all the existing Honeywell and new Facility Explorer field controllers and provides web accessibility of the EMS front end software. Most of the equipment in renovated areas is equipped with Facility Explorer field controllers, sensors, valves, and actuators, including the boiler plant, some unit ventilators, and finned tube radiators. Much of the building HVAC equipment is being controlled by the previously existing Honeywell field controllers including the remaining unit ventilators, rooftop units, and fan boxes. All of the HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop temperature and occupancy schedule adjustments. Honeywell and Johnson Controls temperature sensors in each occupied zone communicate with the FX system and provide control of the terminal units. A small roof-mounted solar array was installed to offset the electric utility costs. The output can be monitored by a Solren View internet data monitoring system.

Haynes Elementary School:

A Honeywell Excel 15B Building Management System (BMS) was installed to control the HVAC equipment at Haynes Elementary School. The Honeywell BMS allows facility staff to monitor HVAC equipment operation and modify temperature setpoint temperatures and operation schedules. A Honeywell Excel 15B Building Manager operator interface was installed to connect the system to the internet and allow for web accessibility. Honeywell field controllers are installed on equipment throughout the building including the boiler plant and rooftop units. The controllers communicate with the Honeywell wall sensors located within each occupied space to monitor temperature and operate the associate equipment to meet space heating or cooling loads. The Honeywell BMS has full control of the rooftop units and boiler plant but only limited control of the exhaust fans and the AAF unit ventilators. The exhaust fans and unit ventilators are controlled through the BMS by RIB relays that provide basic on/off operation of the equipment. The unit ventilators are controlled by MicroTech 325 controllers that operate the units based on integral thermostats.

Nixon Elementary School:

A Johnson Controls Facility Explorer EMS was installed to control the boiler plant and rooftop units with intentions of expanding the EMS to control the remaining HVAC equipment in the future. The HVAC equipment is being controlled by the previously existing Honeywell field controllers. An FX60 Supervisory Controller was installed to manage all the existing Honeywell field controllers and provides web accessibility of the EMS front end software. The HVAC equipment is controlled and monitored by the Facility Explorer EMS which provides hot water loop temperature and occupancy schedule adjustments. Honeywell and Johnson Controls temperature sensors in each occupied zone communicate with the FX system and provide control of the rooftop units. The unit ventilators, cabinet unit heaters, and finned tube radiators are still being

Final Investment Grade Audit

Page 2

controlled by an antiquated pneumatic control system. Air compressors in the boiler room provide the required amount of air for the system and distribute it throughout the building through a tubing network. Pneumatic thermostats in each of the zones provide a signal to the associated terminal unit's pneumatic valves and dampers to open/close when there is demand for heat or when the space setpoint temperature is satisfied. The EMS has minimal control of the exhaust fans and unit ventilators by the use of numerous RIB relays that provide basic on/off operation of the equipment.

Proposed System

Ameresco is proposing an "open protocol" energy management system with Tridium's Niagara^{AX} Framework. The open protocol specification will allow the Town to connect products from almost any LonWorks[™] or BACnet vendor to the proposed system, in addition to other systems based on MODBUS or

Typical Tridium ™ configuration.

JCI's N2. Future upgrades and expansions can be competitively bid and will not be limited to the products of any one manufacturer. Ameresco has no commercial alliance with any EMS vendor and considers all applicable products. Ameresco believes the Town's interests would be best served with an open protocol EMS architecture.

The existing Johnson Control Facility Explorer FX server located at the Fairbank Community Center will be reused in the DPW Offices server room to control and monitor the new EMS in the four schools. The new server will have all the software necessary to program and expand the EMS including all necessary licenses. This server will sit on the existing WAN, behind existing firewalls. Access to the server will be secured through password gateways and existing Town security systems. Communications between the field

Final Investment Grade Audit

ECM 3

controllers will take place on a dedicated, non-Ethernet network. The new EMS will be networked using the Town's existing WAN. New control system interface equipment will be connected to the existing communications infrastructure. An Internet interface built into the new EMS will allow an authorized and authenticated operator to access EMS information through standard web browser software from any computer connected to the WAN.

All new animated graphics will be created for each building. The following specifications will be incorporated into the scope of work and required to be met by the installing contractor.

- The subcontractor shall have employees that are certified in Tridium Niagara AX working on this project, proof of certification shall be required before contract approval.
- Provide four (4) references of Niagara AX projects similar in scope and size to this project which will serve to illustrate the ability of firm to act as primary contractor to accomplish the work here in as specified.
- o All work shall be performed in a neat and workmanship like manner.
- All wiring shall be run at 90 degree angles, no wiring to be run as "the crow flies".
- All electrical work in mechanical space to be run in EMT.
- All concealed wiring shall be plenum rated and be sized according to the controllers specification.
- Wiring associated with the reheats can be run as open cable but must be secured neatly above the duct work to conceal as much of the cable as possible. Secure the wiring using Tie Wrap adhesive base at no more than 4' intervals.
- All wiring located in drop ceiling shall be secured to the structure and shall be tie wrapped at no more than 10' intervals. Wiring shall not be attached to other wiring systems, light fixtures etc. Wiring shall not be placed on top of suspended ceilings.
- o All junction boxes shall be clearly marked identifying what is located in each junction box.
- Create all new animated graphics, existing graphics that the Town's wishes to retain will need to be recreated.
 - A master Town graphic shall be created with access to each individual building.
 - A graphic for each individual building showing all mechanical systems that have graphics.
 - Create a new, user friendly, floor plan graphic for building navigation with available temperature sensors shown with clickable links to area specific HVAC equipment.
 - Each AHU shall have a dedicated animated graphic page.
 - Hot water, chilled water and DHW systems shall have dedicated animated graphics pages.
 - All graphics are to be submitted for the Town/Ameresco approval during construction.

Below is a list of clarifications to the scope of work described in detail further below.

- All pricing is based on work performed during normal working hours, Monday through Friday 7:30 -4:30
- 2. All existing controls systems assumed to be in good working condition except where called out specifically.
- 3. Excluded is the replacement of control dampers.
- 4. All air and water balancing is excluded.
- 5. Excluded is the replacement of air compressors.
- 6. Coordination of shutdown and cutovers of HVAC systems are assumed to be during normal working hours.
- 7. The Town shall provide a secure location on site to be utilized for equipment and job coordination.
- 8. Standard point to point commissioning and point check out is included. Excluded from this proposal is any cost associated with 3rd party commissioning agent.
- 9. Ameresco assumes that all existing systems to remain and be integrated are in good working condition. Excluded from this proposal is cost associated with repair of any existing controllers.
- 10. Excluded is any work associated with coring. Ameresco will utilize existing risers for network wiring.
- 11. Cutover and commissioning of air handling units, AC units, exhaust fans, pumps etc. shall be coordinated during normal working hours in cooperation with the Town.
- 12. Existing controllers that are to remain shall be connected to the new Tridium JACE controllers. All existing wiring for the controllers that are to remain is assumed to be in good working condition.
- 13. Ameresco's scope does not include fire alarm modifications or installation of fire alarm components.
- 14. All mechanical systems to remain are expected to be in good working condition. Any cost associated with repairs is not included in this proposal unless specified.
- 15. Any painting and patching to be performed by the Town.
- 16. Ameresco is responsible for installing the network Cat 5 wiring from the JACE controllers to the network closets as specified and will be coordinated with the Town's IT department.
- 17. Any control equipment to remain in operation is expected to be in good working condition, any cost associated with repairs is not included in this proposal unless specified. A deficiency list will be generated during the commissioning phase in which the Town will be expected to cover any failed controls components.

Final Investment Grade Audit

ECM 3

The specifications and clarifications listed above shall apply to all other ECMs which include scopes

associated with the EMS. Please refer to the points list in the Appendix for details of each control point to be added in each building.

Detailed Scope of Work - Loring Elementary School:

Integrate Existing DDC EMS

- o Integrate existing Johnson Controls Facility Explorer EMS into new Town-wide system.
- Reuse existing front end
 - o Integrate existing JCI FX60 Controller (see points list for details)
 - Perform point by point inspection of existing control system and provide a report listing any deficiencies.
 - Existing damper actuators, control valves, and other control devises found to be deficient are not to be replaced unless specified in scope of work outlined below
 - o Setup trends and alarms per Ameresco specifications
- o Integrate existing systems per attached points list
 - Existing Points of Control to be integrated: JCI FX/Metasys Systems
 - (2) Burnham V1117W Hot Water Boilers
 - (2) Hot Water Circulation Pumps
 - (8) Rooftop Units
 - (14) Exhaust Fans
 - (11) Fan Powered VAV Boxes
 - (59) Convector Units

Detailed Scope of Work - Noyes Elementary School:

Integrate Existing DDC EMS

- o Integrate existing Johnson Controls Facility Explorer EMS into new Town-wide system.
- Reuse existing front end
 - o Integrate existing JCI FX60 Controller (see points list for details)
 - Perform point by point inspection of existing control system and provide a report listing any deficiencies.
 - Existing damper actuators, control valves, and other control devises found to be deficient are not to be replaced unless specified in scope of work outlined below
 - Setup trends and alarms per Ameresco specifications
 - Integrate existing systems per attached points list
 - Existing Points of Control to be integrated: JCI FX System/Honeywell Controls
 - (3) Thermal Solutions Model EVCA Hot Water Boilers
 - (4) Hot Water Circulation Pumps
 - (3) Boiler Return Hot Water Pumps
 - (5) Air Handling Units
 - (2) Rooftop Units

0

Page 6

- (1) Make-up Air Unit
- (16) Exhaust Fans
- (37) Unit Ventilators
- (6) Fan Powered VAV Boxes
- (5) VAV Boxes
- (4) Fan Coil Units
- (9) Convector Units

Detailed Scope of Work - Haynes Elementary School:

Integrate Existing EMS

- Provide and install a new Johnson Controls FX (or equivalent) Network Level Supervisory Controller running on the latest version of FX Workbench (or equivalent) software at the time of construction with all updates provided until the date of acceptance.
- o New Supervisory Controller to pick up existing Honeywell Excel 15 control points.
- Integrate EMS into new Town-wide system.
 - New Supervisory Controller to come with open license having no expiration (Ameresco OrgId must be added at time of licensing)
 - o New system to be based on points list provided by Ameresco (see attachment for points list)
 - Reuse existing damper actuators and control valves unless specified in scope of work outlined below
 - Provide all category 5e communication wiring from new Supervisory Controller to customer network closet
 - Provide all communication wiring between existing LonWorks[™] field controllers and new Supervisory Controller for a complete operable system. Reuse existing control wiring where feasible.
 - Perform point by point inspection of existing control system and provide a report listing any deficiencies.
 - Existing damper actuators, control valves, and other control devises found to be deficient are not to be replaced unless specified in scope of work outlined below.
 - Setup trends and alarms per Ameresco/ Town's specifications.
- Integrate existing systems per attached points list
 - **Existing Points of Control to be integrated**: Honeywell Excel 15 Controls
 - (3) Hydrotherm Modular MR-1800B-PV Multi-Temp Boilers (6 modules per boiler)
 - (2) Heating Hot Water Pumps
 - (4) Heating and Ventilation Units
 - (2) Packaged Rooftop Units
 - (4) Exhaust Fan Zone Relays
 - (4) Unit Ventilator Zone Relays

ECM 3

Detailed Scope of Work - Nixon Elementary School:

Integrate Existing DDC EMS

- o Integrate existing Johnson Controls Facility Explorer EMS into new Town-wide system.
- Reuse existing front end

0

- o Integrate existing JCI FX60 Controller (see points list for details)
- Perform point by point inspection of existing control system and provide a report listing any deficiencies.
 - Existing damper actuators, control valves, and other control devises found to be deficient are not to be replaced unless specified in scope of work outlined below
- Setup trends and alarms per Ameresco specifications
- Integrate existing Boiler plant and RTUs controls per attached points list
- o Provide and install new control points and integrate existing mechanical systems per attached points list
 - Existing Points of Control to be integrated: JCI FX System/Honeywell Controls
 - (3) Patterson Kelly Thermific N-1200 Boilers
 - (2) Heating Hot Water Pumps
 - (2) Rooftop units
 - (9) Exhaust Fan RIB Relays
 - (10) Unit Ventilator RIB Relays

Install New Unit Ventilator Controllers

- Replace existing Honeywell pneumatic controllers on (37) unit ventilators with new DDC BACnet controllers.
 - Replace existing unit ventilator pneumatic controls including existing EP switches, thermostats, face-and-bypass damper actuators, outside air damper actuators.
 - Provide and control new ³/₄", 2-way, modulating hot water control valves with DDC actuators on existing unit ventilators. Provide all necessary programming to integrate into the existing control system.
 - New Points of Control.
 - (37) Unit Ventilators

Install New Finned Tube Radiation and Cabinet Unit Heater Control

- Provide and control new 2-way, modulating hot water control valves with DDC actuators on (18) finned tube radiators and (8) cabinet unit heaters.
- o Provide all necessary programming to integrate into the control system.
 - New Points of Control.
 - (18) Finned Tube Radiators (convectors)
 - (8) Cabinet Unit Heaters

General Zone and Special Area Event Scheduling

Ameresco proposes to provide operating schedule software for all controlled spaces. For example, during unoccupied periods, areas can be maintained in unoccupied status. This software will permit complicated event scheduling for specifics zones in any building. For example, an "auditorium event" will schedule

Page 8

auditorium air handling units on for the occupied periods only while the remainder of the building is in unoccupied mode.

Optimum Start/Stop of HVAC Equipment

Ameresco proposes to implement optimum start/stop of HVAC Equipment. System energy will be saved if occupied zone temperature is conditioned to its set point as close to the beginning of the occupancy period as is possible. For example, if the occupied zone set point is 70°F and one hour is required to "pull the temperature up" to set point from the unoccupied temperature, the start time of HVAC equipment shall be delayed until one hour before the occupied period. This optimum start time of HVAC equipment is a function of the building characteristics, set points and ambient conditions. The EMS will create a database of measurements for the facility from which an optimum start time will be automatically determined for each day. Similarly, the stop time of HVAC equipment will be determined from this database.

Boiler and Pump Control Sequences

Hot water boilers and pumps will be enabled based on both an operating schedule and an outdoor temperature setpoint. During normal operation the boilers and pumps will only be enabled whenever any of the heating related zones are occupied, i.e., classrooms, gymnasiums, etc., and the outside air temperature is less than or equal to 60° (adjustable). During unoccupied periods the boilers and pumps will be off unless the outside air temperature is less than or equal to 37.5°, at which time the boilers will maintain a lower hot water loop temperature and the pumps will be operated continuously to prevent frozen coils. If the pumps are driven by VFDs then they will be operated at the minimum design flow rate and all hot water coils will be commanded open.

Unoccupied Zone Temperature Reset

Ameresco proposes to fully implement unoccupied zone temperature reset. Zone temperature set points will be varied based on occupancy schedules. Unoccupied zone temperature reset is currently implemented by existing control systems, and will be implemented for existing pneumatic systems. The addition of numerous DDC temperature sensors in all buildings will permit more accurate temperature control. More accurate sensing and control will permit maximum unoccupied reset savings. The following table lists the proposed set points. These set points are proposed for all unoccupied periods.

	Cooling (°F)	Heating (°F)
Unoccupied	85.0	55.0

Occupied Scheduling

Ameresco will initially setup the occupancy schedules in the EMS to reflect the major occupancy schedule of the buildings. The HVAC systems will only be operated when the buildings are supposed to be occupied. Other areas of the buildings like offices, conference rooms, gymnasiums and auditoriums can have longer schedules to reflect occupancy outside of the normal schedules; however, classroom systems will be turned off based on the class schedule. A temporary override will need to be activated to provide after-hours conditioning of classroom spaces. The table below lists the proposed time schedules. The vacation schedule will also be initially setup in the system to turn off equipment on vacation days. The Town will be responsible

Final Investment Grade Audit

ECM 3

for updating the vacation and special days schedule to ensure the systems are not operating when the buildings are not occupied. An optimum start sequence will be programmed to ensure the building is at setpoint for the desired start times. Refer to the optimum start discussion below for more details.

Building	Start time (Mon – Fri)	Stop time (Mon – Fri)	Weekends/ Holidays	Period
Loring Middle School	8:00am	3:00pm	Off	Sept - Jun
Noyes Elementary School	8:30am	3:30pm	Off	Sept - Jun
Haynes Elementary School	8:30am	3:30pm	Off	Sept - Jun
Nixon Elementary School	8:30am	3:30pm	Off	Sept - Jun

Fault and Exception Alarming

Ameresco proposes to provide fault or exception alarming for HVAC equipment. Equipment operation status will be proved by sensors operation; a commanded "ON" will result in a proved "ON" or an alarm will be generated. An alarm list will be maintained in a database to provide maintenance information to operators in real time. Operators will save significant time by addressing needs as indicated by the EMS. During non-working hours the EMS will have the capability of paging operators automatically to announce system faults.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The installation of remotely-accessible energy management systems will improve comfort, reduce energy use and cost, and reduce on-site man-hours by specialized maintenance personnel.

Page 10

Appendix for ECM 3: Integrated and New Energy Management Systems

I. Energy Savings Calculations

Final Investment Grade Audit

ECM 3: Integrated and New Energy Management Systems

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Summary		
Measure ID:	3	
Measure Name:	Integrated and New Energy Management System	
Measure Location:		
Engineers:		

Site Name:		Loring	Noyes	Haynes	Nixon	Summary
Item	Units	Savings	Savings	Savings	Savings	
Electricity						
Energy On-Peak	kWh	407	220	7,223	1,377	9,227
Energy Off-Peak	kWh					0
Energy Total	kWh	407	220	7,223	1,377	9,227
Demand On-Peak, Monthly	kW					0.0
Demand On-Peak, Annual	kW					0.0
Demand Off-Peak, Monthly	kW					0.0
Demand Off-Peak, Annual	kW					0.0
Fossil Fuel						0
Natural Gas (NG)	Therms	1,204	2,342	4,743	3,648	11,938
Liquid Propane Gas (LPG)	Gallons	0	0	0	0	0
Steam	Mlbs	0	0	0	0	0
Fuel Oil, #2	Gallons	0	0	0	0	0
Fuel Oil, #4	Gallons	0	0	0	0	0
Fuel Oil, #6	Gallons	0	0	0	0	0
Miscellaneous	Misc	0	0	0	0	0
Water						0
Water Savings	kGallons					0
Sewer						0
Sewer Savings	kGallons					0

MAPC - Sudbury Loring Elementary Integrated and New Energy Management System

TMY-2 Wea	ather Data	a for Worceste	r, MA					Existing O	ccupancy Scl	hedule		Existing He	ating/Coolin	g Schedule		Existing M	otor Operatir	ng Schedule		Existing				Proposed					Savings					
								Ŭ		T		U					· ·					Occ	UnOcc							Occ	UnOcc	0		
																					UnOcc.	Cooling/Heat	ti Cooling/Hea	t					UnOcc.	Cooling/Heati	Cooling/Heat	Cooling	HVAC	Heating
			M.C.																	Occ. Cool/	Cool/ Heat	ng Energy	ing Energy					Occ. Cool/	Cool/ Heat	ng Energy	ing Energy	Energy	Electrical	Energy
Amb. Temp	Ave Ten	np M.C.W.B	Enthalpy	01-08	09-16	17-24	Total Bin	Occ On-	UnOcc On-		UnOcc Off-		UnOcc On-		UnOcc Off	- Occ On-	UnOcc On-	Occ Off-	UnOcc Off	- Heat Load	Load	Consump.	Consump.	Occ On-	UnOcc On-	Occ Off-	UnOcc Off-	Heat Load	Load	Consump.	Consump.	Savings	Savings	Savings
Bin deg. F	deg. F	deg. F	Btu/lbma	Hours	Hours	Hours	Hours	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	(MBH)	(MBH)	(MMBTU)	(MMBTU)	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(MMBTU)	(kWh)	(MMBTU)
Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																		
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	222	169	0	0	0	0	0	0	222	169	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	199	152	0	0	0	0	0	0	199	152	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	177	136	0	0	0	0	0	1	177	136	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	0	0	6	2	0	0	6	155	119	0	0	2	0	0	6	155	119	0	0	0	0	
85 to 90	87.5	70.3	34.6	1	37	6	44	8	4	0	31	10	2	0	31	10	2	0	31	133	102	0	1	10	2	0	31	133	102	0	1	0	2	
80 to 85	82.5	68.4	33.0	8	138	29	175	33	17	0	125	41	9	0	125	41	9	0	125	111	85	2	4	40	9	0	125	111	85	2	4	0	7	
75 to 80	77.5	66.2	31.2	27	202	83	312	58	31	0	223	72	17	0	223	72	17	0	223	89	68	2	6	72	17	0	223	89	68	2	6	0	14	
70 to 75	72.5	64.3	29.7	64	269	160	493	92	49	0	352	115	26	0	352	115	26	0	352	66	51	3	7	114	27	0	352	66	51	3	7	0	23	
65 to 70	67.5	61.2	27.5	185	208	243	636	118	63	0	454	148	34	0	454	148	34	0	454	44	34	2	6	147	34	0	454	44	34	2	6	0	29	
60 to 65	62.5	57.3	24.8	315	249	298	862	160	86	0	616	200	46	0	616	200	46	0	616	22	17	2	4	199	47	0	616	22	17	2	4	0	40	
Heating																																		
55 to 60	57.5	52.7	0.0	303	245	276	824	153	82	0	589	191	44	0	589	191	44	0	589	(511)	(22)	0	22	191	45	0	589	(511)	0	0	21		43	0
50 to 55	52.5	47.8	0.0	262	184	228	674	125	67	0	482	157	36	0	482	157	36	0	482	(715)	(97)	28	60	156	36	0	482	(715)	(75)	28	45		36	15
45 to 50	47.5	42.5	0.0	204	230	211	645	120	64	0	461	150	34	0	461	150	34	0	461	(920)	(172)	57	109	149	35	0	461	(920)	(150)	57	95		31	14
40 to 45	42.5	38.3	0.0	210	191	234	635	118	63	0	454	148	34	0	454	148	34	0	454	(1,124)	(247)	85	159	147	34	0	454	(1,124)	(225)	85	145		30	14
35 to 40	37.5	33.8	0.0	321	301	286	908	169	90	0	649	211	48	0	649	211	48	0	649	(1,328)	(322)	163	300	210	49	0	649	(1,328)	(300)	163	280		43	20
30 to 35	32.5	28.7	0.0	356	221	313	890	166	88	0	636	207	47	0	636	207	47	0	636	(1,533)	(397)	201	366	206	48	0	636	(1,533)	(375)	201	347		37	20
25 to 30	27.5	23.5	0.0	228	211	211	650	121	65	0	464	151	34	0	464	151	34	0	464	(1,737)	(472)	176	320	150	35	0	464	(1,737)	(450)	176	305		27	15
20 to 25	22.5	19.1	0.0	104	94	124	322	60	32	0	230	75	17	0	230	75	17	0	230	(1,941)	(547)	102	185	74	17	0	230	(1,941)	(525)	102	177		13	7
15 to 20	17.5	14.3	0.0	144	78	117	339	63	34	0	242	79	18	0	242	79	18	0	242	(2,146)	(622)	123	222	78	18	0	242	(2,146)	(600)	123	214		14	8
10 to 15	12.5	9.3	0.0	118	40	85	243	45	24	0	174	56	13	0	174	56	13	0	174	(2,350)	(697)	99	178	56	13	0	174	(2,350)	(675)	99	173		10	6
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	18	4	0	55	18	4	0	55	(2,554)	(772)	35	63	18	4	0	55	(2,554)	(750)	35	61		3	2
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	1	0	16	5	1	0	16	(2,759)	(847)	11	20	5	1	0	16	(2,759)	(825)	11	19		1	1
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(2,963)	(922)	0	0	0	0	0	0	(2,963)	(900)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,167)	(997)	0	0	0	0	0	0	(3,167)	(975)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,372)	(1,072)	0	0	0	0	0	0	(3,372)	(1,050)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,576)	(1,147)	0	0	0	0	0	0	(3,576)	(1,125)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,780)	(1,222)	0	0	0	0	0	0	(3,780)	(1,200)	0	0		0	0
				2,920	2,920	2,920	8,760	1,630	870	0	6,260	2,035	465	0	6,260	2,035	465	0	6,260			1,091	2,030	2,026	474	0	6,260			1,091	1,910	0	403	120

Cell Ref.		Assumptions:
A-H	TMY-2 Weather Data for Worcester, MA	
I - L	Existing Occupancy hours	Occupied Area
M - P	Existing Heating/Cooling hours	Existing Heating Plan
Q - T	Existing Motor Operating Hours	Existing Chiller Effic
U	Occupied Cooling and Heating loads (MBH)	Fan Power
V	Unoccupied Cooling and Heating loads (MBH)	Heating Pump Power
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$	Cooling Pump Power
	Heating = -MIN([col I] + [col K], [col M] + [col O]) x MIN([col U] + internal gains, 0) + IF([col I] + [col K]) > [col M] + [col O]), x ([col I] + [col G]) x MIN([col V] + internal gains, 0), 0) ÷ 1,000 ÷ AD44	UnOcc. Fan & Pump
X	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$	UnOcc. Kitchen Ven
	Heating = -([col N] + [col P]) x MIN([col V] + internal gains, 0) + IF([col I] + [col K]) < [col M] + [col O]) - ([col I] + [col K])) x MIN([col U] + internal gains, 0)) + 1,000 + AD44	UnOcc. Ventilation F
Y - AB	Proposed Operating hours	
AC	Proposed Occupied Cooling and Heating Loads:	Average Existing Sp
	$Cooling = ([col B] - AC60) \div ([col B] - AC55) \times [col U]$	_
	Heating = ([col B] - AE60) ÷ ([col B] - AE55) x [col U]	Occupied
AD	Proposed Unoccupied Cooling and Heating Loads:	UnOccupied
	$Cooling = ([col B] - AC61) \div ([col B] - AC56) \times [col V]$	
	Heating = ([col B] - AE61) ÷ ([col B] - AE56) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)	Average Proposed
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$	-
	Heating = -MIN([col I] + [col K], [col Y] + [col AA]) x MIN([col AC] + internal gains, 0) + IF([col I] + [col K]) > [col Y] + [col AA]), (([col I] + [col K]) - ([col Y] + [col AA])) x MIN([col AD] + internal gains, 0), 0) ÷ 1,000 ÷ AD44	Occupied
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$	UnOccupied
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains, 0) + IF([col I] + [col K] < [col Y] + [col AA]) - ([col I] + [col K]) x MIN([col AC] + internal gains, 0)) = 1,000 ÷ AD44	
AG	= ([col W] + [col X]) - ([col AE] + [col AF])	-
	HVAC Fan and Pump Savings	-
AH	Cooling = ([col Q] + [col T] + ([col T] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48)	-
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46). ((col R] + [col T]) x AD49 x AD46). ((col R] + [col R]) x AD49 x AD46). ((col R]	_
AI	= ([col W] + [col X]) - ([col AE] + [col AF])	_

	Value	Unit	CELL	Description
			REF	
L	71,451	SF	AD43	
ng Plant Efficiency	83.0%		AD44	
r Efficiency	2.9	COP	AD45	
	43.4	kW	AD46	
Power	6.3	kW	AD47	
Power	0.0	kW	AD48	
Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
n Vent. Reduction	0.0%		AD50	% CFM Saved
ation Reduction	0.0%		AD51	% CFM Saved

Average Existing Space	Average Existing Space Temperatures													
	Cooling		Heating		Description									
Occupied	72.0	AC55	70.0	AE55										
UnOccupied	78.0	AC56	59.0	AE56										
*														

Average Proposed Space	e Temperatu	res			
	Cooling		Heating		Description
Occupied	72.0	AC60	70.0	AE60	
UnOccupied	78.0	AC61	57.5	AE61	

MAPC - Sudbury Noyes Elementary

Integrated and New Energy Management System

TMY-2 We	ather Data fo	r Worcester	MA					Existing O	ccupancy Sch	edule		Existing H	eating/Cooling	g Schedule		Existing Mo	otor Operatio	ng Schedule		Existing				Proposed								Savings		
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	M.C. Enthalpy Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	 Occ Off- Peak Hrs. 	UnOcc Off Peak Hrs.	Occ. Cool/ - Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	ating Energ Consump	UnOcc e Cooling/He ating Energy Consump.) (MMBTU)	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	U	UnOcc Cooling/He ating Energy Consump. (MMBTU)	Cooling Energy Savings (MMBTU)	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU
А	В	С	D	Е	F	G	H	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	v	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																<u> </u>	1	
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	309	237	0	0	0	0	0	0	309	237	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	278	213	0	0	0	0	0	0	278	213	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	248	189	0	0	0	0	0	1	248	189	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	1	0	6	2	1	0	6	217	166	0	0	2	1	0	6	217	166	0	0	0	0	
85 to 90	87.5	70.3	34.6	1	37	6	44	8	4	0	31	9	3	0	31	9	3	0	31	186	142	1	2	9	3	0	31	186	142	1	2	0	1	
80 to 85	82.5	68.4	33.0	8	138	29	175	33	17	0	125	37	13	0	125	37	13	0	125	155	118	2	6	37	13	0	125	155	118	2	6	0	4	
75 to 80	77.5	66.2	31.2	27	202	83	312	58	31	0	223	66	23	0	223	66	23	0	223	124	95	3	8	66	23	0	223	124	95	3	8	0	7	
70 to 75	72.5	64.3	29.7	64	269	160	493	92	49	0	352	105	36	0	352	105	36	0	352	93	71	3	9	104	36	0	352	93	71	3	9	0	11	
65 to 70	67.5	61.2	27.5	185	208	243	636	118	63	0	454	135	46	0	454	135	46	0	454	62	47	3	8	135	47	0	454	62	47	3	8	0	15	
60 to 65	62.5	57.3	24.8	315	249	298	862	160	86	0	616	183	63	0	616	183	63	0	616	31	24	2	5	183	63	0	616	31	24	2	5	0	20	
Ieating																																1 ,	[
55 to 60	57.5	52.7	0.0	303	245	276	824	153	82	0	589	175	60	0	589	175	60	0	589	(598)	(53)	13	14	175	61	0	589	(598)	(8)	13	14	,	25	1
50 to 55	52.5	47.8	0.0	262	184	228	674	125	67	0	482	143	49	0	482	143	49	0	482	(837)	(128)	46	64	143	50	0	482	(837)	(83)	46	35	,	21	29
45 to 50	47.5	42.5	0.0	204	230	211	645	120	64	0	461	137	47	0	461	137	47	0	461	(1,076)	(203)	78	111	137	47	0	461	(1,076)	(158)	78	83	,	18	28
40 to 45	42.5	38.3	0.0	210	191	234	635	118	63	0	454	135	46	0	454	135	46	0	454	(1,316)	(278)	110	158	135	47	0	454	(1,316)	(233)	110	131	<u> </u>	17	27
35 to 40	37.5	33.8	0.0	321	301	286	908	169	90	0	649	193	66	0	649	193	66	0	649	(1,555)	(354)	205	296	192	67	0	649	(1,555)	(308)	205	257	<u> </u>	25	39
30 to 35	32.5	28.7	0.0	356	221	313	890	166	88	0	636	189	65	0	636	189	65	0	636	(1,794)	(429)	247	359	189	65	0	636	(1,794)	(384)	247	320	<u> </u>	18	39
25 to 30	27.5	23.5	0.0	228	211	211	650	121	65	0	464	138	47	0	464	138	47	0	464	(2,033)	(504)	215	312	138	48	0	464	(2,033)	(459)	215	284	<u> </u>	13	28
20 to 25	22.5	19.1	0.0	104	94	124	322	60	32	0	230	69	23	0	230	69	23	0	230	(2,272)	(579)	123	180	68	24	0	230	(2,272)	(534)	123	166	<u> </u>	7	14
15 to 20	17.5	14.3	0.0	144	78	117	339	63	34	0	242	72	25	0	242	72	25	0	242	(2,511)	(654)	147	215	72	25	0	242	(2,511)	(609)	147	200	<u> </u>	7	15
10 to 15	12.5	9.3	0.0	118	40	85	243	45	24	0	174	52	18	0	174	52	18	0	174	(2,751)	(730)	118	173	51	18	0	174	(2,751)	(684)	118	162	<u> </u>	5	11
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	16	6	0	55	16	6	0	55	(2,990)	(805)	42	61	16	6	0	55	(2,990)	(760)	42	57	<u> </u>	2	3
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	2	0	16	5	2	0	16	(3,229)	(880)	13	19	5	2	0	16	(3,229)	(835)	13	18	<u> </u>	0	1
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,468)	(955)	0	0	0	0	0	0	(3,468)	(910)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,707)	(1,031)	0	0	0	0	0	0	(3,707)	(985)	0	0	<u> </u>	0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(3,947)	(1,106)	0	0	0	0	0	0	(3,947)	(1,061)	0	0	<u> </u>	0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(4,186)	(1,181)	0	0	0	0	0	0	(4,186)	(1,136)	0	0	<u> </u>	0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(4,425)	(1,256)	0	0	0	0	0	0	(4,425)	(1,211)	0	0	<u> </u>	0	0
				2,920	2,920	2,920	8,760	1,630	870	0	6.260	1.864	636	0	6,260	1.864	636	0	6,260			1,372	2,001	1.856	644	0	6,260			1.372	1.766	0	216	234

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	Cooling = [col U] x ([col M] + [col O]) ÷ 1,000 ÷ AD45
	Heating = -MIN([col I] + [col K], [col M] + [col O]) x MIN([col U] + internal gains, 0) + IF([col I] + [col K]) - (([col I] + [col K]) - (([col M] + [col O])) x MIN([col V] + internal gains, 0), 0) \div 1,000 \div AD44
X	$Cooling = [col R] \times ([col J] + [col L]) \div 1,000 \div AD45$
	$Heating = -\{[col N] + [col P]\} x MIN([col V] + internal gains, 0) + IF([col I] + [col K] < [col M] + [col O]\}, ([col M] + [col O]), ([col I] + [col K])) x MIN([col V] + internal gains, 0)) + 1,000 + AD44$
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC60) \div ([col B] - AC55) x [col U]$
	Heating = $([col B] - AE60) \div ([col B] - AE55) x [col U]$
AD	Proposed Unoccupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC61) \div ([col B] - AC56) x [col V]$
	Heating = ([col B] - AE61) + ([col B] - AE56) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col Y] + [col AA]) \times MIN([col AC] + internal gains, 0) + IF([col I] + [col K]) > [col Y] + [col AA], (([col I] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + 1,000 + AD44$
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains , 0) + IF([col I] + [col K] < [col Y] + [col AA], (([col Y] + [col AA]) - ([col I] + [col K])) x MIN([col AC] + internal gains , 0)) + 1,000 + AD44
AG	$= ([\operatorname{col} W] + [\operatorname{col} X]) - ([\operatorname{col} AE] + [\operatorname{col} AF])$
	HVAC Fan and Pump Savings
AH	Cooling = ([col Q] + [col S] + ([col R] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48)
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD49 x AD46))) (([col Y] + [col AA]) x AD49 x AD46, IF(B20>50,0,([col Z] + [col AB]) x AD49 x AD46, IF(B20>50,0,([col Z] + [col AB]) x AD49 x AD46, IF(B20>50,0,([col R] + [col AB]) x AD49 x AD46, IF(B20>50,0,([co
AI	$= ([\operatorname{col} W] + [\operatorname{col} X]) - ([\operatorname{col} AE] + [\operatorname{col} AF])$

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	65,000	SF	AD43	
isting Heating Plant Efficiency	85.0%		AD44	
isting Chiller Efficiency	2.9	COP	AD45	
n Power	25.2	kW	AD46	
ating Pump Power	8.3	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	0.0%		AD51	% CFM Saved

erage Existing Space T	rage Existing Space Temperatures									
	Cooling		Heating		Description					
cupied	72.0	AC55	70.0	AE55						
Occupied	78.0	AC56	61.0	AE56						

erage Proposed Space	Temperatur	es			
	Cooling		Heating		Description
cupied	72.0	AC60	70.0	AE60	
Occupied	78.0	AC61	58.0	AE61	

MAPC - Sudbury **Haynes Elementary**

Integrated and New Energy Management System

TMY-2 Weat	ther Data fo	r Worcester,	MA					Existing Oc	ccupancy Sch	edule		Existing He	ating/Cooling	g Schedule		Existing M	otor Operatio	ng Schedule		Existing				Proposed								Savings		
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	M.C. Enthalpy Btu/lbma	01-08 Hours	s 09-16 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off Peak Hrs.		UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)		UnOcc Cooling/He ating Energy Consump. (MMBTU)	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	0	UnOcc Cooling/He ating Energy Consump. (MMBTU)	0	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU)
Α	В	С	D	Е	F	G	H	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																		<u> </u>
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	324	248	0	0	0	0	0	0	324	248	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	291	223	0	0	0	0	0	0	291	223	0	0	0	0	í
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	259	198	0	0	0	0	0	1	259	198	0	0	0	1	1
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	0	0	6	2	0	0	6	227	173	0	0	2	1	0	6	227	173	0	0	0	6	
85 to 90	87.5	70.3	34.6	1	37	6	44	8	4	0	31	11	2	0	31	11	2	0	31	194	149	1	2	9	3	0	31	194	149	1	2	0	32	
80 to 85	82.5	68.4	33.0	8	138	29	175	33	17	0	125	43	6	0	125	43	7	0	125	162	124	2	6	37	13	0	125	162	124	2	6	0	127	
75 to 80	77.5	66.2	31.2	27	202	83	312	58	31	0	223	78	11	0	223	77	12	0	223	130	99	3	8	66	23	0	223	130	99	3	8	0	251	í –
70 to 75	72.5	64.3	29.7	64	269	160	493	92	49	0	352	123	18	0	352	122	19	0	352	97	74	4	9	104	36	0	352	97	74	3	10	0	397	1
65 to 70	67.5	61.2	27.5	185	208	243	636	118	63	0	454	158	23	0	454	157	24	0	454	65	50	3	8	135	47	0	454	65	50	3	8	0	512	í
60 to 65	62.5	57.3	24.8	315	249	298	862	160	86	0	616	214	32	0	616	213	33	0	616	32	25	2	5	183	63	0	616	32	25	2	6	0	694	[
Heating																																		(
55 to 60	57.5	52.7	0.0	303	245	276	824	153	82	0	589	205	30	0	589	204	31	0	589	(221)	(58)	3	43	175	61	0	589	(221)	(4)	3	5		758	37
50 to 55	52.5	47.8	0.0	262	184	228	674	125	67	0	482	168	25	0	482	167	26	0	482	(309)	(102)	17	69	143	50	0	482	(309)	(47)	17	24		620	45
45 to 50	47.5	42.5	0.0	204	230	211	645	120	64	0	461	160	24	0	461	160	24	0	461	(397)	(147)	30	98	137	47	0	461	(397)	(89)	30	53		534	45
40 to 45	42.5	38.3	0.0	210	191	234	635	118	63	0	454	158	23	0	454	157	24	0	454	(485)	(192)	42	128	135	47	0	454	(485)	(131)	42	81		526	47
35 to 40	37.5	33.8	0.0	321	301	286	908	169	90	0	649	226	33	0	649	225	34	0	649	(573)	(236)	80	229	192	67	0	649	(573)	(174)	80	157		752	72
30 to 35	32.5	28.7	0.0	356	221	313	890	166	88	0	636	221	33	0	636	220	34	0	636	(662)	(281)	97	269	189	65	0	636	(662)	(216)	97	195		645	74
25 to 30	27.5	23.5	0.0	228	211	211	650	121	65	0	464	162	24	0	464	161	25	0	464	(750)	(325)	85	229	138	48	0	464	(750)	(258)	85	172		471	57
20 to 25	22.5	19.1	0.0	104	94	124	322	60	32	0	230	80	12	0	230	80	12	0	230	(838)	(370)	49	129	68	24	0	230	(838)	(301)	49	100		233	30
15 to 20	17.5	14.3	0.0	144	78	117	339	63	34	0	242	84	12	0	242	84	13	0	242	(926)	(414)	58	153	72	25	0	242	(926)	(343)	58	121		246	33
10 to 15	12.5	9.3	0.0	118	40	85	243	45	24	0	174	60	9	0	174	60	9	0	174	(1,015)	(459)	47	122	51	18	0	174	(1,015)	(385)	47	98		176	24
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	19	3	0	55	19	3	0	55	(1,103)	(503)	16	42	16	6	0	55	(1,103)	(428)	16	34		56	8
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	1	0	16	5	1	0	16	(1,191)	(548)	5	13	5	2	0	16	(1,191)	(470)	5	11		16	2
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,279)	(592)	0	0	0	0	0	0	(1,279)	(512)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,367)	(637)	0	0	0	0	0	0	(1,367)	(555)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,456)	(681)	0	0	0	0	0	0	(1,456)	(597)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,544)	(726)	0	0	0	0	0	0	(1,544)	(639)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,632)	(771)	0	0	0	0	0	0	(1,632)	(682)	0	0		0	0
				2,920	2,920	2,920	8,760	1.630	870	0	6.260	2,177	323	0	6,260	2,168	332	0	6,260			546	1,563	1,856	644	0	6,260			543	1,091	1	7.054	474

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col M] + [col O]) \times MIN([col U] + internal gains, 0) + IF([col I] + [col K]) - ([col I] + [col K]) - ([col M] + [col O]) \times MIN([col V] + internal gains, 0), 0) + 1,000 + AD44$
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	Heating = -([col N] + [col P]) x MIN([col V] + internal gains, 0) + IF([col I] + [col K] < [col M] + [col O]) - ([col I] + [col K])) x MIN([col U] + internal gains, 0)) + 1,000 + AD44
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC60) \div ([col B] - AC55) \times [col U]$
	Heating = ([col B] - AE60) ÷ ([col B] - AE55) x [col U]
AD	Proposed Unoccupied Cooling and Heating Loads:
	Cooling = ([col B] - AC61) ÷ ([col B] - AC56) x [col V]
	Heating = ([col B] - AE61) ÷ ([col B] - AE56) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] \times ([col Y] + [col AA]) \div 1,000 \div AD45$
	Heating = -MIN([col I] + [col K], [col Y] + [col AA]) x MIN([col AC] + internal gains, 0) + IF([col I] + [col K] > [col Y] + [col AA], (([col I] + [col AA])) x MIN([col AD] + internal gains, 0), 0) ÷ 1,000 ÷ AD44
AF	$Cooling = [col AD] \times ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains, 0) + IF([col I] + [col K] < [col Y] + [col AA], -([col I] + [col K]) x MIN([col AC] + internal gains, 0)) ÷ 1,000 ÷ AD44
AG	= ([col W] + [col X]) - ([col AE] + [col AF])
	HVAC Fan and Pump Savings
AH	$Cooling = ([col Q] + [col T] + ([col T] + [col T]) \times AD49) \times (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) \times AD49) \times (AD46 + AD48)$
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD4
AI	= ([col W] + [col X]) - ([col AE] + [col AF])

Assur Occu Existi Existi Fan F Heati Cooli UnOo UnOo UnOo Occu UnOo Aver

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	62,811	SF	AD43	
sting Heating Plant Efficiency	78.0%		AD44	
sting Chiller Efficiency	2.9	COP	AD45	
Power	22.6	kW	AD46	
ating Pump Power	3.2	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	30.0%		AD51	% CFM Saved

erage Existing Space T	Temperatures	1			
	Cooling		Heating		Description
cupied	72.0	AC55	70.0	AE55	
Occupied	78.0	AC56	64.0	AE56	

erage Proposed Space	Temperatur	es			
	Cooling		Heating		Description
cupied	72.0	AC60	70.0	AE60	
Occupied	78.0	AC61	58.0	AE61	

MAPC - Sudbury Nixon Elementary

Integrated and New Energy Management System

TMY-2 Wea	ther Data fo	r Worcester,	MA					Existing Oc	cupancy Sch	edule		Existing He	ating/Cooling	g Schedule		Existing Mo	tor Operatii	ng Schedule		Existing				Proposed								Savings		
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	M.C. Enthalpy Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	- Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)		UnOcc Cooling/He ating Energy Consump. (MMBTU)	Occ On- Peak Hrs.		Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	0	UnOcc Cooling/He ating Energy Consump. (MMBTU)	0	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU)
Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																		
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	139	106	0	0	0	0	0	0	139	106	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	96	0	0	0	0	0	0	125	96	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	111	85	0	0	0	0	0	1	111	85	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	0	0	6	2	0	0	6	97	74	0	0	2	1	0	6	97	74	0	0	0	1	
85 to 90	87.5	70.3	34.6	1	37	6	44	8	5	0	31	10	3	0	31	10	3	0	31	83	64	0	1	9	3	0	31	83	64	0	1	0	4	
80 to 85	82.5	68.4	33.0	8	138	29	175	32	18	0	125	39	11	0	125	39	11	0	125	70	53	1	2	37	13	0	125	70	53	1	2	0	17	
75 to 80	77.5	66.2	31.2	27	202	83	312	56	33	0	223	70	19	0	223	70	19	0	223	56	43	1	4	67	23	0	223	56	43	1	4	0	35	
70 to 75	72.5	64.3	29.7	64	269	160	493	89	52	0	352	110	30	0	352	110	30	0	352	42	32	2	4	105	36	0	352	42	32	1	4	0	55	
65 to 70	67.5	61.2	27.5	185	208	243	636	115	66	0	454	142	39	0	454	142	39	0	454	28	21	1	4	136	46	0	454	28	21	1	4	0	71	
60 to 65	62.5	57.3	24.8	315	249	298	862	156	90	0	616	193	53	0	616	193	53	0	616	14	11	1	2	184	62	0	616	14	11	1	2	0	96	
Heating																																		
55 to 60	57.5	52.7	0.0	303	245	276	824	149	86	0	589	184	51	0	589	184	51	0	589	(190)	(40)	0	22	176	59	0	589	(190)	(9)	0	5		128	16
50 to 55	52.5	47.8	0.0	262	184	228	674	122	70	0	482	151	42	0	482	151	42	0	482	(265)	(84)	8	48	144	49	0	482	(265)	(53)	8	27		105	21
45 to 50	47.5	42.5	0.0	204	230	211	645	117	67	0	461	144	40	0	461	144	40	0	461	(341)	(128)	18	75	138	47	0	461	(341)	(97)	18	55		90	21
40 to 45	42.5	38.3	0.0	210	191	234	635	115	66	0	454	142	39	0	454	142	39	0	454	(417)	(173)	29	103	135	46	0	454	(417)	(142)	29	82		89	21
35 to 40	37.5	33.8	0.0	321	301	286	908	164	95	0	649	203	56	0	649	203	56	0	649	(493)	(217)	56	189	194	66	0	649	(493)	(186)	56	159		127	30
30 to 35	32.5	28.7	0.0	356	221	313	890	161	93	0	636	199	55	0	636	199	55	0	636	(569)	(261)	70	225	190	64	0	636	(569)	(230)	70	196		89	30
25 to 30	27.5	23.5	0.0	228	211	211	650	118	68	0	464	145	40	0	464	145	40	0	464	(644)	(306)	62	194	139	47	0	464	(644)	(275)	62	172		65	22
20 to 25	22.5	19.1	0.0	104	94	124	322	58	34	0	230	72	20	0	230	72	20	0	230	(720)	(350)	36	111	69	23	0	230	(720)	(319)	36	100		32	11
15 to 20	17.5	14.3	0.0	144	78	117	339	61	35	0	242	76	21	0	242	76	21	0	242	(796)	(394)	43	132	72	24	0	242	(796)	(363)	43	120		34	12
10 to 15	12.5	9.3	0.0	118	40	85	243	44	25	0	174	54	15	0	174	54	15	0	174	(872)	(438)	35	106	52	18	0	174	(872)	(407)	35	97		24	8
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	17	5	0	55	17	5	0	55	(948)	(483)	12	37	16	6	0	55	(948)	(452)	12	34		8	3
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	1	0	16	5	1	0	16	(1,024)	(527)	4	12	5	2	0	16	(1,024)	(496)	4	11		2	1
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,099)	(571)	0	0	0	0	0	0	(1,099)	(540)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,175)	(616)	0	0	0	0	0	0	(1,175)	(585)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,251)	(660)	0	0	0	0	0	0	(1,251)	(629)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,327)	(704)	0	0	0	0	0	0	(1,327)	(673)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,403)	(748)	0	0	0	0	0	0	(1,403)	(717)	0	0		0	0
				2,920	2,920	2,920	8,760	1,585	915	0	6.260	1,959	541	0	6.260	1,959	541	0	6.260			379	1,270	1.868	632	0	6.260			379	1,075	0	1.072	195

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
	Unoccupied Cooling and Heating loads (MBH)
W	Cooling = $[col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col M] + [col O]) \times MIN([col U] + internal gains, 0) + IF([col I] + [col K]) - ([col M] + [col O]), (([col I] + [col O])) \times MIN([col V] + internal gains, 0), 0) + I,000 + AD44$
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	$Heating = -([col N] + [col P]) x MIN([col V] + internal gains, 0) + IF([col I] + [col K] < [col M] + [col O], (([col M] + [col O]) - ([col I] + [col K])) x MIN([col U] + internal gains, 0)) \div 1,000 \div AD44$
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC60) \div ([col B] - AC55) x [col U]$
	Heating = ([col B] - AE60) ÷ ([col B] - AE55) x [col U]
AD	Proposed Unoccupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC61) \div ([col B] - AC56) x [col V]$
	$Heating = ([col B] - AE61) + ([col B] - AE56) \times [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)$
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$
	Heating = -MIN([col I] + [col K], [col Y] + [col AA]) x MIN([col AC] + internal gains, 0) + IF([col I] + [col K]) > [col Y] + [col AA], (([col I] + [col AA])) x MIN([col AC] + internal gains, 0), 0) ÷ 1,000 ÷ AD44
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains, 0) + IF([col I] + [col K] < [col Y] + [col AA]) - ([col I] + [col AA]) - ([col I] + [col AC]) + internal gains, 0)) ÷ 1,000 ÷ AD44
AG	$= ([\operatorname{col} W] + [\operatorname{col} X]) - ([\operatorname{col} AE] + [\operatorname{col} AF])$
	HVAC Fan and Pump Savings
AH	Cooling = ([col Q] + [col X] + ([col R] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48)
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD4
AI	$= ([\operatorname{col} W] + [\operatorname{col} X]) - ([\operatorname{col} AE] + [\operatorname{col} AF])$

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	58,215	SF	AD43	
sting Heating Plant Efficiency	83.0%		AD44	
sting Chiller Efficiency	2.9	COP	AD45	
Power	10.7	kW	AD46	
ating Pump Power	4.3	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	0.0%		AD51	% CFM Saved

erage Existing Space T	rage Existing Space Temperatures									
	Cooling		Heating		Description					
cupied	72.0	AC55	70.0	AE55						
Occupied	78.0	AC56	62.0	AE56						

erage Proposed Space	Temperatur	es			
	Cooling		Heating		Description
cupied	72.0	AC60	70.0	AE60	
Occupied	78.0	AC61	58.5	AE61	

MAPC - Sudbury

Nixon Elementary

Control Unit Ventilators

TMY-2 We	ather Data fo	r Worcester,	MA					Existing Oc	ccupancy Sch	edule		Existing He	ating/Cooling	Schedule		Existing Me	otor Operatir	ng Schedule		Existing				Proposed								Savings		
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	M.C. Enthalpy Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.		UnOcc. Cool/ Heat Load (MBH)	ating Energ Consump.	UnOcc Cooling/He ating Energy Consump. (MMBTU)	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)		UnOcc Cooling/He y ating Energy Consump. (MMBTU)	Cooling Energy Savings (MMBTU)	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU)
Α	В	C	D	Е	F	G	н	I	J	К	L	М	N	0	Р	0	R	S	Т	U	v	w	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling									-					-		È										l l							 	
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	121	93	0	0	0	0	0	0	121	93	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109	84	0	0	0	0	0	0	109	84	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	97	74	0	0	0	0	0	1	97	74	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	0	0	6	2	0	0	6	85	65	0	0	2	1	0	6	85	65	0	0	0	0	
85 to 90	87.5	70.3	34.6	1	37	6	44	8	5	0	31	10	3	0	31	10	3	0	31	73	56	0	1	9	3	0	31	73	56	0	1	0	1	
80 to 85	82.5	68.4	33.0	8	138	29	175	32	18	0	125	39	11	0	125	39	11	0	125	61	46	1	2	37	13	0	125	61	46	1	2	0	5	
75 to 80	77.5	66.2	31.2	27	202	83	312	56	33	0	223	70	19	0	223	70	19	0	223	49	37	1	3	67	23	0	223	49	37	1	3	0	10	
70 to 75	72.5	64.3	29.7	64	269	160	493	89	52	0	352	110	30	0	352	110	30	0	352	36	28	1	4	105	36	0	352	36	28	1	4	0	16	
65 to 70	67.5	61.2	27.5	185	208	243	636	115	66	0	454	142	39	0	454	142	39	0	454	24	19	1	3	136	46	0	454	24	19	1	3	0	20	
60 to 65	62.5	57.3	24.8	315	249	298	862	156	90	0	616	193	53	0	616	193	53	0	616	12	9	1	2	184	62	0	616	12	9	1	2	0	28	
Heating																																	,,	
55 to 60	57.5	52.7	0.0	303	245	276	824	149	86	0	589	184	51	0	589	184	51	0	589	(166)	(35)	0	19	176	59	0	589	(166)	(8)	0	5		27	14
50 to 55	52.5	47.8	0.0	262	184	228	674	122	70	0	482	151	42	0	482	151	42	0	482	(232)	(73)	7	42	144	49	0	482	(232)	(46)	7	24		22	19
45 to 50	47.5	42.5	0.0	204	230	211	645	117	67	0	461	144	40	0	461	144	40	0	461	(298)	(112)	16	66	138	47	0	461	(298)	(85)	16	48		19	18
40 to 45	42.5	38.3	0.0	210	191	234	635	115	66	0	454	142	39	0	454	142	39	0	454	(364)	(151)	25	90	135	46	0	454	(364)	(124)	25	72		18	18
35 to 40	37.5	33.8	0.0	321	301	286	908	164	95	0	649	203	56	0	649	203	56	0	649	(430)	(190)	49	165	194	66	0	649	(430)	(162)	49	139		26	26
30 to 35	32.5	28.7	0.0	356	221	313	890	161	93	0	636	199	55	0	636	199	55	0	636	(497)	(228)	61	197	190	64	0	636	(497)	(201)	61	171		26	26
25 to 30	27.5	23.5	0.0	228	211	211	650	118	68	0	464	145	40	0	464	145	40	0	464	(563)	(267)	54	169	139	47	0	464	(563)	(240)	54	150		19	19
20 to 25	22.5	19.1	0.0	104	94	124	322	58	34	0	230	72	20	0	230	72	20	0	230	(629)	(306)	31	97	69	23	0	230	(629)	(278)	31	87		9	10
15 to 20	17.5	14.3	0.0	144	78	117	339	61	35	0	242	76	21	0	242	76	21	0	242	(695)	(344)	38	115	72	24	0	242	(695)	(317)	38	105		10	10
10 to 15	12.5	9.3	0.0	118	40	85	243	44	25	0	174	54	15	0	174	54	15	0	174	(761)	(383)	31	92	52	18	0	174	(761)	(356)	31	85		7	7
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	17	5	0	55	17	5	0	55	(828)	(422)	11	32	16	6	0	55	(828)	(394)	11	30		2	2
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	1	0	16	5	1	0	16	(894)	(460)	3	10	5	2	0	16	(894)	(433)	3	9		1	1
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(960)	(499)	0	0	0	0	0	0	(960)	(472)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,026)	(538)	0	0	0	0	0	0	(1,026)	(511)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,092)	(576)	0	0	0	0	0	0	(1,092)	(549)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,159)	(615)	0	0	0	0	0	0	(1,159)	(588)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,225)	(654)	0	0	0	0	0	0	(1,225)	(627)	0	0		0	0
				2,920	2,920	2,920	8,760	1,585	915	0	6,260	1,959	541	0	6,260	1,959	541	0	6,260			331	1,109	1,868	632	0	6,260			331	939	0	266	170

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col M] + [col O]) \times MIN([col U] + internal gains, 0) + IF([col I] + [col K] > [col M] + [col O], (([col I] + [col K]) - ([col M] + [col O])) \times MIN([col V] + internal gains, 0), 0) + 1,000 + AD44$
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	$Heating = -([col N] + [col P]) \times MIN([col V] + internal gains, 0) + IF([col I] + [col N] + [col O], (([col M] + [col O]) - ([col I] + [col N])) \times MIN([col U] + internal gains, 0)) + 1,000 + AD44$
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	Cooling = ([col B] - AC60) ÷ ([col B] - AC55) x [col U]
	Heating = ([col B] - AE60) ÷ ([col B] - AE55) x [col U]
AD	Proposed Unoccupied Cooling and Heating Loads:
	Cooling = ([col B] - AC61) ÷ ([col B] - AC56) x [col V]
	Heating = ([col B] - AE61) ÷ ([col B] - AE56) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$
	Heating = -MIN([col I] + [col K], [col Y] + [col AA]) x MIN([col AC] + internal gains, 0) + IF([col I] + [col K] > [col Y]+[col AA]), (([col I] + [col K]) - ([col Y] + [col AA])) x MIN([col AD] + internal gains, 0), 0) ÷ 1,000 ÷ AD44
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains, 0) + IF([col I] + [col K] < [col Y] + [col AA]) - ([col Y] + [col AA]) -
AG	$= ([\operatorname{col} X]) - ([\operatorname{col} AE] + [\operatorname{col} AF])$
	HVAC Fan and Pump Savings
AH	Cooling = ([col Q] + [col S] + ([col R] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col A] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48)
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col A]) x AD4
AI	= ([col W] + [col X]) - ([col AE] + [col AF])

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	58,215	SF	AD43	
sting Heating Plant Efficiency	83.0%		AD44	
sting Chiller Efficiency	2.9	COP	AD45	
Power	3.1	kW	AD46	
ating Pump Power	0.0	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	0.0%		AD51	% CFM Saved

erage Existing Space Temperatures									
	Cooling		Heating		Description				
cupied	72.0	AC55	70.0	AE55					
Occupied	78.0	AC56	62.0	AE56					

erage Proposed Space Temperatures										
	Cooling		Heating		Description					
cupied	72.0	AC60	70.0	AE60						
Occupied	78.0	AC61	58.5	AE61						

Appendix for ECM 3: Integrated and New Energy Management Systems

II. Manufacturer Specification Sheets

Final Investment Grade Audit

ECM 3: Integrated and New Energy Management Systems

This page intentionally left blank.

AX Supervisor®

Overview

Tridium's suite of Niagara-based products integrate diverse smart devices into unified, Internet-enabled, web-based systems. These solutions integrate LonWorks[™], BACnet[™], oBIX, Internet and web services protocols in a software platform that can be used in embedded controllers and server applications. The products include integrated network management tools to support the design, configuration, installation, and maintenance of interoperable networks.

The AX Supervisor is a flexible network server used in applications where multiple Niagara^{AX}-based JACE® controllers can be networked together. The AX Supervisor serves real-time graphical

information to standard web-browser clients and also provides server-level functions such as: centralized data logging, archiving, alarming, trending, master scheduling, system-wide database management, and integration with enterprise software applications. In addition, the AX Supervisor provides a comprehensive, graphical engineering toolset for application development.

In addition to the 32 bit AX Supervisor, a 64 bit version for Windows based PCs is available for monitoring systems intended to monitor in excess of 150 and up to 500 JACEs. It supports the same feature set as the standard version.

With Niagara^{AX} release 3.4 or greater, Tridium offers a platform for the AX Supervisor which runs on Red Hat Linux. Niagara^{AX} 3.4 and later versions provide AX Supervisor software that is targeted for a specific Linux-based platform: an Intel-based PC platform running the operating system of Red Hat Enterprise Linux 5.

For smaller installations, the Small Building Supervisor offers the full functions of the Niagara Framework, but limits the number of Niagara-based connections. The Small Building Supervisor can run on a 32 and 64-bit Windows based PCs as well as Red Hat Enterprise Linux 5 based PCs. Also, the Small Building Supervisor can be upgraded to a full AX Supervisor if the job outgrows the limit of three Niagara-based connections.

oBIX is now included in all AX Supervisors as a means of integrating Niagara-based Release 2 (R2) JACEs. With release 2.3.522 or greater, the oBIX driver can be added to expose all data points, schedules, trends and alarms to an AX system. This oBIX driver is both a client and a server.

Features

- Java-enabled user interface (UI) as well as a non-Java UI for browsers
- Supports an unlimited number of users over the Internet / Intranet with a standard web browser, depending on the host PC resources
- Optional enterprise-level data archival using SQL, MySQL, CSV, Oracle or DB2 database, and HTTP/HTML/ XML text formats
- "Audit Trail" of database changes, database storage and backup, global time functions, calendar, central scheduling, control, and energy management routines
- Sophisticated alarm processing and routing, including e-mail alarm acknowledging
- Access to alarms, logs, graphics, schedules, and configuration data with a standard web browser

- Password protection and security using standard Java (on Windows platforms only) authentication and encryption techniques with optional security supported via an external LDAP connection
- HTML-based help system that includes comprehensive on-line system documentation
- Supports multiple Niagara-based stations connected to a local Ethernet network, or the Internet
- Provides online/offline use of the Niagara Framework Workbench AX[®] graphical configuration tool and a comprehensive Java Object Library
- Optional direct Ethernet based driver support for BACnet I/P, OPC (Client), Modbus TCP, Lon IP and SNMP; additional point blocks for each driver may be purchased in blocks of 500 for each protocol
- A "Small Building System" version for both Windows and Linux platforms is available for support of a system with up to three JACEs
- A 64-bit compliant version of the AX Supervisor for Windows is available for large systems monitoring in excess of 200 Niagara based controllers. All features of the standard AX Supervisor are included with this platform.

Platform Requirements

Processor

• Intel Pentium[®] IV, 2 GHz or higher, Core 2 Duo also acceptable

Operating System

- 32-bit Windows AX Supervisors, Microsoft Windows XP Professional, Windows 2003 or 2008 Server (if Microsoft IIS is disabled), Vista Business, or Windows 7, with Mozilla Firefox™ or Internet Explorer™ 5.0 or later is the required OS
- 64-bit Windows AX Supervisor, Win64 version of Windows XP Professional or Win64 version of Windows 7 is the required OS
- Linux AX Supervisors (32-bit), Red Hat Enterprise Linux 5 is the required OS

Memory

• 1 GB minimum, 2GB or more recommended for large systems, 8 GB or more recommended for the Windows 64-bit version

Hard Drive

• 1 GB minimum, 5 GB for applications that need more archiving capacity

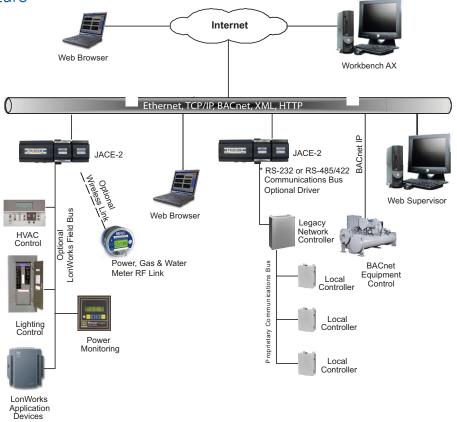
Display

• Video card and monitor capable of displaying 1024 x 768 pixel resolution or greater

Network Support

• Ethernet adapter (10/100 Mb with RJ-45 connector)

Connectivity


• Full time high speed ISP connection recommended for remote site access (i.e. T1, ADSL, cable modem)

Ordering Information

Model Number	Description
T-S-AX	AX Supervisor for a 32-bit Windows Platform; Includes Niagara Historical Database and Work- bench AX. Includes OBIX client/server driver for connecting to Niagara-based controllers only
T-S-AX-SBS	Small Building System version of the AX Supervisor for a 32-bit Windows Platform; Limited to 3 JACE controllers; Includes Niagara Historical Database and Workbench AX. Includes OBIX client/server driver for connecting to Niagara-based controllers only.
T-S-AX-64	AX Supervisor for a 64-bit Windows Platforms; Includes Niagara Historical Database and Work- bench AX. Includes OBIX client/server driver for connecting to Niagara-based controllers only.
T-S-AX-64-SBS	Small Building System version of the AX Supervisor for a 64-bit Windows Platform; Limited to 3 JACE controllers; Includes Niagara Historical Database and Workbench AX. Includes OBIX client/server driver for connecting to Niagara-based controllers only
T-S-AX-LNX	AX Supervisor for a 32-bit Red Hat Enterprise Linux 5 Platform; Includes Niagara Historical Da- tabase and Workbench AX. Includes OBIX client/server driver for connecting to Niagara-based controllers only.
T-S-AX-LNX-SBS	Small Building System version of the AX Supervisor for a 32-bit Red Hat Linux 5 Platform; Limited to 3 JACE controllers; Includes Niagara Historical Database and Workbench AX. Includes oBIX client/server driver for connecting to Niagara-based controllers only
S-AX-SBS-EXUP	Small Building System Upgrade (remove Niagara device limit of 3 for any Platform) Note: Upgrades a 32-bit SBS to a 32-bit Supervisor or a 64-bit SBS to a 64-bit Supervisor
S-AX-64-UP	Upgrade from a 32-bit to a 64 bit Platform (for Windows only) Note: Upgrades a 32-bit Supervisor to a 64-bit Supervisor or a 32-bit SBS to a 64-bit SBS
Optional Database D	rivers for External Database applications
S-DB-SQL	Microsoft SQL Database Driver
S-DB-DB2	IBM DB2 Database Driver
S-DB-ORCL	Oracle Database Driver
S-DB-MYSQL	MySQL Database Driver
S-DB-CSV	Allows Excel and CSV file data to be imported into Niagara ^{AX}
Open System Drivers	for AX Supervisor (not available for Small Building Systems or Linux Supervisors))
DR-S-BACNET	AX Supervisor BACnet IP Client and Server Driver; Includes license for 500 BACnet points (Available for Linux Supervisor)
DR-S-BAC-CL	AX Supervisor BACnet IP Client Driver; Includes License for 500 BACnet points (Available for Linux Supervisor)
DR-S-BAC-SRV	AX Supervisor BACnet IP Server Driver; allows for BACnet export function
DR-S-BAC-SRV-UP	Add BACnet export functions to a BACnet IP Client Driver for the AX Supervisor
DR-S-BAC-CL-UP	Add BACnet IP client functions to a BACnet IP Server for the AX Supervisor; Includes license for 500 BACnet points
DR-S-BAC-500	Additional 500 point block for BACnet IP Client Driver (Available for Linux Supervisor)
DR-S-BAC-OWS	Add BACnet Operator Workstation (OWS) to the AX Supervisor. Requires the BACnet IP Client Driver
DR-S-BAC-AWS	Add BACnet Advanced Workstation (AWS) to the AX Supervisor. Requires the BACnet IP Client Driver
DR-S-BAC-AWS-UP	Upgrade from an Operator Workstation (OWS) to an Advanced Workstation (AWS)
DR-S-MDB-500	Additional 500 point block for AX Supervisor Modbus TCP Driver
DR-S-MDB-SL-AX	AX Supervisor Modbus TCP Slave Driver; Includes 500 Modbus TCP Slave points
DR-S-MDB-SL-500	Additional 500 point block for AX Supervisor Modbus TCP Slave Driver
DR-S-SNMP-AX	AX Supervisor SNMP Driver; Includes license for 500 SNMP points
DR-S-SNMP-500	Additional 500 point block for AX Supervisor SNMP Driver

DR-S-OPC-AXAX Supervisor OPC Client Driver; Includes license for 500 OPC pointsDR-S-OPC-500Additional 500 point block for AX Supervisor OPC DriverDR-S-OBIX-AXAX Supervisor OBIX Driver for connecting to devices not powered by Niagara; Includes license for 500 OBIX points (Available for Linux Supervisor)DR-S-OBIX-500Additional 500 point block for AX Supervisor OBIX DriverDR-S-OBIX-500Additional 500 point block for AX Supervisor OBIX DriverDR-S-ILON-AXAX Supervisor ILON Driver; includes license for 500 ILON points (Available for Linux Supervisor)DR-S-ILON-500Additional 500 point block for AX Supervisor ILON DriverDR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AX DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 camerasDR-S-AXS-4Additional 4 camera block for AX Supervisor AXIS IP Camera Driver		
DR-S-OBIX-AXAX Supervisor OBIX Driver for connecting to devices not powered by Niagara; Includes license for 500 OBIX points (Available for Linux Supervisor)DR-S-OBIX-500Additional 500 point block for AX Supervisor OBIX DriverDR-S-ILON-AXAX Supervisor ILON Driver; includes license for 500 ILON points (Available for Linux Supervisor)DR-S-ILON-500Additional 500 point block for AX Supervisor ILON DriverDR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AX Supervisor (not available for Small Building Systems or Linux Supervisors))DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-OPC-AX	AX Supervisor OPC Client Driver; Includes license for 500 OPC points
for 500 OBIX points (Available for Linux Supervisor)DR-S-OBIX-500Additional 500 point block for AX Supervisor OBIX DriverDR-S-ILON-AXAX Supervisor ILON Driver; includes license for 500 ILON points (Available for Linux Supervisor)DR-S-ILON-500Additional 500 point block for AX Supervisor ILON DriverDR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AX Supervisor (not available for Small Building Systems or Linux Supervisors)DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-OPC-500	Additional 500 point block for AX Supervisor OPC Driver
DR-S-ILON-AXAX Supervisor ILON Driver; includes license for 500 ILON points (Available for Linux Supervisor)DR-S-ILON-500Additional 500 point block for AX Supervisor ILON DriverDR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AXSupervisor (not available for Small Building Systems or Linux Supervisors))DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-OBIX-AX	
DR-S-ILON-500Additional 500 point block for AX Supervisor ILON DriverDR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AX DR-S-AXS-AXAX Supervisor (not available for Small Building Systems or Linux Supervisors))AX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-OBIX-500	Additional 500 point block for AX Supervisor OBIX Driver
DR-S-SimpleADR-AXAX Supervisor Simple OpenADR Driver; Allows for communication to the Akuacom DRAS or any other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AXsupervisor (not available for Small Building Systems or Linux Supervisors))DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-ILON-AX	AX Supervisor ILON Driver; includes license for 500 ILON points (Available for Linux Supervisor)
other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the DRASDR-S-ADRClient-AXLicense for one additional DRAS client server connection.Video Drivers for AX Supervisor (not available for Small Building Systems or Linux Supervisors))DR-S-AXS-AXAX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-ILON-500	Additional 500 point block for AX Supervisor ILON Driver
Video Drivers for AX Supervisor (not available for Small Building Systems or Linux Supervisors)) DR-S-AXS-AX AX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-SimpleADR-AX	other Tridium approved OpenADR compliant DRAS. Limits one DRAS client connection to the
DR-S-AXS-AX AX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras	DR-S-ADRClient-AX	License for one additional DRAS client server connection.
	Video Drivers for AX	Supervisor (not available for Small Building Systems or Linux Supervisors))
DR-S-AXS-4 Additional 4 camera block for AX Supervisor AXIS IP Camera Driver	DR-S-AXS-AX	AX Supervisor AXIS IP Camera Driver; Includes license for 16 cameras
	DR-S-AXS-4	Additional 4 camera block for AX Supervisor AXIS IP Camera Driver
DR-S-DED-AX AX Supervisor Dedicated Micros Video Driver; Includes license for 16 cameras (Dedicated Micros DVR must be purchased separately)	DR-S-DED-AX	
DR-S-DED-4 Additional 4 camera block for AX Supervisor Dedicated Micros Video Driver	DR-S-DED-4	Additional 4 camera block for AX Supervisor Dedicated Micros Video Driver
DR-S-MLS-AX AX Supervisor Milestone Systems Driver; Includes license for 16 cameras	DR-S-MLS-AX	AX Supervisor Milestone Systems Driver; Includes license for 16 cameras
DR-S-MLS-4 Additional 4 camera block for AX Supervisor Milestone Driver	DR-S-MLS-4	Additional 4 camera block for AX Supervisor Milestone Driver
DR-S-RPD-AX AX Supervisor Honeywell Rapid Eye DVR Driver; Includes license for 16 cameras	DR-S-RPD-AX	AX Supervisor Honeywell Rapid Eye DVR Driver; Includes license for 16 cameras
DR-S-RPD-4 Additional 4 camera block for AX Supervisor Honeywell Rapid Eye DVR Driver	DR-S-RPD-4	Additional 4 camera block for AX Supervisor Honeywell Rapid Eye DVR Driver

Architecture

www.tridium.com

Information and/or specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to change or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia. Products or features contained herein are covered by one or more U.S. or foreign patents. This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Tridium, Inc. Complete Confidentiality. Trademark, Copyright and Patent notifications can be found at http://www.tridium.com/galleries/ SignUp/Confidentiality.pdf . @ Tridium, Inc. 2011. All rights reserved.

BACnet Operator Workstation and BACnet Advanced Workstation

Overview

Tridium's BACnet Operator Workstation (OWS) and BACnet Advanced Workstation (AWS) enhance the ability to monitor and control a BACnet system through the Niagara AX Supervisor. The workstations provide additional control and presentation features on top of the BACnet Client IP Driver.

Operator Workstation (OWS)

The BACnet OWS device profile, standardized by BACnet International, is used for monitoring and basic control of a system. This device profile is designed for daily operators who need the ability to monitor basic system status and perform simple modification to the operation of the system.

Features of OWS:

Includes features of the BACnet IP Client along with:

- Presentation of data
- Ability to modify setpoints and parameters
- Adjustment of alarm/event parameters
- Operator notification and presentation of event information
- Alarm acknowledgements by operators
- Alarm summarization
- Adjustment of analog alarm limits

Advanced Workstation (AWS)

The BACnet AWS device profile is used to monitor the performance of a system and to modify parameters that affect the operation of a system. This profile is designed for the building operator or technician with a higher level of technical ability. The Advanced Workstation provides support for limited configuration actions and ongoing commissioning activities.

Features of AWS:

Includes features of the BACnet IP Client Driver and BACnet OWS along with:

- Ability to monitor the value of all BACnet object types
- Adjustment of alarm routing
- Creating of new Event Enrollment and Notification Classes
- Presentation of Event Logs

- Creation of new calendars and schedules
- Ability to silence a device on the network that is transmitting erroneous data
- Ability to cause a remote device to reinitialize
- Ability to backup and restore the configuration of other devices

System Requirements

Niagara^{AX} version 3.6 or later must be running on the Supervisor PC. Also the Supervisor must have the BACnet IP Client Driver license.

www.tridium.com

Information and/or specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to change or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia. Products or features contained herein are covered by one or more U.S. or foreign patents. This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Tridium, Inc. Complete Confidentiality. Trademark, Copyright and Patent notifications can be found at http://www.tridium.com/galleries/ SignUp/Confidentiality.pdf . @ Tridium, Inc. 2011. All rights reserved.

JACE-600

Overview

The JACE-600[™] is a compact, embedded controller/server platform. It combines integrated control, supervision, data logging, alarming, scheduling and network management functions with Internet connectivity and web serving capabilities in a small, compact platform. The JACE-600 makes it possible to control and manage external devices over the Internet and present real-time information to users in web-based graphical views.

The JACE-600 is a member of Tridium's suite of controller/server products, software applications and tools, which are designed

to integrate a variety of devices and protocols into unified, distributed systems. These products are powered by the revolutionary Niagara^{AX} Framework®, the industry's first software technology designed to integrate diverse systems and devices into a seamless system. Niagara supports a wide range of protocols including LonWorks[™], BACnet[™], Modbus, oBIX and Internet standards. The AX Framework also includes integrated network management tools to support the design, configuration, installation and maintenance of interoperable networks.

Applications

The JACE-600 is ideal for smaller facilities, remote sites, and for distributing control and monitoring throughout large facilities. Optional input/output modules can be plugged in for applications where local control is required. The JACE-600 also supports a wide range of field busses for connection to remote I/O and standalone controllers. In small facility applications, the JACE-600 is all you need for a complete system.

The JACE-600 serves data and rich graphical displays to a standard web browser via an Ethernet LAN or remotely over the Internet, or dial-up modem. In larger facilities, multi-building applications and large-scale control system integrations, AX Supervisor™ software can be used to aggregate information (real-time data, history, alarms, etc.) from large numbers of JACEs into a single unified application. The AX Supervisor can manage global control functions, support data passing over multiple networks, connect to enterprise level software applications, and host multiple, simultaneous client workstations connected over the local network, the Internet, or dial-up modem.

Features

- Embedded PowerPC Platform@ 524MHz
- Supports open and legacy protocols
- QNX Real-time Operating System
- Web User interface (standard) serves rich graphical browser presentations
- Run stand-alone control, energy management, and integration applications within the JACE-600 series controllers
- Supports two optional communications boards
 - Optional 16 and 34 point I/O Modules

Ordering Information

JACE and Memory Upgrade Option

Part Number	Description
T-600	Base Unit including two Ethernet ports, one RS-232 port, one RS-485 port, one USB port, Web User
	Interface and Niagara Connectivity included. oBIX Client/Server driver included.
NPB-256	Upgrade RAM memory to 256 MB DDR.

Optional Communications Cards

Part Number	Description
NPB-LON	Optional 78 Kbps FTT10 A Lon Adapter
NPB-232	NPB-232 - Optional RS-232 port adapter with 9 pin D- shell connector
NPB-2X-485	Optional dual port RS-485 adapter; electrically isolated

Power Supply & Optional Power Modules

Note: All modules are universal input 90 – 240 volts, 50/60 Hz.; the model numbers below represent the various plug configurations only (except NPB-PWR-UN)

Part Number	Description
NPB-PWR	Optional: 24 Volt AC/DC power supply module, Din Rail mounted
WPM-US	120 Vac, 50-60 Hz. US
WPM-EU	230 Vac. 50-60 Hz. Europe/Asia
WPM-UK	WPM-UK - 230 Vac 50-60 Hz. UK
WPM-JP	100 Vac 50-60 Hz. Japan
NPB-PWR-UN	Optional universal voltage input power supply module, Din Rail mounted. Input voltage is 90-263 Volts AC, 50/60 Hz auto adjusting

Optional IO Modules

Part Number	Description
IO-16	Optional 16 point IO module; directly connects to JACE IO connector.
IO-34	Optional 34 point IO Module; directly connects to JACE IO connector.
IO-16-485	Optional remote 16 point IO module, RS-485 bus connected to JACE-600; up to 16 units may be
	connected max., additional power supply required to power the remote IO.

 \square

0

00

Specifications

Platform

- PowerPC 440 524 MHz processor
- 128MB DDR RAM & 128 MB Serial Flash
- Optional 256 MB DDR RAM
- Battery Backup
- Real-time clock

Operating System

- QNX Real-time Operating System
- IBM J9 JVM Java Virtual Machine
- Niagara^{AX} 3.4 or later

Optional I/O Modules

IO-34 - 34 Point I/O Module

- Max of 1 per JACE-600; includes integral 24 volt AC/ DC input power supply for JACE 2 and IO; no other power required
- 16 Universal Inputs (Type 3 (10k) Thermistors, 0-1000 ohm, 0-10 volts, 0-20 mA with external resistor)
- 10 relay outputs (Form A contacts, 24 VAC @.5 amp rated
- 8 analog outputs (0-10 volt DC)

IO-16 - 16 Point I/O Module

- Up to 4 per Jace-600, 2 per Jace-600 if combined with a 34 Point I/O module
- 8 Universal Inputs (Type 3 (10k) Thermistors, 0-1000 ohm, 0-10 volts, 0-20 mA with external resistor)
- 4 relay outputs (Form A contacts, 24 VAC @.5 amp rated
- 4 analog outputs (0-10 volt DC)

IO-16-485 Remote IO module

- 16 IO Points per device
- 8 Universal Inputs Type 3 (10k) Thermistors, 0-100K ohm, 0-10 vdc, 0-20 mA with external resistor
- 4 relay outputs (Form A contacts, 24 VAC @ .5 amp rated)
- 4 analog outputs (0-10 vdc)
- Up to 16 remote IO-16-485 modules max per JACE-600

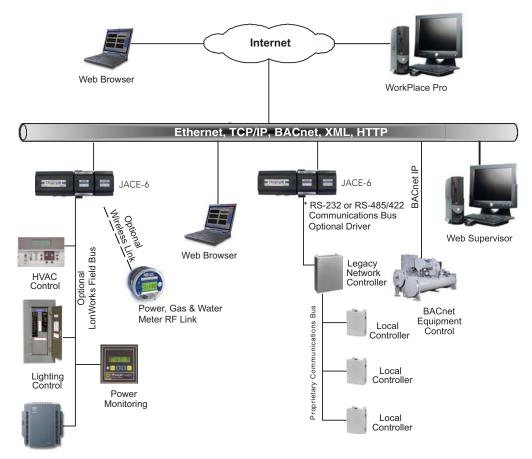
Power Options

- Direct connect (Pin compatible) with the NPB-PWR & NPB-PWR-UN power supplies.
- Modules can be powered directly from select JACE models with 15VDC outputs.
- External 15 VDC power supply
- DIN rail or surface mounting

Chassis

- Construction: Plastic, din rail or screw mount chassis, plastic cover
- Cooling: Internal air convection

Environment


- Operating temperature range: 0° to 50°C (32°F to 122°F)
- Storage Temperature range: 0° to 70°C (32°F to 158°F)
- Relative humidity range: 5% to 95%, non-condensing

Agency Listings

- RoHS Compliant RoHS
 Compliant
- BTL
- UL 916
- C-UL listed to Canadian Standards Association (CSA) C22.2 No. 205-M1983 "Signal Equipment"
- CE
- FCC part 15 Class A.

0

Architecture

www.tridium.com

Information and/or specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to change or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia. Products or features contained herein are covered by one or more U.S. or foreign patents. This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Tridium, Inc. Complete Confidentiality. Trademark, Copyright and Patent notifications can be found at http://www.tridium.com/galleries/SignUp/Confidentiality.pdf . © Tridium, Inc. 2010. All rights reserved.

Programmable Controllers

The Facility Explorer Programmable Controllers provide you with a comprehensive controls solution for a wide variety of HVAC applications. These controllers are designed to provide direct, closed loop control over mechanical HVAC equipment, either as standalone devices or as part of a larger, networked control system. With their automatic self tuning algorithm your facility will have optimal control with less wear and tear on the equipment. These controllers include a rich set of embedded and optional features, enabling you to quickly and simply build a control strategy based on improved access to information. The more visibility you have, the more you know how equipment systems are performing. And that leads to improved facility operations.

Applications:

- Packaged rooftop units
- Fan coil units
- Unit ventilators
- Heat pumps
- Variable air volume boxes
- Air handling units
- Chilled water & hot water systems

BY JOHNSON CONTROLS

Features

The Facility Explorer Programmable Controller family has a rich set of features that provide the appropriate functionality for your particular control needs.

- Configurable and fully programmable
- Standard BACnet[®] protocol
- BTL listed
- Zigbee® wireless field communications
- Zigbee wireless sensor communications
- Auto tuned control processes
- \cdot Flexible input/output configurations
- Point expansion
- Local display option

Simpler setup, better results

A core team of controls engineers have developed applications and application modules that have been laboratory tested and proven through years of field use. From VAV boxes, to rooftop units, to built-up air handlers, to chiller plants, we have the control algorithms to deliver optimum performance of your HVAC equipment.

These applications allow you to quickly and easily select the control sequence needed to properly control the HVAC equipment in your building. The simple, unique tree-like user interface allows you to choose the control modules required for the specific application. You can specify the details of control without writing complex programming code.

System Selection Wizard **Mechanical System Selection** Air Handling Unit Mixed Air Single Duct E-Fans Supply Fan Single Speed Variable Speed Two Duct Static Pressure Sensors Dual Supply Fans E Fan Status - Loss of Airflow Strategy Automatic Restart Manual Restart Alarm Management Return Fan Variable Speed Relief Fan (Bldg Static Press Control) Exhaust Fan Economizer Damper(s) Common Proportional Mixed Air Damper Output Separate Proportional Outputs (3 AOs) EAD & RAD Proportional OAD & RAD Proportional Economizer Suitability Network Command Enthalpy Switch (BI) - Outdoor Air Dry Bulb Temp Economizer Temp & Enthaloy Economizer Outdoor Air versus Return Air Outdoor and/or Exhaust Air Damper Minimum Position Reset by CO2 Se Damper Minimum Position Reset by OA Flow Minimum Outdoor Air Fan and/or Damper Reduce Outdoor Air on Low Temperature Temperature Control Strategy Discharge Air Control Previous Next Cancel Help

System Selection Wizard

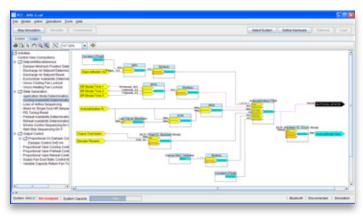
Special control needs

Need to customize a standard application? Just switch to the block programming mode and you'll be able to view and to modify the particular control sequence. No need to start from scratch. Combine pre-built and tested control modules with your own custom modules. They all work together. You immediately see the control application you've created. Once done, you can test your changes with the included simulator before downloading it to the controller.

Wired and wireless working together

The Facility Explorer Programmable Controller family uses the HVAC industry standard BACnet over MS/TP (master, slave, token passing) protocol to communicate with supervisory controllers and other device controllers. For added flexibility, the same controllers can be fitted with a wireless router to provide wireless Zigbee communications on the field controller bus. These controllers are so flexible that they can even use Zigbee to communicate with their room sensors.

Less wear and tear, more comfort


Patented proportional adaptive control (P-Adaptive) and Pattern Recognition Adaptive Control (PRAC) technologies provide continuous loop tuning. Not only does this reduce control loop tuning time, it can actually reduce the wear on mechanical systems and improve the comfort of the occupants while reducing cost.

Local user interface

Need to have local access to the information of your HVAC equipment? The controller mounted or remote mounted local display provides graphic user interaction right at the equipment. It even has password protection to limit access to authorized users.

Point expansion

When large or complex control sequences require additional inputs and outputs, point expansion modules can be used. The expansion modules come in various point counts and point mixes so that it is easy to provide just the right amount needed.

Control Logic Simulation

Controller	Photo	Inputs	Outputs	Display
FX-PCG1611		2 Universal 1 Binary	3 Binary (Triac) 4 Configurable	
FX-PCG1621		2 Universal 1 Binary	3 Binary (Triac) 4 Configurable	\checkmark
FX-PCG2611		6 Universal 2 Binary	3 Binary (Triac) 4 Configurable 2 Analog	
FX-PCG2621		6 Universal 2 Binary	3 Binary (Triac) 4 Configurable 2 Analog	✓
FX-PCX1711		4 Binary		
FX-PCX2711		2 Universal	2 Binary (Relay) 2 Universal	
FX-PCX3711		4 Universal	4 Binary (Relay) 4 Universal	
FX-PCX4711		6 Universal 2 Binary	3 Binary (Triac) 4 Configurable 2 Analog	
FX-PCV1610		1 Universal 1 Integrated Flow Sensor	1 Integrated Actuator	
FX-PCV1620		1 Universal 1 Integrated Flow Sensor	3 Binary (Triac) 2 Configurable 1 Integrated Actuator	
FX-DIS1710			Local Controller Display	

BACnet[®] is a registered trademark of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE). ZigBee[®] is a registered trademark of the ZigBee Alliance.

Printed on recycled paper.

NS Series Network Sensors

Description

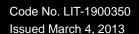
The NS Series Network Sensor offering includes NS Series Network Zone Sensors and NS Series Network Discharge Air Sensors. The NS Series Network Sensors are designed to function directly with Metasys® system Field Equipment Controllers (FECs), Input/Output Modules (IOMs), Variable Air Volume (VAV) Modular Assembly (VMA16) Controllers, and Facility Explorer FX-PC Series Programmable Controllers (FX-PCGs, FX-PCVs, and FX-PCXs).

The majority of NS Series Network Zone Sensors monitor room temperature; however, options are available to also monitor zone humidity, carbon dioxide (CO_2), local temperature setpoint adjustments, and other variables. This data is transmitted to a controller on the Sensor Actuator (SA) Bus.

Some models of NS Series Network Zone Sensors include an onboard passive infrared (PIR) occupancy sensor that detects motion to determine if a space is occupied. This feature maximizes up to 30% energy savings in high-energy usage environments such as schools, dormitories, offices, hospitals, and hotels by adjusting the temperature of the space based on the occupancy status. In addition, the PIR occupancy sensor facilitates trending of floor space usage in these environments.

The NS Series Network Zone Sensors include models with a temperature setpoint dial and Liquid Crystal Display (LCD) that allows occupants to view the zone temperature, Relative Humidity (RH), and view and adjust the zone temperature setpoint. Some temperature and humidity models include a push button to toggle between temperature and RH on the display. These models also have the capability to set the desired default display to either temperature or RH.

A fan mode push button is included to set the desired fan speed (AUTO-OFF-low-medium-high). An occupancy override function allows the user to signal the controller that the zone is occupied to override the scheduled mode. Some models have DIP switches to set a unique address for applications that require multiple sensors.


For communication wiring flexibility, the wires connecting the network zone sensor to a controller can be terminated using a modular jack or screw terminals.

Each network sensor includes an SA Bus access port to allow accessories to access the SA Bus. This plug allows accessories to service or commission the connected controller or gain access to any other controller on the same Field Controller (FC) Bus.

The NS Series Network Zone Sensor offering includes models that can be surface mounted, vertical wallbox mounted, or flush mounted to meet the requirements of the specific application.

The NS Series Network Discharge Air Sensors monitor the duct temperature, typically at the discharge of the VAV box, and transmit this data to a local controller on the SA Bus using the 10 ft (305 cm) wiring lead included with the unit. The 10 ft (305 cm) wiring lead consists of four 22 AWG (0.6 mm) trade size color-coded wires encased in a plenum-rated jacket. Each of the wires is stripped and tinned for easy connection to the SA Bus screw terminal block.

The NS Series Network Discharge Air Sensors are available with either a 4 or 8 in. (102 or 203 mm) temperature probe. All models include DIP switches for applications requiring multiple discharge air sensors, each with a unique DIP switch address.

NS Series Network Sensors

Features

- BACnet® Master-Slave/Token-Passing (MS/TP) protocol communication — provides compatibility with Metasys system field controllers and Facility Explorer programmable controllers in a proven communication network
- backlit Liquid Crystal Display (LCD) available on some models provides real-time status of the environment with backlighting activated during user interaction
- simple temperature setpoint adjustment available on some models — enables you to change the setpoint with the turn of a dial
- onboard PIR occupancy sensor available on some models maximizes up to 30% energy savings in high-energy usage environments, and facilitates trending of floor space usage
- temporary occupancy available on some models provides a timed override command, which temporarily initiates an alternate mode
- field selectable default display setting on some models allows you to toggle between temperature and RH on the display, and set the desired default for continuous viewing
- Fahrenheit/Celsius (F/C) button available on some models toggles the display temperature between degrees Celsius and degrees Fahrenheit

Repair Information

If the NS Series Network Zone Sensor or the NS Series Network Discharge Air Sensor fails to operate within its specifications, replace the unit. For a replacement sensor, contact the nearest Johnson Controls® representative.

Selection Charts

Network Zone Sensor Ordering Information — Temperature Only Models

Product Code Number	Size (mm), Height	Vertical Wallbox- Mounted	Johnson Controls	LCD Display	rature Only Mo Temperature Adjustment: Setpoint (Set)	Occupancy Override Button,	F/C Scale Toggle	Fan Control	Screw Ter- minals (ST) or	Address Switches	VAV Balancing Feature
		(WB) or Surface- Mounted (SM)	Ū		or Warmer/ Cooler Dial (W/C)	PIR Occupancy Sensor			Modular Jack (MJ)		
NS-ATA7001-0	80 x 80	SM	Yes	Yes	Set	Yes, No	No	No	MJ	No	No
NS-ATA7002-0	80 x 80	SM	Yes	Yes	Set	Yes, No	No	No	ST	No	No
NS-ATA7003-0	80 x 80	SM	Yes	Yes	Set	Yes, No	No	No	ST	Yes	No
NS-ATB7001-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	No	MJ	No	No
NS-ATB7002-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	No	ST	No	No
NS-ATB7003-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	No	ST	Yes	No
NS-ATC7001-0	80 x 80	SM	Yes	Yes	Set	Yes, No	No	Yes	MJ	No	No
NS-ATC7002-0	80 x 80	SM	Yes	Yes	Set	Yes, No	No	Yes	ST	No	No
NS-ATD7001-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	Yes	MJ	No	No
NS-ATD7002-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	Yes	ST	No	No
NS-ATF7001-0	80 x 80	SM	Yes	Yes	W/C	Yes, No	Yes	No	MJ	No	No
NS-ATF7002-0	80 x 80	SM	Yes	Yes	W/C	Yes, No	Yes	No	ST	No	No
NS-ATN7001-0	80 x 80	SM	Yes	No	N/A	No, No	No	No	MJ	No	No
NS-ATN7001-2	80 x 80	SM	No	No	N/A	No, No	No	No	MJ	No	No
NS-ATN7003-0	80 x 80	SM	Yes	No	N/A	No, No	No	No	ST	Yes	No
NS-ATN7003-2	80 x 80	SM	No	No	N/A	No, No	No	No	ST	Yes	No
NS-ATP7001-0	80 x 80	SM	Yes	No	W/C	Yes, No	No	No	MJ	No	No
NS-ATP7001-2	80 x 80	SM	No	No	W/C	Yes, No	No	No	MJ	No	No
NS-ATP7002-0	80 x 80	SM	Yes	No	W/C	Yes, No	No	No	ST	No	No
NS-ATP7002-2	80 x 80	SM	No	No	W/C	Yes, No	No	No	ST	No	No
NS-ATP7003-0	80 x 80	SM	Yes	No	W/C	Yes, No	No	No	ST	Yes	No
NS-ATP7003-2	80 x 80	SM	No	No	W/C	Yes, No	No	No	ST	Yes	No
NS-ATV7001-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	No ¹	MJ	No	Yes
NS-ATV7002-0	80 x 80	SM	Yes	Yes	Set	Yes, No	Yes	No ¹	ST	No	Yes
NS-BTB7001-0	120 x 80	WB, SM	Yes	Yes	Set	Yes, No	Yes	No	MJ	No	No
NS-BTB7001-2	120 x 80	WB, SM	No	Yes	Set	Yes, No	Yes	No	MJ	No	No
NS-BTB7002-0	120 x 80	WB, SM	Yes	Yes	Set	Yes, No	Yes	No	ST	No	No
NS-BTB7003-0	120 x 80	WB, SM	Yes	Yes	Set	Yes, No	Yes	No	ST	Yes	No
NS-BTB7003-2	120 x 80	WB, SM	No	Yes	Set	Yes, No	Yes	No	ST	Yes	No
NS-BTF7001-0	120 x 80	WB, SM	Yes	Yes	W/C	Yes, No	Yes	No	MJ	No	No
NS-BTF7002-0	120 x 80	WB, SM	Yes	Yes	W/C	Yes, No	Yes	No	ST	No	No
NS-BTN7001-0	120 x 80	WB, SM	Yes	No	N/A	No, No	No	No	MJ	No	No
NS-BTN7001-2	120 x 80	WB, SM	No	No	N/A	No, No	No	No	MJ	No	No
NS-BTN7003-0	120 x 80	WB, SM	Yes	No	N/A	No, No	No	No	ST	Yes	No
NS-BTN7003-2	120 x 80	WB, SM	No	No	N/A	No, No	No	No	ST	Yes	No
NS-BTP7001-0	120 x 80	WB, SM	Yes	No	W/C	Yes, No	No	No	MJ	No	No
NS-BTP7001-2	120 x 80	WB, SM	No	No	W/C	Yes, No	No	No	MJ	No	No
NS-BTP7002-0	120 x 80	WB, SM	Yes	No	W/C	Yes, No	No	No	ST	No	No
NS-BTP7002-2	120 x 80	WB, SM	No	No	W/C	Yes, No	No	No	ST	No	No
NS-BTP7003-0	120 x 80	WB, SM	Yes	No	W/C	Yes, No	No	No	ST	Yes	No
NS-BTV7001-0	120 x 80	WB, SM	Yes	Yes	Set	Yes, No	Yes	No ¹	MJ	No	Yes
NS-BTV7002-0	120 x 80	WB, SM	Yes	Yes	Set	Yes, No	Yes	No ¹	ST	No	Yes
NS-MTB7001-0	120 x 80	WB, SM	Yes	Yes	Set	No, Yes	Yes	No	MJ	No	No
	120 x 80	WB, SM	Yes	Yes	Set	No, Yes	Yes	No	ST	No	No
NS-MTL7001-0	120 x 80	WB, SM	Yes	No	N/A	Yes, Yes	No	No	MJ	No	No
NS-MTL7002-0	120 x 80	WB, SM	Yes	No	N/A	Yes, Yes	No	No	ST	No	No

1. In the VAV balancing models, the fan control button is replaced by a light bulb button used in the VAV balancing process.

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2013 Johnson Controls, Inc. www.johnsoncontrols.com

Network Zone Sensor Ordering Information — Temperature and Humidity Models without RH Display

Product Code Number	Size (mm), Height x Width	Wallbox- Mounted	Johnson Controls Logo	LCD Display, RH Display	Humidity Element Accuracy	Adjustment:	Occupancy Override Button, PIR Occupancy Sensor	F/C Scale Toggle	Screw Terminals (ST) or Modular Jack (MJ)	Address Switches
NS-AHA7001-0	80 x 80	SM	Yes	Yes, No	3%	Set	Yes, No	No	MJ	No
NS-AHA7002-0	80 x 80	SM	Yes	Yes, No	3%	Set	Yes, No	No	ST	No
NS-AHB7001-0	80 x 80	SM	Yes	Yes, No	3%	Set	Yes, No	Yes	MJ	No
NS-AHB7002-0	80 x 80	SM	Yes	Yes, No	3%	Set	Yes, No	Yes	ST	No
NS-AHB7003-0	80 x 80	SM	Yes	Yes, No	3%	Set	Yes, No	Yes	ST	Yes
NS-AHN7001-0	80 x 80	SM	Yes	None	3%	N/A	No, No	No	MJ	No
NS-AHP7001-0	80 x 80	SM	Yes	None	3%	W/C	Yes, No	No	MJ	No
NS-AHN7001-2	80 x 80	SM	No	None	3%	N/A	No, No	No	MJ	No
NS-APA7001-0	80 x 80	SM	Yes	Yes, No	2%	Set	Yes, No	No	MJ	No
NS-APA7002-0	80 x 80	SM	Yes	Yes, No	2%	Set	Yes, No	No	ST	No
NS-APB7001-0	80 x 80	SM	Yes	Yes, No	2%	Set	Yes, No	Yes	MJ	No
NS-APB7002-0	80 x 80	SM	Yes	Yes, No	2%	Set	Yes, No	Yes	ST	No
NS-APB7003-0	80 x 80	SM	Yes	Yes, No	2%	Set	Yes, No	Yes	ST	Yes
NS-BHB7001-0	120 x 80	WB, SM	Yes	Yes, No	3%	Set	Yes, No	Yes	MJ	No
NS-BHB7002-0	120 x 80	WB, SM	Yes	Yes, No	3%	Set	Yes, No	Yes	ST	No
NS-BHB7003-0	120 x 80	WB, SM	Yes	Yes, No	3%	Set	Yes, No	Yes	ST	Yes
NS-BHN7001-0	120 x 80	WB, SM	Yes	None	3%	N/A	No, No	No	MJ	No
NS-BHN7001-2	120 x 80	WB, SM	No	None	3%	N/A	No, No	No	MJ	No
NS-BHP7001-0	120 x 80	WB, SM	Yes	None	3%	W/C	Yes, No	No	MJ	No
NS-BPB7001-0	120 x 80	WB, SM	Yes	Yes, No	2%	Set	Yes, No	Yes	MJ	No
NS-BPB7002-0	120 x 80	WB, SM	Yes	Yes, No	2%	Set	Yes, No	Yes	ST	No
NS-BPB7003-0	120 x 80	WB, SM	Yes	Yes, No	2%	Set	Yes, No	Yes	ST	Yes
NS-MHL7001-0	120 x 80	WB, SM	Yes	No, No	3%	N/A	Yes, Yes	No	MJ	No
NS-MHL7002-0	120 x 80	WB, SM	Yes	No, No	3%	N/A	Yes, Yes	No	ST	No

Network Zone Sensor Ordering Information — Temperature and Humidity Models with Temperature or RH Display (Field Selectable Default Display)

Product Code Number	Size (mm), Height x Width	Wallbox-	LCD Display, RH Display	Humidity Element Accuracy	•	Override	F/C Scale Toggle	Screw Terminals (ST) or Modular Jack (MJ)	Address Switches
NS-AHR7101-0	80 x 80	SM	Yes, Yes	3%	Set	Yes	Yes	MJ	No
NS-AHR7102-0	80 x 80	SM	Yes, Yes	3%	Set	Yes	Yes	ST	No
NS-AHR7103-0	80 x 80	SM	Yes, Yes	3%	Set	Yes	Yes	ST	Yes
NS-APR7101-0	80 x 80	SM	Yes, Yes	2%	Set	Yes	Yes	MJ	No
NS-APR7102-0	80 x 80	SM	Yes, Yes	2%	Set	Yes	Yes	ST	No
NS-BHR7101-0	120 x 80	WB, SM	Yes, Yes	3%	Set	Yes	Yes	MJ	No
NS-BHR7103-0	120 x 80	WB, SM	Yes, Yes	3%	Set	Yes	Yes	ST	Yes

Network Zone Sensor Ordering Information — Motion Detection Only Models (No Temperature or Humidity Sensing)

Product Code Number	Height x Width	Vertical Wallbox- Mounted (WB), or Surface-Mounted (SM)	LCD Display	Sensor		Address Switches
NS-MNN7001-0	120 x 80	WB, SM	No	Yes	MJ	No
NS-MNN7003-0	120 x 80	WB, SM	No	Yes	ST	Yes

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2013 Johnson Controls, Inc. www.johnsoncontrols.com

Network Zone Sensor Ordering Information — CO₂ Models

Product Code Number	Height x Width	Vertical Wallbox- Mounted (WB), or Surface-Mounted (SM)	LCD Display		Controls	Screw Terminals (ST), or Modular Jack (MJ)	Sensor Addressing
NS-BCN7004-0	120 x 80	WB, SM	No	0 to 2,000 ppm	Yes	ST, MJ	DIP Switch (212 to 219)
NS-BCN7004-2	120 x 80	WB, SM	No	0 to 2,000 ppm	No	ST, MJ	DIP Switch (212 to 219)

Network Zone Sensor Ordering Information — Flush-Mount Temperature Only Models

Product Code Number	Faceplate Dimensions, Height x Width	Mounting		Measurement	Johnson Controls Logo	Terminations	Sensor Addressing
	4-1/2 in. x 2-3/4 in. (114 mm x 70 mm)	Flush-Mount	No	32.0°F/0.0°C to 104.0°F/40.0°C	Yes		DIP Switch (200 to 203)
	4-1/2 in. x 2-3/4 in. (114 mm x 70 mm)	Flush-Mount	No	32.0°F/0.0°C to 104.0°F/40.0°C	No		DIP Switch (200 to 203)

Product Code Number	Dimensions, Height x Width x Depth	Temperature Probe Length	10 ft (305 cm) Wiring Lead Included	Terminations	Sensor Addressing
NS-DTN7043-0	3 in. x 3 in. x 2 in. (76 mm x 76 mm x 51 mm)	4 in. (102 mm)	Yes	Screw Terminal Block	DIP Switch (204 to 211)
NS-DTN7083-0	3 in. x 3 in. x 2 in. (76 mm x 76 mm x 51 mm)	8 in. (203 mm)	Yes	Screw Terminal Block	DIP Switch (204 to 211)

Technical Specifications

NS Series Network Zone	Sensors — Temperature Only Models and Temperature and Humidity Models (Part 1 of 2)				
Supply Voltage	9.8 to 16.5 VDC; 15 VDC Nominal (From SA Bus)				
Current Consumption	Temperature Only Models with LCD Display: 21 mA Maximum (Non-transmitting)				
	Temperature Only Models without LCD Display: 13 mA Maximum (Non-transmitting)				
	Temperature and Humidity Models with LCD Display: 25 mA Maximum (Non-transmitting)				
	Temperature and Humidity Models without LCD Display: 17 mA Maximum (Non-transmitting)				
Terminations	Modular Jack or Screw Terminal Block				
Sensor Addressing	NS-AHx7003-0, NS-APB7003-0, NS-ATx7003-0, NS-BHx7003-0, NS-BPB7003-0, NS-BTB7003-0, NS-BTN7003-0, and NS-BTP7003-0 Models: DIP Switch Set from 200 to 203; Factory Set at 203				
	All Other Models: Fixed Address of 199				
Wire Size	Modular Jack Models: 24 or 26 AWG (0.5 or 0.4 mm Diameter) Recommended; Three Twisted Pair (Six Conductors)				
	Screw Terminal Block Models: 18 to 22 AWG (1.0 to 0.6 mm Diameter); 22 AWG (0.6 mm Diameter) Recommended				
Communication Rate	Auto-Detect: 9.6k, 19.2k, 38.4k, or 76.8k bps				
Mounting	Surface-Mounted: 80 x 80 mm				
	Surface-Mounted or Vertical Wallbox-Mounted: 120 x 80 mm				
Temperature Measurement Range	32.0°F/0.0°C to 104.0°F/40.0°C				
Humidity Measurement Range	Full Range: 0 to 100% RH				
	Calibrated Range: 10 to 90% RH				
Temperature Sensor Type	Local Platinum Resistance Temperature Detector (RTD)				
Humidity Sensor Type	Thin Film Capacitive Sensor				
Temperature Resolution (Models with LCD)	±0.5F°/±0.5C°				
Temperature Sensor Accuracy	±1.0F°/±0.6C°				
Humidity Element Accuracy	NS-APx700x-0 and NS-BPB700x-0 Models: ±2% RH for 20 to 80% RH; ±4% RH for 10 to 20% and 80 to 90% RH				
	NS-AHx700x-0, NS-BHx700x-0, and NS-MHL700x-0 Models: ±3% RH for 20 to 80% RH; ±6% RH for 10 to 20% and 80 to 90% RH				
Time Constant	10 Minutes Nominal at 10 fpm Airflow				
Default Temperature Setpoint	With LCD Display: 50.0°F/10.0°C to 86.0°F/30.0°C in 0.5° Increments				
Adjustment Range	Without LCD Display: ±5.0F°/±3.0C°				
PIR Occupancy Sensor Motion Detection (Models with PIR Occupancy Sensor)	Minimum 94 Angular Degrees up to a Distance of 15 ft (4.6 m); Based on a Clear Line of Sight				
Ambient Conditions	Operating: 32 to 104°F (0 to 40°C); 10 to 90% RH, Noncondensing; 85°F (29°C) Maximum Dew Point				
	Storage with LCD Display: -4 to 140°F (-20 to 60°C); 5 to 95% RH, Noncondensing				
	Storage without LCD Display: -40 to 158°F (-40 to 70°C); 5 to 95% RH, Noncondensing				

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2013 Johnson Controls, Inc. www.johnsoncontrols.com

NS Serie	s Network Zone S	ensors — Temperature Only Models and Temperature and Humidity Models (Part 2 of 2)					
Compliance	BACnet	BACnet Testing Laboratories™ (BTL) 135-2004 Listed BACnet Smart Sensor (B-SS)					
	International	Note: Excludes the NS-ATV700x-0 and NS-BTV700x-0 models.					
	United States	UL Listed, File E107041, CCN PAZX, Under UL 916, Energy Management Equipment; FCC Compliant to CFR 47, Part 15, Subpart B, Class A					
	Canada	UL Listed, File E107041, CCN PAZX7, Under CAN/CSA C22.2 No. 205, Signal Equipment; Industry Canada, ICES-003					
CE	Europe	CE Mark – Johnson Controls, Inc., declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive 2004/108/EC.					
Australia and New Zealand		C-Tick Mark, Australia/NZ Emissions Compliant					
Accessory (Order Separately)		NS-WALLPLATE-0: Adapts an 80 x 80 mm NS Series Network Zone Sensor to a Standard 80 x 120 mm Wallbox					
Shipping Weight		NS-Axx7xxx-0 Models: 0.20 lb (0.09 kg)					
		NS-Bxx7xxx-0 and NS-Mxx700x-0 Models: 0.25 lb (0.11 kg)					
NS S	eries Network Zor	ne Sensors — Motion Detection Only Models (No Temperature or Humidity Sensing)					
Supply Voltage		9.8 to 16.5 VDC; 15 VDC Nominal (From SA Bus)					
Current Consumption	on	13 mA Maximum (Non-transmitting)					
Terminations		Modular Jack or Screw Terminal Block					
Sensor Addressing (NS-MNN7003-0 Mod	del)	DIP Switch Set from 200 to 203; Factory Set at 203					
Wire Size		Modular Jack Model: 24 AWG or 26 AWG (0.5 or 0.4 mm Diameter) Recommended; Three Twisted Pair (Six Conductors)					
		Screw Terminal Block Model: 18 to 22 AWG (1.0 to 0.6 mm Diameter); 22 AWG (0.6 mm Diameter) Recommended					
Communication Rat	e	Auto-Detect: 9.6k, 19.2k, 38.4k, or 76.8k bps					
Mounting		Surface-Mounted or Vertical Wallbox-Mounted: 120 x 80 mm					
PIR Occupancy Sen Motion Detection		Minimum 94 Angular Degrees up to a Distance of 15 ft (4.6 m); Based on a Clear Line of Sight					
Ambient Conditions	i	Operating: 32 to 104°F (0 to 40°C); 10 to 90% RH, Noncondensing; 85°F (29°C) Maximum Dew Point					
	-	Storage: -40 to 158°F (-40 to 70°C); 5 to 95% RH, Noncondensing					
Compliance	BACnet International	BACnet Testing Laboratories™ (BTL) 135-2004 Listed BACnet Smart Sensor (B-SS)					
	United States	UL Listed, File E107041, CCN PAZX, Under UL 916, Energy Management Equipment; FCC Compliant to CFR 47, Part 15, Subpart B, Class A					
	Canada	UL Listed, File E107041, CCN PAZX7, Under CAN/CSA C22.2 No. 205, Signal Equipment; Industry Canada, ICES-003					
CE	Europe	CE Mark – Johnson Controls, Inc., declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive 2004/108/EC.					
	Australia and New Zealand	C-Tick Mark, Australia/NZ Emissions Compliant					
Shipping Weight		0.25 lb (0.11 kg)					
		NS Series Network Zone Sensor — CO ₂ Models (Part 1 of 2)					
Supply Voltage		Non-isolated: 20 to 30 VAC (18 to 30 VDC), Class 2 or Safety Extra-Low Voltage (SELV) Isolated: 9.8 to 16.5 VDC; 15 VDC Nominal (From SA Bus)					
Current Consumptio	n	Non-isolated: 22 mA Average at 24 VAC; 28 mA Average at 24 VDC					
carrent consumption	200 200	Isolated: 5 mA Maximum, Non-transmitting (From SA Bus)					
Power Consumption	1	Non-isolated: Less Than 0.7 W Average					
Terminations	-	Non-isolated Supply: Screw Terminal Block					
		SA Bus: Modular Jack or Screw Terminal Block					
Sensor Addressing		DIP Switch Set from 212 to 219; Factory Set at 212					
Wire Size		Modular Jack: 24 or 26 AWG (0.5 or 0.4 mm Diameter) Recommended; Three Twisted Pair (Six Conductors)					
		Screw Terminal Block: 18 to 22 AWG (1.0 to 0.6 mm Diameter); 22 AWG (0.6 mm Diameter) Recommended					
Communication Rate		Auto-Detect: 9.6k, 19.2k, 38.4k, or 76.8k bps					
CO ₂ Measurement F	Range	0 to 2,000 ppm					
CO ₂ Sensing Accura	асу	Plus or Minus the Sum of 50 ppm and 3.0% of the CO ₂ Reading at 77°F (25°C) and 978 hPa or an Altitude of 1,000 ft/300 m Note: All accuracy specifications reflect the testing of the device using high-grade certified gases. This device is intended for an altitude range of 0 ft/0 m to 2,000 ft/600 m above sea level without compensation.					
		Temperature Dependence of Output: -0.35% of the CO ₂ Reading per 1.8F°/1C° Typical					
		Pressure Dependence of Output: +0.15% of the CO ₂ Reading per 1 hPa Typical					
CO ₂ Sensing Resolu	ution	1 ppm					

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2013 Johnson Controls, Inc. www.johnsoncontrols.com

		NS Series Network Zone Sensor — CO ₂ Models (Part 2 of 2)
CO ₂ Sensing Res	ponse Time	1 Minute (0 to 90%)
CO ₂ Sensing War	m-Up Time	Less Than 1 Minute; Less Than 10 Minutes for Full Accuracy
CO ₂ Sensing Lon	g-Term Stability	Less Than ±100 ppm Over 5 Years
Mounting		Surface-Mounted or Vertical Wallbox-Mounted: 120 x 80 mm
Ambient Conditio	ns	Operating: 32 to 104°F (0 to 40°C); 10 to 90% RH, Noncondensing; 85°F (29°C) Maximum Dew Point; 700 to 1,200 hPa
		Storage: -40 to 158°F (-40 to 70°C); 0 to 95% RH, Noncondensing
Compliance	BACnet International	BACnet Testing Laboratories™ (BTL) 135-2004 Listed BACnet Smart Sensor (B-SS)
	United States	UL Listed, File E107041 CCN PAZX, Under UL 916, Energy Management Equipment; FCC Compliant to CFR 47, Part 15, Subpart B, Class A
	Canada	UL Listed, File E107041, CCN PAZX7, Under CAN/CSA C22.2 No. 205, Signal Equipment; Industry Canada, ICES-003
CE	Europe	CE Mark – Johnson Controls, Inc., declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive 2004/108/EC.
	Australia and New Zealand	C-Tick Mark, Australia/NZ Emissions Compliant
Supply Voltage		0.35 lb (0.16 kg)

	NS Ser	ies Network Zone Sensor — Flush-Mount Temperature Only Models				
Supply Voltage		9.8 to 16.5 VDC; 15 VDC Nominal (From SA Bus)				
Current Consumptio	n	12 mA Maximum (Non-transmitting) per Flush-Mount Network Sensor				
Terminations		crew Terminal Block				
		Note: Wire leads are field supplied and are not tinned.				
Sensor Addressing		DIP Switch Set from 200 to 203; Factory Set at 203				
Wire Size		18 to 22 AWG (1.0 to 0.6 mm Diameter); 22 AWG (0.6 mm Diameter) Recommended; 10 ft (304.8 cm) Wiring Lead Included with the Unit				
Communication Rate	e	Auto-Detect: 9.6k, 19.2k, 38.4k, or 76.8k bps				
Temperature Measur	rement Range	32.0°F/0.0°C to 104.0°F/40.0°C				
Temperature Sensor	Туре	Local Platinum Resistance Temperature Detector (RTD)				
Temperature Sensor	Accuracy	±1.0F°/±0.6C°				
Ambient Conditions		Operating: 32 to 104°F (0 to 40°C); 10 to 90% RH, Noncondensing; 85°F (29°C) Maximum Dew Point				
		Storage: -40 to 158°F (-40 to 70°C); 5 to 95% RH, Noncondensing				
Compliance	BACnet International	BACnet Testing Laboratories™ (BTL) 135-2004 Listed BACnet Smart Sensor (B-SS)				
	United States	UL Listed, File E107041, CCN PAZX, Under UL 916, Energy Management Equipment;				
	0	FCC Compliant to CFR 47, Part 15, Subpart B, Class A				
	Canada	UL Listed, File E107041, CCN PAZX7, Under CAN/CSA C22.2 No. 205, Signal Equipment; Industry Canada, ICES-003				
CE	Europe	CE Mark – Johnson Controls, Inc., declares that this product is in compliance with the essential				
		requirements and other relevant provisions of the EMC Directive 2004/108/EC.				
	Australia and New Zealand	C-Tick Mark, Australia/NZ Emissions Compliant				
Shipping Weight		0.25 lb (0.11 kg)				

	NS Series Network Discharge Air Sensors (Part 1 of 2)
Supply Voltage	9.8 to 16.5 VDC; 15 VDC Nominal
Current Consumption	12 mA Maximum (Non-transmitting) per Discharge Air Sensor
Terminations	Four Color-Coded Wiring Leads, Stripped and Tinned; Factory-Installed at the Discharge Air Sensor Screw Terminal Block
Sensor Addressing	DIP Switch Set from 204 to 211; Factory Set at 204
Wire Size	18 to 22 AWG (1.0 to 0.6 mm Diameter); 22 AWG (0.6 mm Diameter) Recommended; 10 ft (305 cm) Wiring Lead Included with the Unit
Communication Rate	Auto-Detect: 9.6k, 19.2k, 38.4k, or 76.8k bps
Mounting	Duct-Mounted: 4 or 8 in. (102 or 203 mm) Temperature Probe Length
Temperature Measurement Range	14°F/-10°C to 140°F/60°C
Temperature Sensor Type	Local Platinum Resistance Temperature Detector (RTD)
Temperature Sensor Accuracy	±1.0F°/±0.6C°
Ambient Conditions	Operating: 14 to 140°F (-10 to 60°C); 10 to 90% RH, Noncondensing; 85°F (29°C) Maximum Dew Point
	Storage: -40 to 158°F (-40 to 70°C); 5 to 95% RH, Noncondensing

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2013 Johnson Controls, Inc. www.johnsoncontrols.com

NS Series Network Discharge Air Sensors (Part 2 of 2)		
Compliance	BACnet International	BACnet Testing Laboratories™ (BTL) 135-2004 Listed BACnet Smart Sensor (B-SS)
	United States	UL Listed, File E107041, CCN PAZX, Under UL 916, Energy Management Equipment; FCC Compliant to CFR 47, Part 15, Subpart B, Class A
	Canada	UL Listed, File E107041, CCN PAZX7, Under CAN/CSA C22.2 No. 205, Signal Equipment; Industry Canada, ICES-003
CE	Europe	CE Mark – Johnson Controls, Inc., declares that this product is in compliance with the essential requirements and other relevant provisions of the EMC Directive 2004/108/EC.
	Australia and New Zealand	C-Tick Mark, Australia/NZ Emissions Compliant
Shipping Weight		NS-DTN7043-0: 1.15 lb (0.52 kg)
		NS-DTN7083-0: 1.17 lb (0.53 kg)

Electric Zone Valves – Two-Way Spring Open (Normally Open), Modulating Control

Description

This electric zone valve with forged brass body offers two--way spring open (normally open), modulating control for hot or chilled water applications. For complete details, refer to *J Series Electric Zone Valves Product Bulletin (LIT-977282)*.

Features

- economical control of hot or chilled water (up to 50% glycol) for fan coil, baseboard radiator and VAV reheat applications.
- 0 to 10 VDC proportional and three wire floating control.
- 32 to 200°F (0 to 93°C) fluid temperature rating
- 32 to 125°F (0 to 52°C) ambient temperature rating
- 300 psig Static Pressure Rating
- 20 to 30 VAC 50/60 Hz
- forged brass body

JM Series Two-Way Spring Return Modulating Zone Valve

Selection Chart

Valve	Size	Cv	Close-	Act	uator
			off	Three Wire Floating	0 to 10 VDC Proportional
				JT13A000	JP13A000
Two-Way	 Sweat 	Conn	ections		
JM2211	1/2"	1	50	JM2211T23A000	JM2211P23A000
JM2212	1/2"	2	50	JM2212T23A000	JM2212P23A000
JM2213	1/2"	4	35	JM2213T23A000	JM2213P23A000
JM2312	3/4"	2	50	JM2312T23A000	JM2312P23A000
JM2313	3/4"	4	35	JM2313T23A000	JM2313P23A000
JM2317	3/4"	7.5	35	JM2317T23A000	JM2317P23A000
JM2413	1"	4	35	JM2413T23A000	JM2413P23A000
JM2417	1"	8	35	JM2417T23A000	JM2417P23A000
JM2517	1-1/4"	8	35	JM2517T23A000	JM2517P23A000
Two-Way	– NPT C	onneo	tions		•
JM2221	1/2"	1	50	JM2221T23A000	JM2221P23A000
JM2222	1/2"	2	50	JM2222T23A000	JM2222P23A000
JM2223	1/2"	4	35	JM2223T23A000	JM2223P23A000
JM2322	3/4"	2	50	JM2322T23A000	JM2322P23A000
JM2323	3/4"	4	35	JM2323T23A000	JM2323P23A000
JM2327	3/4"	7.5	35	JM2327T23A000	JM2327P23A000
JM2427	1"	8	35	JM2427T23A000	JM2427P23A000

Repair Information

If the J Series Electric Zone Valve – Two-Way Spring Open,

Modulating Control fails to operate within its specifications, replace the unit. For a replacement valve, contact the nearest Johnson Controls® representative.

Note: Actuators and valve bodies can be ordered separately using the actuator and valve code numbers shown. JM Series Modulating Three-Way Electric Zone Valves must be piped in a mixing configuration only.

Technical Specifications

т		tric Zone Valves – ben, Modulating Control
Service ¹		Hot Water Chill Water, and 50/50 Glycol Solutions for HVAC Systems
Fluid	Water	32 to 200°F (0 to 93°C)
Temperature Limits	Steam	Not rated for steam service
Valve Body P	ressure Rating	300 psig (2,067 kPa)
Leakage		0.01% of Maximum Flow per ANSI/FCI 70-2 Class IV
Ambient Oper Limits	rating Temperature	32 to 125°F (0 to 52°C)
Cycle Time		Full Close to Full Open 150 seconds
Control Signal	"T" Type Actuator	24 VAC, 60 Hz, Three-Wire Floating Control
	"P" Type Actuator	0 to 10 VDC (1 to 9 VDC Actual) Factory Setting, 0 to 5 VDC, 5 to 10 VDC jumper selectable
Control Action	"P" Type Actuator	Factory Setting: Direct Acting Valve opens Port "B" as signal increases. Jumper selectable
Power Requir	rements	1.6 VA
Electrical Cor	nnection	Terminal Block
Materials	Body	Brass
	Stem	Brass (Hard Chrome Plated)
	Base Plate and Bearing Plate	Stainless Steel
	Actuator Housing	High Temperature Plastic
	Valve Plug	High Temperature Thermoplastic Rubber
	Stem Seals	Viton™ O-rings

1. Refer to VDI 2035 Standard for recommended proper water treatment.

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2011 Johnson Controls, Inc. www.johnsoncontrols.com

Electric Zone Valves – Two-Way Spring Open (Normally Open), On/Off Control

Description

This electric zone valve with forged brass body offers two-way spring open (normally open), on/off control for hot or chilled water applications. For complete details, refer to J Series Electric Zone Valves Product Bulletin (LIT-977282).

Features

- forged brass body and hard chrome-plated brass stem
- provides economical control of hot or chilled water for fan coil, baseboard radiator, and VAV reheat applications

- On/Off control from a two-wire thermostat
- 300 psig system operating pressure
- 400 psig static pressure rating
- buna-N (standard temperature) or nitrile disk (high temperature) provides tight closeoff
- 1/2, 3/4, and 1 in. line sizes
- sweat, NPT, or inverted flare end connections
- actuator can be factory or field installed
- actuator snaps in place for easy removal and assembly during installation

Standard Closeoff

Selection Charts

J Series Electric Zone Valve – Two-Way Spring Open (Normally Open), On/Off Control (Part 1 of 2)

Valve Moc	lel Numbe	r			H Style Actuators I	have Standard Pressunave High Pressure C	loseoff	
					Standard Temperat 200°F (93°C) Fluid, 104°F (40°C) Ambie	U	High Temperature 250°F (121°C) Fluid 169°F (76°C) Ambie	l, 15 psig Steam,
Standard	High	Size,	Cv	Closeoff	24 VAC, 60 Hz	120 VAC, 60 Hz	24 VAC, 60 Hz	120 VAC, 60 Hz
Temp	Temp	in.			JG23A020 JH23A020	JG23B020 JH23B020	JG24A020 JH24A020	JG24B020 JH24B020
Sweat Con	nections - S	Standard F	ressure	Closeoff		·		·
JT2211	JS2211	1/2	1.0	60	JT2211G23A020	JT2211G23B020	JS2211G24A020	JS2211G24B020
JT2212	JS2212	1/2	2.5	40	JT2212G23A020	JT2212G23B020	JS2212G24A020	JS2212G24B020
JT2213	JS2213	1/2	3.5	25	JT2213G23A020	JT2213G23B020	JS2213G24A020	JS2213G24B020
JT2312	JS2312	3/4	2.5	40	JT2312G23A020	JT2312G23B020	JS2312G24A020	JS2312G24B020
JT2313	JS2313	3/4	3.5	25	JT2313G23A020	JT2313G23B020	JS2313G24A020	JS2313G24B020
JT2417	JS2417	1	8.0	17	JT2417G23A020	JT2417G23B020	JS2417G24A020	JS2417G24B020
JT2517	JS2517	1-1/4	8.0	17	JT2517G23A020	JT2517G23B020	JS2517G24A020	JS2517G24B020
NPT Conne	ctions – Sta	andard Pre	essure C	loseoff				
JT2221	JS2221	1/2	1.0	60	JT2221G23A020	JT2221G23B020	JS2221G24A020	JS2221G24B020
JT2222	JS2222	1/2	2.5	40	JT2222G23A020	JT2222G23B020	JS2222G24A020	JS2222G24B020
JT2223	JS2223	1/2	3.5	25	JT2223G23A020	JT2223G23B020	JS2223G24A020	JS2223G24B020
JT2322	JS2322	3/4	2.5	40	JT2322G23A020	JT2322G23B020	JS2322G24A020	JS2322G24B020
JT2323	JS2323	3/4	3.5	25	JT2323G23A020	JT2323G23B020	JS2323G24A020	JS2323G24B020
JT2427	JS2427	1	8.0	17	JT2427G23A020	JT2427G23B020	JS2427G24A020	JS2427G24B020
Inverted Fla	are Connect	tions – Sta	ndard P	ressure Clos	eoff			
JT2343	JS2343	3/4	3.5	25	JT2343G23A020	JT2343G23B020	JS2343G24A020	JS2343G24B020
Sweat Coni	nections – H		sure Clo	seoff				
JT2211	JS2211	1/2	1.0	75	JT2211H23A020	JT2211H23B020	JS2211H24A020	JS2211H24B020
JT2212	JS2212	1/2	2.5	50	JT2212H23A020	JT2212H23B020	JS2212H24A020	JS2212H24B020
JT2213	JS2213	1/2	3.5	30	JT2213H23A020	JT2213H23B020	JS2213H24A020	JS2213H24B020
JT2312	JS2312	3/4	2.5	50	JT2312H23A020	JT2312H23B020	JS2312H24A020	JS2312H24B020
JT2313	JS2313	3/4	3.5	30	JT2313H23A020	JT2313H23B020	JS2313H24A020	JS2313H24B020
JT2417	JS2417	1	8.0	20	JT2417H23A020	JT2417H23B020	JS2417H24A020	JS2417H24B020
JT2517	JS2517	1-1/4	8.0	20	JT2517H23A020	JT2517H23B020	JS2517H24A020	JS2517H24B020

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2011 Johnson Controls, Inc. www.johnsoncontrols.com

Electric Zone Valves – Two-Way Spring Open (Normally Open), On/Off Control (Continued)

J Series Electric Zone Valve – Two-Way Spring Open (Normally Open), On/Off Control (Part 2 of 2)

Valve Moc	lel Numbe	er				have Standard Press have High Pressure C ature Rating:	Closeoff High Temperature 250°F (121°C) Fluid						
Standard	High	Size,	Cv	Closeoff	24 VAC, 60 Hz	120 VAC, 60 Hz	24 VAC, 60 Hz	120 VAC, 60 Hz					
Temp	Temp	in.			JG23A020 JH23A020	JG23B020 JH23B020	JG24A020 JH24A020	JG24B020 JH24B020					
NPT Conne	ctions – Hi	gh Pressu	ire Clos	eoff									
JT2221	JT2221	1/2	1.0	75	JT2221H23A020	JT2221H23B020	JS2221H24A020	JS2221H24B020					
JT2222	JT2222	1/2	2.5	50	JT2222H23A020	JT2222H23B020	JS2222H24A020	JS2222H24B020					
JT2223	JT2223	1/2	3.5	30	JT2223H23A020	JT2223H23B020	JS2223H24A020	JS2223H24B020					
JT2322	JT2322	3/4	2.5	50	JT2322H23A020	JT2322H23B020	JS2322H24A020	JS2322H24B020					
JT2323	JT2323	3/4	3.5	30	JT2323H23A020	JT2323H23B020	JS2323H24A020	JS2323H24B020					
JT2427	JT2427	1	8.0	20	JT2427H23A020	JT2427H23B020	JS2427H24A020	JS2427H24B020					
Inverted Fla	are Connec	tions – Hi	gh Pres	sure Closeoff	÷		•						
JT2343	JS2343	3/4	3.5	30	JT2343H23A020	JT2343H23B020	JS2343H24A020	JS2343H24B020					

Inverted Flare Fittings (Order Separately)

Code Number	Description	Length, in. (mm)
J647-601	For 1/2 in. (5/8 in. O.D.) Copper Tubing	15/16 (24)
J647-602	For 1/2 in. (5/8 in. O.D.) Copper Tubing	1-11/16 (43)
J647-603	For 1/2 in. (5/8 in. O.D.) Copper Tubing	3 (76)
J647-604	For 3/4 in. (7/8 in. O.D.) Copper Tubing	1-27/32 (47)
J647-605	For 1/2 in. (5/8 in. O.D.) Copper Tubing	1-15/16 (49)
J647-606	For 1 in. (1-1/8 in. O.D.) Copper Tubing	2-3/8 (60)

J647-601 J647-602 J647-603 J647-604 J647-605 J647-606 Inverted Flare Fittings

Repair Information

If the J Series Electric Zone Valve – Two-Way Spring Closed (Normally Closed), On/Off Control fails to operate within its specifications, refer to the *J Series Electric Zone Valves Product Bulletin (LIT-977282)* for a list of repair parts available. Available repair parts for J Series Electric Zone Valves include replacement valve bodies, replacement actuators, and the end connections listed in the Inverted Flare Fittings. No other field repairs should be attempted.

Technical Specifications

J Series	Electric Zone	Valves – Two	Way Spring Closed (Normally Closed), On/Off Controls								
Service ¹			Hot Water Chill Water, and 50/50 Glycol Solutions for HVAC Systems								
Fluid	Water	JT Series	32 to 200°F (0 to 93°C)								
Temperature Limits		JS Series	32 to 250°F (0 to 121°C)								
Linito	Steam	JT Series	Not rated for steam service								
		JS Series	15 psig (103 kPa) Saturated Steam								
Valve Body P	ressure Rating		300 psig (2,067 kPa)								
Leakage			Bubble tight shut off								
Ambient Oper		JT Series	32 to 104°F (0 to 40°C)								
Temperature	Limits	JS Series	32 to 169°F (0 to 76°C)								
Cycle Time			Power stroke 9 to 11 seconds, spring return 4 to 5 seconds								
Control Signa	l		24 VAC or 120 VAC, 60 Hz, Two-wire On/Off								
Power Requir	ements		7 VA								
Electrical Cor	nnection		18 in. (457 mm) wire leads								
Materials	Body		Brass								
	Stem		Brass (Hard Chrome Plated)								
	Base Plate and	d Bearing Plate	Stainless Steel								
	Actuator Hous	sing	Stainless Steel								
	Actuator Cove	er	Aluminum								
	Valve Paddle	JT Series	Buna-N Rubber								
		JS Series	Saturated Nitrile								
	Stem Seals		Viton® O-rings								

1. Refer to VDI 2035 Standard for recommended proper water treatment.

The performance specifications are nominal and conform to acceptable industry standards. For applications at conditions beyond these specifications, consult the local Johnson Controls office. Johnson Controls, Inc. shall not be liable for damages resulting from misapplication or misuse of its products. © 2011 Johnson Controls, Inc. www.johnsoncontrols.com HVAC CONTROL PRODUCTS - NORTH AMERICA

Direct mount actuators selection guide summary

No Retu Pro

B. 4
M9102 Series 18 in-lb (2) Nm
and
M9104 Series 35 in-lb (4) Nm

1

and the second s	
M9104-AGx- 2N0x Series	
35 in-lb (6 Nm)	
and	
M9106-AGx- 2N0x Series	
VAV Systems	
53 in-lb (6 Nm)	

-44

M9106 53 in-lb **M9109 Series** 80 in-lb (9 Nm)

 \blacktriangle Factory Set for 60 seconds, User selectable for 90, 120, 330, and 660 seconds.

		Rotation Time 90°		Powe uirem			Power nsumption		I	nput	Signal			Posi Feed			Auxiliary Switches			ectric nnect		
urn A	Spring Actuator t Range	Power On - Running (seconds)	24 VAC +25%/-20%, Class 2, SELV	24 VAC +25%/-15%, Class 2, SELV	24 VAC +25%/-15%, VDC +/- 10%	VA Rating, Transformer Sizing	VA: Running (Holding)	Floating Point without Timeout	On/Off and Floating Point	Resistive 100 to 10,000 Ω	0(2) to 10 VDC 0(4) to 20 mA (w/500Ω Resistor)	Adjustable Start and Span: Start: 0 to 10 VDC, Span 2 to 10 VDC	Resistive 135 Ω Potentiometer	Resistive 1,000 Ω Potentiometer	Resistive 10,000 Ω Potentiometer	0(2) to 10 VDC	2 SPDT, 3.0 A (1.5 A Inductive) @ 24 VAC	48 in. (1.2 m) 19 AWG Plenum Cable	Screw Terminals	14" Spade Terminals	14" Spade Terminals w/Pluggable Terminal. Block	1/2" conduit connectors
	M9102-AGA-2S	30	•			2.1	2.1 (0)	•										•				
	M9102-AGA-3S	30	•			2.1	2.1 (0)	•											•			
	M9102-IGA-2S	30	•			2.6	2.6 (0.4)		•									•				
	M9102-IGA-3S	30	•			2.6	2.6 (0.4)		•													
	M9104-AGA-2S	60	•			2.1	2.1 (0)	•										•				
2 Series b (2) Nm	M9104-AGA-3S	60	•			2.1	2.1 (0)	•											•			
and	M9104-IGA-2S	60	•			3.0	3.0 (0.4)		•									•				
4 Series b (4) Nm	M9104-IGA-3S	60	•			3.0	3.0 (0.4)		•										•			
- (),	M9104-GGA-2S	60				3.6	3.6 (1.0)											•				
	M9104-GGA-3S	60				3.6	3.6 (1.0)															
	M9104-AGA-2N	90		•		2.1	2.1 (0)	•											•			
	M9104-AGS-2N*	90				2.1	2.1 (0)	•											•			
	M9106-AGA-2N01	60				2.5	2.5 (0)	•											•			
2 '	M9106-AGA-2N02	120		•		2.1	2.1 (0)	•											•			
4-AGx- a Series b (6 Nm) and 6-AGx- a Series Systems b (6 Nm)	M9106-AGS-2N02* * Includes DPT-2015 Differential Pressure Transmitter and CBL-2000-1 Wire Harness	120		•		2.1	2.1 (0)												■			
	M9106-AGA-2	60		•		2.5	2.5 (0)	•												•		
	M9106-AGC-2	60		•		2.5	2.5 (0)	•									•			•		•
	M9106-AGF-2	60		•		2.5	2.5 (0)	•							•					•		
0-	M9106-IGA-2	60 🔺		•		2.8	2.8 (0.5)		•											•		•
	M9106-IGC-2	60 🔺		•		2.8	2.8 (0.5)		•								•			•		
6 Series b (6 Nm)	M9106-GGA-2	60		•		3.2	3.2 (0.5)									-				•		
	M9106-GGC-2	60		•		3.2	3.2 (0.5)				•					-	•			•		•
-	M9109-AGA-2	60		•		2.5	2.5 (0)	•												•		•
	M9109-AGC-2	60		•		2.5	2.5 (0)	•									•			•		
	M9109-GGA-2	60		•		3.2	3.2 (0.5)				•					-				•		
	M9109-GGC-2	60		•		3.2	3.2 (0.5)				•					-	•			•		
9 Series b (9 Nm)																						

		Rotation Time 90°		Powe uirem	er nents		Power onsumption		lr	put S	Signal		Position Feedback				Auxiliary Switches			ectric nnect		
Non-S Return A Product (contin	Actuator Range	Power On - Running (seconds)	24 VAC +25%/-20%, Class 2, SELV	24 VAC +25%/-15%, Class 2, SELV	4 VAC +25%/-15%, VDC +/- 10%	VA Rating, Transformer Sizing	VA: Running (Holding)	Floating Point without Timeout	On/Off and Floating Point	Resistive 100 to 10,000 Ω	0(2) to 10 VDC 0(4) to 20 mA (w/500Ω Resistor)	Adjustable Start and Span: Start: 0 to 10 VDC, Span 2 to 10 VDC	Resistive 135 Ω Potentiometer	Resistive 1,000 Ω Potentiometer	Resistive 10,000 Ω Potentiometer	0(2) to 10 VDC	SPDT, 3.0 A (1.5 A Inductive) @ 24 VAC	3 in. (1.2 m) 19 AWG Plenum Cable	Screw Terminals	" Spade Terminals	" Spade Terminals w/Pluggable Terminal. Block	" conduit connectors
	M9108-AGA-2		24	24	24	-	≶	Ĕ		Re	<u> </u>	St Ac	Re	Re	Re)0	5	48		1/4"	1/4"	1/2"
	M9108-AGA-2 M9108-AGC-2	25 to 50 25 to 50			•	6.5 6.5	6.5 (0.9)												•			•
	M9108-AGC-2 M9108-AGD-2	25 to 50			•	6.5	6.5 (0.9)										-		•			•
	M9108-AGE-2	25 to 50			-	6.5	6.5 (0.9)		-				-						-			-
14 T L	M9108-GGA-2	25 to 50			-	7.1	7.1 (1.5)		_					-					-			-
20197 St.	M9108-GGC-2	25 to 50			-	7.1	7.1 (1.5)	<u> </u>									•		-			-
	M9108-HGA-2	25 to 50				7.4	7.4 (1.8)															
M9108 Series	M9108-HGC-2	25 to 50				7.4	7.4 (1.8)										-					•
70 in-lb (8 Nm)	M9108-JGA-2	25 to 50				7.1	7.1 (1.5)			-												•
	M9108-JGC-2	25 to 50				7.1	7.1 (1.5)			•							•					•
	M9116-AGA-2	70 to 115			•	5.8	5.8 (0.9)												•			•
-	M9116-AGC-2	70 to 115				5.8	5.8 (0.9)		-								-					•
C.	M9116-AGD-2	70 to 115			-	5.8	5.8 (0.9)		-													•
a second d	M9116-AGE-2	70 to 115				5.8	5.8 (0.9)		-													
Reality and a second	M9116-GGA-2	70 to 115				6.4	6.4 (1.5)									-			-			
and the se	M9116-GGC-2	70 to 115			•	6.4	6.4 (1.5)									•	-		-			•
	M9116-HGA-2	70 to 115			-	6.7	6.7 (1.8)					•				-			-			•
M9116 Series 140 in-lb	M9116-HGC-2	70 to 115			•	6.7	6.7 (1.8)									•	-		•			•
(16 Nm)	M9116-JGA-2	70 to 115			•	6.4	6.4 (1.5)			•						•			•			•
	M9116-JGC-2	70 to 115			•	6.4	6.4 (1.5)			•						•	•		•			•
	M9124-AGA-2	115 to 175			•	5.9	5.9 (1.5)		•											•		•
	M9124-AGC-2	115 to 175			•	5.9	5.9 (1.5)		•								•			•		•
	M9124-AGD-2	115 to 175			•	5.9	5.9 (1.5)		•				•							•		•
1 A	M9124-AGE-2	115 to 175			•	5.9	5.9 (1.5)		•					•						•		•
No. of the second se	M9124-GGA-2	115 to 175			•	5.9	5.9 (1.5)															•
aller &	M9124-GGC-2	115 to 175			•	5.9	5.9 (1.5)									•	•					•
	M9124-HGA-2	115 to 175				6.2	6.2 (1.8)															•
M9124 Series	M9124-HGC-2	115 to 175				6.2	6.2 (1.8)									•	•					
210 in-lb (24 Nm)	M9124-JGA-2	115 to 175			•	5.9	5.9 (1.5)			•						•						
	M9124-JGC-2	115 to 175			•	5.9	5.9 (1.5)		_	•						•	•			-		
Ô	M9132-AGA-2	115 to 205	<u> </u>		•	6.5	6.5 (1.5)	<u> </u>	•				<u> </u>							•		•
	M9132-AGC-2	115 to 205			•	6.5	6.5 (1.5)	-	•					_			•			•		•
14 H	M9132-AGE-2 M9132-GGA-2	115 to 205 115 to 205				6.5 6.5	6.5 (1.5) 6.5 (1.5)	-								-						
all the	M9132-GGA-2 M9132-GGC-2	115 to 205				6.5	6.5 (1.5)															
M9132 Series 280 in-lb (32 Nm)	INI3722-00C-7	113 10 205				0.5	0.3 (1.3)									•						

			on Time 90°	Power Requirements Consumpti								I	nput	Signa	I	Position Feedback		liary ches						
Spring R Actua Product	itor	Power On - Running (seconds)	Power Off - Spring Return (seconds)	24 VAC +/- 25%, VDC +/- 10%	24 VAC +/- 20%, VDC +/- 10%	120 VAC +10%/-15% at 60 Hz	198 to 264 VAC at 50/60 Hz	85 to 264 VAC at 50/60 Hz	VA Rating, Transformer Sizing	VA: Running (Holding)	Amperage: Running (Holding)	On/Off	On/Off and Floating Point	0(2) to 10 VDC 0(4) to 20 mA (w/500Ω Resistor)	Adjustable Start and Span: Start: 0 to 10 VDC, Span 2 to 10 VDC	0(2) to 10 VDC	1 SPDT, 5.0 A (2.9 A Inductive) @ 240V	2 SPDT, 5.0 A (2.9 A Inductive) @ 240V	48 in. (1.2 m) 18 AWG Appliance Cable	120 in. (3.05 m) 19 AWG Plenum Cable	¹ /2" conduit connectors	Integral 3/8" FMC Connectors		
	M9203-AGA-2	150	<25		•				6	4.7 (2.7)										•	•			
	M9203-AGB-2	150	<25		•				6	4.7 (2.7)			•				•		•		•			
and and	M9203-AGA-2Z M9203-AGB-2Z	90	<25		•				6	5.1 (2.8)			•							•	•			
1 A A	M9203-AGB-22 M9203-BGA-2	90 <75	<25 <25		•				6 6	5.1 (2.8) 5.0 (2.5)			•				•		•		•			
23 BILL states	M9203-BGB-2	<75	<25						6	5.0 (2.5)		-					•		-					
A THE OWNER	M9203-BUA-2	<75	<25								.06 (.02)	•									•			
Mar	M9203-BUB-2	<75	<25					•			.06 (.02)	•					•							
TT	M9203-BUA-2Z	<30	<25								.08 (.02)	•												
	M9203-BUB-2Z	<30	<25					•			.08 (.02)	•					•		•		•			
M9203 Series	M9203-GGA-2	150	<25		•				6	4.7 (2.7)				•		-				•	•			
27 in-lb (3 Nm)	M9203-GGB-2	150	<25						6	4.7 (2.7)				•		•	•		•		•			
	M9203-GGA-2Z M9203-GGB-2Z	90 90	<25 <25		•				6 6	5.1 (2.8) 5.1 (2.8)				•		•	•		-	•	•			
	M9208-AGA-2	150	18 to 24▲						8	7.9 (5.5)				-		-	-		-	•	-			
	M9208-AGA-3	150	18 to 24		-				8	7.9 (5.5)			-							-		-		
(Salar	M9208-AGC-3	150	18 to 24 🛦						8	7.9 (5.5)								-						
A CARLES	M9208-BGA-3	<75	13 to 26†	•					7	6.1 (1.2)		•										•		
- Aller	M9208-BGC-3	<75	13 to 26†	•					7	6.1 (1.2)		•						-	•			•		
x + #8	M9208-BAA-3	<75	13 to 26†			•					.05 (.03)	•							•			•		
6.7.6	M9208-BAC-3	<75	13 to 26†			•					.05 (.03)	•						•	•			•		
	M9208-BDA-3	<75	13 to 26†				•				.04 (.03)	•							•			•		
	M9208-BDC-3 M9208-GGA-2	<75 150	13 to 26† 18 to 24▲				•		8	7.9 (5.5)	.04 (.03)	•						•	-					
M9208 Series 70 in-lb (8 Nm)	M9208-GGA-3	150	18 to 24						8	7.9 (5.5)				-		-				-				
	M9208-GGC-3	150	18 to 24						8	7.9 (5.5)				-				-	•					
	M9210-AGA-3	150	26						15	9.6 (6.0)														
	M9210-AGC-3	150	26						15	9.6 (6.0)			•					-				-		
1	M9210-BGA-3	24 to 57	11 to 15 ‡		•				25	17.7 (5.1)		•										•		
C.	M9210-BGC-3	24 to 57	11 to 15 ‡		•				25	17.7 (5.1)		-						•	•			•		
	M9210-BAA-3	24 to 57	11 to 15 ‡			•			25		.25 (.13)	•							•					
1000	M9210-BAC-3 M9210-BDA-3	24 to 57 24 to 57	11 to 15 ‡ 11 to 15 ‡						25 25		.25 (.13) .15 (.09)	•							-			•		
	M9210-BDA-3	24 to 57	11 to 15 ‡				•		25		.15 (.09)								-			-		
TT	M9210-GGA-3	150	26		•		_		15	9.6 (6.0)								_	-			-		
M9210 Series	M9210-GGC-3	150	26						15	9.6 (6.0)								•						
89 in-lb (10 Nm)	M9210-HGA-3	150	26		•				15	9.6 (6.0)						•								
	M9210-HGC-3	150	26		•				15	9.6 (6.0)					•			•	•			-		
	M9220-AGA-3	150	20		•				20	15.5 (7.7)			•						•			•		
	M9220-AGC-3	150	20						20	15.5 (7.7)			•				<u> </u>	•	•					
10	M9220-BGA-3 M9220-BGC-3	24 to 57 24 to 57	11 to 15 ‡ 11 to 15 ‡		•				25 25	24.6 (7.7) 24.6 (7.7)		-					<u> </u>	_	-			•		
	M9220-BGC-3 M9220-BAA-3	24 to 57 24 to 57	11 to 15 ‡		•				25	24.0 (/./)	.25 (.13)							•	-			•		
ACCORD.	M9220-BAC-3	24 to 57	11 to 15 ‡			•			25		.25 (.13)	-						•	-					
ALL	M9220-BDA-3	24 to 57	11 to 15 ‡				•		25		.15 (.09)	•							•					
-	M9220-BDC-3	24 to 57	11 to 15 ‡						25		.15 (.09)	•												
1.1	M9220-GGA-3	150	20		•				20	15.5 (7.7)				•		•						•		
M9220 Series	M9220-GGC-3	150	20		•				20	15.5 (7.7)				•				•	•			•		
177 in-lb (20 Nm)	M9220-HGA-3	150	20		•				20	15.5 (7.7)					•	•			•			•		
	M9220-HGC-3	150	20		•				20	15.5 (7.7)					•	•		•	•			•		

 \blacktriangle 22 seconds nominal @ room temp. and rated load, 94 seconds max. @ rated load and -40°F (-40°C)

† 21 seconds nominal @ room temp. and rated load, 39 seconds max. @ rated load and -4°F (-20°C), 108 seconds max. @ 53 lb·in. (6 Nm) and -40°F (-40°C).

‡ 13 seconds nominal @ room temp. and rated load, 35 seconds max. @ rated load and -22°F (-30°C), 130 seconds max. @ rated load and -40°F (-40°C).

 \odot 2011 Johnson Controls, Inc. P.O. Box 423, Milwaukee, WI 53201 Printed in USA PUBL-6241-A (Rev. 8/11) www.johnsoncontrols.com

Appendix for ECM 3: Integrated and New Energy Management Systems

III. Points List

Final Investment Grade Audit

ECM 3: Integrated and New Energy Management Systems

This page intentionally left blank.

			Hardv	vare																	
			Outpu								Inputs										
			Digita				Analog	σ			Digital						Analog	r			
			2-9-04	-				>			2-9-00							,			
																				1	
																				1	
																				1	
																				1	
																				1	
																				1	
									0	Υ										1	
		er							ence	0 n	ch									1	
	nts	tipl							fere	4-2	wit		act	ij	tch	sor	ure			പ	
	Poi	4ul		ctoi	bid				Re	or	nt S	Ire	ont	Fa	swi	Sen	erat	dity	Ire	Rat	
	Fotal Points	Unit Multiplier	Relay	Contactor	Solenoid		[T]	۵.	Speed Reference)-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Femperature	Humidity	Pressure	Flow Rate	C02
Point Description	To	Ur	Re	ŭ	$\mathbf{S}_{\mathbf{O}}$	0	P/E	E/P	$_{\rm Sp}$	-0	Cn	P_{r_0}	D	F1;	F1c	ŭ	Те	Η̈́	P_{r_0}	FI	<u>U</u>
Integrate Existing DDC EMS																				,	
Facility Explorer FX60 Integration																					
Outside Air Conditions	1	1															1				
Hot Water Boiler		2																			
Stage-1 Enable/Disable	2	2	2																		
Stage-2 Enable/Disable	2	2	2																		
Status	2	2									2										
Combustion Air	1	1								1											
Differential Pressure	1	1																	1		
																	-				
Hot Water Supply Temp.	1	1															1				
Hardina Hat Watan Okumalatian Domo		2																			
Heating Hot Water Circulation Pump Enable/Disable	2		2																		
	2	2	2								2										
Status VFD	2	1							1		Z										
VFD	1	1							1												
RTU-1		1																		 	
Supply Start/Stop	1	1	1																		
Supply Fan Status	1	1	1								1									 	
Return Fan Start/Stop	1	1	1								1									 	
Return Fan Status	1	1	-								1										
Space Temperature	1	1									1						1				
Outside Air Temperature	1	1															1				
Supply Air Temperature	1	1															1				
Mixed Air Temperature	1	1															1				
	1	1															1				

			Hardw	are																	
			Outpu								Inputs										$ \rightarrow $
			Digital				Analog				Digital						Analog	-			
			Digital				Analog	5			Digital						Analog	ş			
										Y											
		er							nce	0 m	ch										
	its	ildi							îere	4-2(wite		ict	-	ch	or	ıre				
	oir	Iult		ctor	id				Ref	or .	it S	e	onta	Fai	wit	ens	ratı	lity	ſe	Rate	
	Fotal Points	Unit Multiplier	Relay	Contactor	Solenoid				Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	2
Point Description	Tot	Un	Rel	Coi	Sol	0	P/E	E/P	Spe	0-1	Cui	Pre	Dry	Fla	Flo	CO	Ter	Ηu	Pre	Flo	C02
Return Air Temperature	1	1															1				
Static Pressure	1	1																	1		
Heating Control Valve	1	1								1											
4-Stage Cooling	4	4	4																		
Smoke Detector	1	1	1																		
O.A.Damper	1	1								1											
RTU-2 & 3 Gym, RTU-6 Café		3																			
Start/Stop	3	3	3																		
Status	3	3									3										
Space Temperature	3	3															3				
Supply Air Temperature	3	3															3				
Mixed Air Temperature	3	3															3				
Return Air Temperature	3	3															3				
Air Quality	3	3																			3
Heating Control Valve	3	3								3											
Smoke Detector	3	3	3																		
Dampers	3	3								3											
RTU-5 Kitchen, RTU-4, 7 & 8 Classrms		4																			
Start/Stop	4	4	4																		
Status	4	4									4										
Space Temperature	4	4															4				
Supply Air Temperature	4	4															4				
Mixed Air Temperature	4	4															4				
Outside Air Temperature	4	4															4				
Heating Control Valve	4	4								4											
Damper	4	4								4											

			Hardy	vare																	
			Outpu	Its							Inputs										
			Digita	1			Analog	3			Digital	l					Analo	3			
	Total Points	Unit Multiplier		ctor	Solenoid				Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor			Pressure	Flow Rate	2
Point Description	Tot	Uni	Relay	Cor	Sol	0	P/E	E/P	Spe	0-1(Cur	Pre	Dry	Fla	Flo	CO	Ter	шH	Pre	Flo	C02
Exhaust Fan	1.4	14	1.4																		
Start/Stop	14	14	14																		
Status	14	14									14										
VAV Boxes		11																			
Fan Start/Stop	11	11	11																		
Status	11	11									11										
Space Temperature	11	11															11				
Damper	11	11								11											
Heating Control Valve	11	11								11											
Differential Pressure	11	11																	11		
Classroom Convectors		59																			
Space Temperature	59	59															59				
Heating Control Valve	59	59								59											
Totals	306	402	48	0	0	0	0	0	1	98	38	0	0	0	0	0	105	0	13	0	3

			Hardy	vare																	—
			Outpu	ıts							Inputs										
			Digita				Analo	g			Digita						Analog	Į			
			8					5			0							,			
																				1	
																				1	
																				1	
																				1	
																				1	
																				1	
									a	Αn										1	
		ier							enco	0 n	ch									1	
	nts	ldi							fere	4-2	wit		act		tch	sor	ure			പ	
	Poi	Jul		ctoi	bid				Re	or	nt S	Ire	ont	Fa	swi	Sen	erat	dity	ıre	Rat	
	Total Points	Jnit Multiplier	Relay	Contactor	Solenoid		[1]	0.	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	02
Point Description	T_0	Un	Re	C	So	0	P/E	E/P	$_{\rm Sp}$	0-1	Cu	Pre	Dr	Fla	Flc	CC	Te	Ηu	Pre	Щ	C02
Integrate Existing DDC EMS																				,	
Facility Explorer FX60 Integration																				,	
Outside Air Conditions	1	1															1			,	
																				,	
Hot Water Boiler		3																			
Enable/Disable	3	3	3																		
Status	3	3									3										
																				,	
Hot Water System Differential Pressure	1	1																	1		
Hot Water Supply Temp.	1	1															1				
Hot Water Return Temp.	1	1															1				
		-																			
Boiler Return Hot Water Pump	2	3	2																		
Enable/Disable	3	3	3								2										
Status	3	3									3									ł	
Heating Hot Water Circulation Pump		4																			
Enable/Disable	4	4	4																	ł	
Status	4	4	4								4										
Juius	-	-									+										
MAU-1		1																		 	
Start/Stop	1	1	1																		
Status	1	1									1										
Space Temperature	1	1				1					-						1				
Outside Air Temperature	1	1															1				
Supply Air Temperature	1	1															1				
Supply Air Temperature	1	1															1				

			Hardv	vare																	
			Outpu	its							Inputs										
			Digita				Analo	g			Digital						Analog	Į			
			8					-			8	_						,			
									a	Αu											
		ier							enco	0 n	ch										
	nts	tipl							fer	4-2	wit		act	ii	tch	sor	ure			e	
	Poi	Jul		ctoi	oid				Re	or	nt S	Ire	ont	E Fa	swi	Sen	erat	dity	ıre	Rat	
	Total Points	Unit Multiplier	Relay	Contactor	Solenoid		[T]	۵.	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	C02
Point Description	To	Ur	Re	Ŭ	So	0	P/E	E/P	$_{\rm Sp}$	0-]	Cn	\Pr	Dr	FI:	Ыc	ŭ	Te	Ηſ	\Pr	Ыc	ŭ
Heating Control Valve	1	1								1											
Freezestat	1	1	1																		
O.A.Damper	1	1								1											
AHU-1 Admin, AHU-2 Library		2																			
Start/Stop	2	2	2																		
Status	2	2									2										
Outside Air Temperature	2	2															2				
Static Pressure	2	2																	2		
Supply Air Temperature	2	2															2				
Cooling (2-Stage DX)	4	4	4																		
Freezestat	2	2	2																		
Economizer Damper	2	2								2											
Bypass Damper	2	2								2											
AHU-3, AHU-4, AHU-5		3																			
Start/Stop	3	3	3																		
Status	3	3									3										
Space Temperature	3	3															3				
Outside Air Temperature	3	3															3				
Supply Air Temperature	3	3															3				
Space CO2	3	3														3					
Supply Air Temperature	3	3															3				
Heating Control Valve	3	3								3											
Freezestat	3	3	3																		
Economizer Damper	3	3								3											
Bypass Damper	3	3								3											

	1		Hardv	vare																	
			Outpu								Inputs	1									
			Digita				Analo	~			Digita						Analog				
			Digita	L			Analog	5			Digita	1					Analog	5			
										Y											i.
		er							nce	0 m	ch										i.
	nts	ipli							fere	4-2	wite		act	-	ch	or	ure				
	Doir	Iult		ctor	bid				Rei	or	nt S	re	onti	Fai	wit	ens	sratı	lity	re	Rate	
	Fotal Points	Unit Multiplier	Relay	Contactor	Solenoid		(*1	<u> </u>	Speed Reference)-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Femperature	Humidity	Pressure	Flow Rate	2
Point Description	Tot	Un	Rel	Coi	Sol	0	P/E	E/P	Spe	0-1	Cui	Pre	Dr	Fla	Flo	CO	Teı	Hu	Pre	Flo	C02
RTU-1, RTU-2		2																			
Start/Stop	2	2	2																		
Status	2	2									2										
Space Temperature	2	2															2				
Static Pressure	2	2																	2		
Supply Air Temperature	2	2															2				
Cooling (1-Stage DX)	2	2	2																		
Freezestat	2	2	2																		
Bypass Damper	2	2								2											
Exhaust Fan		16																			
Start/Stop	16	16	16																		
Status	16	16									16										
Domestic Hot Water Heater		1																			
Enable/Disable	1	1	1																		
Status	1	1									1										
Unit Ventilators (2000 Renovation)		37																			
Start/Stop	37	37		37							27										
Status	37	37									37						27				
Space Temperature	37	37															37				
Discharge Air Temperature	37	37														27	37				
Space CO2	37	37								27						37					
Face-and-bypass Damper	37	37								37											
Outside Air Damper	37	37 37								37 37											
Heating Control Valve	37	51								51											

			Hardv	vare																	
			Outpu	ts							Inputs										
			Digita				Analo	g			Digita						Analo	g			
			0					5			0							5			
	Total Points	Unit Multiplier		ctor	bid				Speed Reference	0-10V or 4-20 mA	Current Switch	re	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	lity	re	Rate	
Point Description	[otal	Jnit N	Relay	Contactor	Solenoid	0	P/E	E/P	peed	-10	Curre	Pressure	Dry C	Hame	low	02	[emp	Humidity	Pressure	Flow Rate	C02
Fan Powered VAV Boxes		6				0						<u> </u>	1	H	<u> </u>					H	
Start/Stop	6	6		6																	
Status	6	6		~							6										
Space Temperature	6	6									~						6				
Air Volume	6	6																		6	
Damper	6	6								6										-	
Re-heat Control Valve	6	6								6											
VAV Boxes		5																			
Space Temperature	5	5															5				
Air Volume	5	5																		5	
Damper	5	5								5											
Re-heat Control Valve	5	5								5											
FCUs (SPED, Admin Corr, Main Lobby)		4																			
Start/Stop	4	4		4																	
Status	4	4									4										
Space Temperature	4	4															4				
Radiators (Convectors)		9																			
Space Temperature	9	9															9				
Heating Control Valve	9	9								9											
Totals	518	614	49	47	0	0	0	0	0	159	82	0	0	0	0	40	125	0	5	11	0

AM	ER	ESC	0	A
Green +	Clean	 Sustain 	able	

			Hardy	vare																	l
			Outpu								Inputs										
			Digita				Analog	۲.			Digital						Analog	x			
			Digita	1			Analoş	5	1		Digital	ı T					ranaioş	5			
									0	Αt											
		er							ence	0 n	ch										
	nts	ipli		•					fere	4-2	wit		act	ij	tch	sor	ure			۵ د	
	Poi	Ault		ctor	bid				Re	or	nt S	Ire	ont	: Fa	swi	Sens	erat	dity	ıre	Rat	
	Fotal Points	Jnit Multiplier	Relay	Contactor	Solenoid		۲T	<u>م</u>	Speed Reference)-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	-low switch	CO2 Sensor	Femperature	Humidity	Pressure	Flow Rate	C02
Point Description	-Ho	Un	Re	ů	So	0	P/E	E/P	$_{\rm Sp}$	0-1	Cu	$\Pr($	Dr	FIε	Ыc	U U	Te	Ηu	Pre	Ыc	ŭ
Integrate Existing DDC EMS																					
Honeywell Controls XL15 Integration																					
Outside Air Conditions	1	1															1				
		-																			
Hydrotherm Modular Boilers (3-stage)		3																			
Enable/Disable	3	3	3																		
Status	3	3									3										
Hot Water Supply Temp.	1	1															1		1		
System Differential Pressure	1	1																	1		
Hereford Het Weter Clauseletter Denne		2																			
Heating Hot Water Circulation Pump Enable/Disable	2	2	2																		
	2	2	2								2										
Status Variable Frequency Drive	2	2								1	2										
										1											
Honeywell Excel 10 W7750C Controller (LonWorks)																					
Air Handling Unit (HV-1 Library)	-	1																			
Start/Stop	1	1	1																		
Status	1	1	1								1										
Space Temperature	1	1									1						1				
Supply Air Temperature	1	1															1				
Heating Control Valve	1	1	1							1							-				
Cooling (DX)	1	1	1							-											
Smoke Monitor	1	1									1										
Economizer Damper	1	1								1											
Economizer Enable (OA)	1	1															1				
Humidity (OA)	1	1																1			
• · · ·	-																				

	1		Hardv	vare																	
			Outpu								Inputs										
			Digita				A 1 .	_			•						A				
			Digita	1			Analo	g			Digita	1					Analog	5			
										Ą											
		er							nce	0 m	ch										
	Its	ipli							fere	4-2	wite		act	I	ch	or	ure			0	
	Poir	Iult		ctor	bid				Re	or	nt S	re	onti	Fai	wit	ens	erat	lity	re	Rate	
	Fotal Points	Unit Multiplier	Relay	Contactor	Solenoid		[7]	0	Speed Reference)-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	5
Point Description	To	Un	Re	Co	Sol	0	P/E	E/P	Sp_{0}	0-1	Cu	Pre	Dr	Fla	FIc	C	Tei	Ηu	Pre	Flc	C02
Honeywell XL15C Controller (LonWorks)																					
Air Handling Unit (HV-2,3 Cafe)		2																			
Start/Stop	2	2	2																		
Status	2	2									2										
Space Temperature	2	2															2				
Supply Air Temperature	2	2															2				
Heating Control Valve	2	2								2											
Smoke Monitor	2	2									2										
Economizer Damper	2	2								2											
Economizer Enable (OA)	2	2															2				
Humidity (OA)	2	2																2			
Honeywell Excel 10 W7750C Controller (LonWorks)																					
Air Handling Unit (HV-4 Gym)		1																			
Start/Stop	1	1	1																		
Status	1	1									1										
Space Temperature	1	1															1				
Supply Air Temperature	1	1								1							1				
Heating Control Valve	1	1								1											
Economizer Damper	1	1								1							1				
Economizer Enable (OA)	1	1															1				
Han annuall W7750D Constantian																					
Honeywell W7750B Controller		1																			
Air Handling Unit (AC-2 Computer Rm)		1	1																		
Start/Stop	1	1	1								1										
Status Space Temperature	1										1						1				
Space Temperature	1	1															1				

			Hardy	vare																	
			Outpu								Inputs										
			Digita				Analo	~			Digita						Analog	_			
			Digita				Anaio	5			Digita						Anaioş	;			
																					1
																					1
																					1
																					1
																					1
																					1
										A											1
		r							JCe	ц Ц	h										1
	s	plie							erei	-20	vitc		ct		h	or	re				1
	oin	ulti		tor	р				Ref	or 4	Sv	e	nta	Fail	vitc	susc	atu	ty	e	ate	1
	d P	Σ	١y	taci	iou				I pa	20	rent	sur	C	ne l	v sv	s Se	Ibei	ibir	sur	د R	
Point Description	Fotal Points	Unit Multiplier	Relay	Contactor	Solenoid	0	P/E	E/P	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	lemperature	Humidity	Pressure	Flow Rate	C02
Supply Air Temperature	1	1			•			Ĩ		0	Ŭ				Ĩ		1				
Heating Control Valve	1	1								1											
Cooling (DX)	1	1	1																		
Smoke Monitor	1	1									1										<u> </u>
	-	1									-										
Honeywell Excel 10 W7750C Controller (LonWorks)																					
Air Conditioning Unit (AC-3 Admin)		1																			
Start/Stop	1	1	1																		
Status	1	1									1										
Space Temperature	1	1															1				
Supply Air Temperature	1	1															1				
Cooling (DX)	1	1	1																		
Smoke Monitor	1	1									1										
Economizer Damper	1	1								1											
Economizer Enable (OA)	1	1															1				
Exhaust Fan Zone Control		4																			
On/Off	4	4	4																		
Unit Ventilator Zone Control	ļ	4																			\vdash
On/Off	4	4	4																		\vdash
Install New UV Controllers																					
Replace Micro Tech 325 Controller																					
Unit Ventilators (A,B,C Wings)	ļ	34																			\vdash
Start/Stop	34	34		34																	\vdash
Status	34	34									34										\vdash
Space Temperature	34	34															34				1

			Hardy	vare																	
			Outpu	its							Inputs										
			Digita	1			Analo	g			Digita	l					Analo	g			
Point Description	Total Points	Unit Multiplier	Relay	Contactor	Solenoid	0	P/E	E/P	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	C02
Supply Temperature	34	34			•1				•1		Ŭ						34				
Outside Air Damper	34	34								34											
Face and Bypass Damper	34	34								34											
Control New Hot Water Valves		24																			
Unit Ventilators (A,B,C Wings)	24	34								24											
Heating Control Valve	34	34								34											
Integrate Existing DDC EMS	72	91	22	0	0	0	0	0	0	11	16	0	0	0	0	0	19	3	1	0	0
Install New UV Controllers	204	238	0	34	0	0	0	0	0	68	34	0	0	0	0	0	68	0	0	0	0
Control New Hot Water Valves	34	68	0	0	0	0	0	0	0	34	0	0	0	0	0	0	0	0	0	0	0

MAPC - Sudbury Nixon Elementary Base Bid

AM	ER	ESCO	A
Green .	Clean	 Sustainable 	-

			Hardv	vare																	
			Outpu								Inputs										—––
			Digital				Analo	T			Digital						Analog	T			
			Jighta				111110	-			Jighta						1 maiug	,			
																					, ,
																					, ,
																					, ,
																					, ,
										A											
		er							nce	0 m	ch										
	its	ipli							iere	4-2	wite		act	_	ch	or	ure			0	
	Poir	Iult		ctor	bid				Rei	or	it S	re	onta	Fai	wit	ens	trati	lity	re	Rate	
	Fotal Points	Jnit Multiplier	Relay	Contactor	enc				Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	2 S	Temperature	Humidity	Pressure	Flow Rate	2
Point Description	Tot	Un	Rel	Col	Solenoid	0	P/E	E/P	Spe	0-1	Cui	Pre	Dry	Fla	Flo	CO2 Sensor	Ter	Ηu	Pre	Flo	C02
Integrate Existing DDC EMS																					
Facility Explorer FX60 Integration																					1
Outside Air Conditions	1	1															1				I
																					1
Pneumatic Day/Night Zone	2	2															2				1
																					II
Hot Water Boiler		3																			1
Enable/Disable	3	3	3																		1
Status	3	3									3										
System Differential Pressure	1	1																	1		
																					,
Hot Water Supply Temp.	1	1															1				
Heating Hot Water Circulation Pump		2																			ľ
Enable/Disable	2	2	2																		ľ
Status	2	2									2										ľ
VFD	2	2							2												I
		-																			
RTU-1 (Gym)	1	1	1																		ľ
Start/Stop	1	1	1								-										ľ
Status	1	1									1						1				
Space Temperature	1	1															1				
Supply Air Temperature	1	1								1							1				
Heating Control Valve	1	1	1							1											
Freezestat	1	1	1							1											ľ
O.A.Damper	1	1								1											ľ
																					,

MAPC - Sudbury Nixon Elementary Base Bid

			Hardv	vare																	
			Outpu	ts							Inputs										
			Digita				Analo	g			Digita						Analo	y .			
			0					5			0							2			
									e	mA											
		lier							enc	201	tch				_		0				
	ints	ltip		r					efei	4	Swi		tact	lia	itch	ISOT	ture	>		te	
	Po	Mu	~	actc	loid				d R	V 01	ent	ure	Con	e Fi	sw	Ser	bera	idit	ure	Ra	
Doint Description	Total Points	Jnit Multiplier	Relay	Contactor	Solenoid		P/E	E/P	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	C02
Point Description	Ĕ	1	Ŗ	Ŭ	Š	0	P/	ш	$\mathbf{S}_{\mathbf{I}}$	0	Ű	Ъ	D	E	Ē	Ũ	Ľ	H	Pı	E	Ũ
RTU-2 (Library)	1	1	1																		
Start/Stop	1	1	1								1										
Status	3	1									1						3				
Space Temperature (Library, Rotunda N+S)	3	<u> </u>															3				
Supply Air Temperature Mixed Air Temperature	1	1															1				
Outside Air Temperature	1	1															1				
Static Pressure	1	1															1		1		
	1	-							1										1		
Supply Fan VFD Heating Control Valve	3	1 3							1	3											
2-Stage Cooling	2	2	2							3											
Freezestat	1	1	1																		
O.A. Damper	1	1	1							1											
Mixed Air Damper	1	1								1											
	1	1								1											
Exhaust Fan Control (RIB Relays)		9																			
On/Off	9	9	9																		
	2	2	,																		
Unit Ventilator Control (RIB Relays)		10																			
On/Off	10	10	10																		
	10	10	10																		
Install New UV Controllers						1															
Replace pneumatic controls w/ new DDC						<u> </u>															
Unit Ventilator		37																			
Fan Start/Stop	37	37		37																	
Fan Status	37	37									37										
Space Temperature	37	37															37				
3/4" Heating Control Valve	37	37								37											

Base Bid																					
			Hardy	vare																	
			Outpu	ıts							Inputs	1									
			Digita				Analo	g			Digita						Analo	g			
	Total Points	Unit Multiplier	Relay	Contactor	Solenoid		ш	d	Speed Reference	0-10V or 4-20 mA	Current Switch	Pressure	Dry Contact	Flame Fail	Flow switch	CO2 Sensor	Temperature	Humidity	Pressure	Flow Rate	002
Point Description			Re	Ŭ	So	0	P/E	E/P	$_{\rm Sp}$		Ũ	Pr	Dı	E.	Ы	ŭ	Te	Ηı	Pr	Ĕ	Č
Damper	37	37								37											
																				L'	
Install New FTR+CUH Control																				<u> </u>	
Finned Tube Radiation		18																		<u> </u>	
Space Temperature	18	18															18				
Heating Control Valve	18	18								18											
Cabinet Unit Heaters		8																			
Space Temperature	8	8															8			1	

Heating Control Valve

Integrate Existing DDC EMS

Install New FTR+CUH Control

Install New UV Controllers

ECM 4: Programmable Thermostats

ECM Overview

Ameresco proposes to install new local programmable thermostats at the DPW Highway Building to control the existing infrared heaters serving the garage bays. The new programmable thermostats will be installed in each of the three existing zones to monitor space temperature and provide control of the existing infrared heaters according to occupancy schedules and setpoint temperatures.

ECM Detail

Existing System

The DPW Highway Building consists of three large garages that are currently heated by eight gas-fired

Figure 4.1: Ameresco proposes to replace the existing T87 thermostats at the DPW Highway Building with new programmable thermostats.

Vantage II infrared heaters that are mounted from the ceiling. The infrared heaters are each controlled by their own individual T87 style Honeywell thermostat. These thermostats provide basic occupied setpoint temperature control with no schedule or unoccupied setpoint temperature control.

Proposed System

Ameresco proposes to install (8) new local programmable thermostats to control the (8) existing infrared heaters serving the three garage bays. The new programmable thermostats will be installed on the walls near the locations of the existing thermostats. Existing control wiring will be reused where feasible.

Unoccupied Zone Temperature Reset

Ameresco proposes to fully implement unoccupied zone temperature reset. Zone temperature set points will be varied based on occupancy schedules. The following table lists the proposed set points. These set points are proposed for all unoccupied periods.

Heating (°F)Unoccupied50.0

Occupied Scheduling

Ameresco will initially setup the occupancy schedules in the programmable thermostats to reflect the major occupancy schedule of the building. The HVAC systems will only be operated when the building is supposed

Final Investment Grade Audit

ECM 4

to be occupied. The table below lists the proposed time schedule. The vacation schedule will also be initially setup in the system to turn off equipment on vacation days. The Town will be responsible for updating the vacation and special days schedule to ensure the systems are not operating when the buildings are not occupied.

Building	Start time (Mon – Fri)	Stop time (Mon – Fri)	Weekends/ Holidays	Period
DPW Highway	6:30am	3:30pm	Off	Year-round

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The installation of programmable thermostats will reduce energy use by automatically lowering the setpoint temperature during unoccupied periods and thus reducing the amount of time the infrared heaters are operating during those periods.

Page 2

Appendix for ECM 4: Programmable Thermostats

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Summary		
Measure ID:	4	
Measure Name:	Programmable Thermostats	
Measure Location:		
Engineers:		

Site Name:		DPW_Old	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh		0
Energy Off-Peak	kWh	637	637
Energy Total	kWh	637	637
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	kW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	Therms	1,400	1,400
Liquid Propane Gas (LPG)	Gallons	0	0
Steam	Mlbs	0	0
Fuel Oil, #2	Gallons	0	0
Fuel Oil, #4	Gallons	0	0
Fuel Oil, #6	Gallons	0	0
Miscellaneous	Misc	0	0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

MAPC - Sudbury DPW Highway

Programmable Thermostats

TMY-2 We	ather Data f	for Worcester	r, MA					Existing Oc	ccupancy Scl	hedule		Existing He	ating/Coolin	g Schedule		Existing M	otor Operatin	ng Schedule		Existing				Proposed								Savings		
														Ĩ							UnOcc.	ating	UnOcc Cooling/He ating						UnOcc.	Occ Cooling/He ating	UnOcc Cooling/He ating	Cooling	HVAC	Heating
Amb. Temp	Ave Temp	M.C.W.B	M.C. Enthalpy	01-08	09-16	17-24	Total Bin	Occ On-	UnOcc On-	- Occ Off-	UnOcc Off	Occ On-	UnOcc On-	Occ Off-	UnOcc Off-	Occ On-	UnOcc On-	Occ Off-	UnOcc Off-	Occ. Cool/ Heat Load	Cool/ Heat Load	Energy Consump.	Energy Consump.	Occ On-	UnOcc On-	Occ Off-	UnOcc Off	- Heat Load	Cool/ Heat Load	Energy Consump.	Energy Consump.	Energy Savings	Electrical Savings	Energy Savings
Bin deg. F	deg. F	deg. F	Btu/lbma	Hours	Hours	Hours	Hours	Peak Hrs.	Peak Hrs.		Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	(MBH)	(MBH)	(MMBTU)	(MMBTU)	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(MMBTU)	(kWh)	(MMBTU)
Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																		
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67	67	0	0	0	0	0	0	67	51	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60	60	0	0	0	0	0	0	60	46	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	54	54	0	0	0	0	0	1	54	41	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	2	0	0	6	2	0	0	6	2	0	0	6	47	47	0	0	2	0	0	6	47	36	0	0	0	0	
85 to 90	87.5	70.3	34.6	1	37	6	44	12	1	0	31	12	0	0	31	12	0	0	31	40	40	0	0	12	1	0	31	40	31	0	0	0	0	
80 to 85	82.5	68.4	33.0	8	138	29	175	47	3	0	125	49	0	0	125	49	0	0	125	34	34	1	1	47	3	0	125	34	26	0	1	0	0	
75 to 80	77.5	66.2	31.2	27	202	83	312	84	5	0	223	88	1	0	223	88	1	0	223	27	27	1	2	84	5	0	223	27	21	1	1	0	0	
70 to 75	72.5	64.3	29.7	64	269	160	493	132	9	0	352	139	1	0	352	139	1	0	352	20	20	1	2	132	9	0	352	20	15	1	2	1	0	
65 to 70	67.5	61.2	27.5	185	208	243	636	170	11	0	454	180	2	0	454	180	2	0	454	13	13	1	2	170	11	0	454	13	10	1	1	0	0	
60 to 65	62.5	57.3	24.8	315	249	298	862	231	15	0	616	244	2	0	616	244	2	0	616	7	7	1	1	231	15	0	616	7	5	0	1	0	0	
Heating																																	1	
55 to 60	57.5	52.7	0.0	303	245	276	824	221	14	0	589	233	2	0	589	233	2	0	589	(58)	(50)	6	33	221	14	0	589	(58)	(24)	6	14		0	18
50 to 55	52.5	47.8	0.0	262	184	228	674	181	12	0	482	191	2	0	482	191	2	0	482	(89)	(76)	11	42	181	12	0	482	(89)	(50)	11	27		0	15
45 to 50	47.5	42.5	0.0	204	230	211	645	173	11	0	461	182	2	0	461	182	2	0	461	(119)	(102)	17	55	173	11	0	461	(119)	(76)	17	40		0	14
40 to 45	42.5	38.3	0.0	210	191	234	635	170	11	0	454	180	2	0	454	180	2	0	454	(150)	(129)	23	68	170	11	0	454	(150)	(103)	23	54		0	14
35 to 40	37.5	33.8	0.0	321	301	286	908	243	16	0	649	257	2	0	649	257	2	0	649	(180)	(155)	41	117	243	16	0	649	(180)	(129)	41	97		0	20
30 to 35	32.5	28.7	0.0	356	221	313	890	238	16	0	636	252	2	0	636	252	2	0	636	(211)	(181)	49	135	238	16	0	636	(211)	(155)	49	115		0	20
25 to 30	27.5	23.5	0.0	228	211	211	650	174	11	0	464	184	2	0	464	184	2	0	464	(241)	(207)	42	113	174	11	0	464	(241)	(181)	42	98		0	15
20 to 25	22.5	19.1	0.0	104	94	124	322	86	6	0	230	91	1	0	230	91	1	0	230	(272)	(233)	24	63	86	6	0	230	(272)	(208)	24	56		0	7
15 to 20	17.5	14.3	0.0	144	78	117	339	91	6	0	242	96	1	0	242	96	1	0	242	(302)	(260)	28	74	91	6	0	242	(302)	(234)	28	66		0	8
10 to 15	12.5	9.3	0.0	118	40	85	243	65	4	0	174	69	1	0	174	69	1	0	174	(333)	(286)	23	59	65	4	0	174	(333)	(260)	23	53		0	6
5 to 10	7.5	5.0	0.0	52	10	15	77	21	1	0	55	22	0	0	55	22	0	0	55	(363)	(312)	8	20	21	1	0	55	(363)	(286)	8	19		0	2
0 to 5	2.5	2.2	0.0	18	3	1	22	6	0	0	16	6	0	0	16	6	0	0	16	(394)	(338)	2	6	6	0	0	16	(394)	(312)	2	6		0	1
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(424)	(364)	0	0	0	0	0	0	(424)	(339)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(455)	(391)	0	0	0	0	0	0	(455)	(365)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(485)	(417)	0	0	0	0	0	0	(485)	(391)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(516)	(443)	0	0	0	0	0	0	(516)	(417)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(546)	(469)	0	0	0	0	0	0	(546)	(443)	0	0		0	0
				2,920	2,920	2,920	8,760	2,346	154	0	6,260	2,477	23	0	6,260	2,477	23	0	6,260			278	794	2,346	154	0	6,260			278	652	2	0	140

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	Heating = -MIN([col I] + [col K], [col M] + [col O]) x MIN([col U] + internal gains, 0) + IF([col I] + [col K]) - ([col M] + [col K]) - ([col M] + [col O])) x MIN([col V] + internal gains, 0), 0) ÷ 1,000 ÷ AD44
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	$Heating = -([col N] + [col P]) \times MIN([col V] + internal gains , 0) + IF([col I] + [col N] + [col O] , (([col I] + [col O]) - ([col I] + [col N])) \times MIN([col U] + internal gains , 0)) + 1,000 \div AD44$
	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC60) \div ([col B] - AC55) x [col U]$
	$Heating = ([col B] - AE60) \div ([col B] - AE55) x [col U]$
AD	Proposed Unoccupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC61) \div ([col B] - AC56) \times [col V]$
	Heating = ([col B] - AE61) ÷ ([col B] - AE56) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$
	Heating = -MIN([col I] + [col K], [col Y] + [col AA]) x MIN([col AC] + internal gains, 0) + IF([col I] + [col K] > [col Y] + [col AA], (([col I] + [col K]) - ([col Y] + [col AA])) x MIN([col AD] + internal gains, 0), 0) ÷ 1,000 ÷ AD44
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains , 0) + IF([col I] + [col Y] + [col AA], (([col Y] + [col AA]) - ([col I] + [col K])) x MIN([col AC] + internal gains , 0)) ÷ 1,000 ÷ AD44
AG	= ([col W] + [col X]) - ([col AE] + [col AF])
	HVAC Fan and Pump Savings
AH	Cooling = ([col Q] + [col X] + ([col X] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AA]) x (AD46 + AD48)) x (AD46 + AD48)

AH Cooling = ([col Q] + [col S] + ([col R] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48) - ([col Q] + [col S]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD49 x AD46, IF(B20>50, 0, ([col Z] + [col AB]) x AD49 x AD46) - (([col Y] + [col AA]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD49 x AD46, IF(B20>50, 0, ([col Z] + [col AB]) x AD49 x AD46) - (([col Y] + [col AA]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD49 x AD46, IF(B20>50, 0, ([col Z] + [col AB]) x AD49 x AD46)) - (([col Y] + [col AA]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD49 x AD46, IF(B20>50, 0, ([col Z] + [col AB]) x AD49 x AD46)) - (([col Y] + [col AA]) x AD46 + IF(B20<35, ([col Z] + [col AB]) x AD49 x AD46, IF(B20>50, 0, ([col Z] + [col AB]) x AD49 x AD46)))

Assumptions:		Value	Unit	CELL	Description
				REF	
Occupied Area		4,000	SF	AD43	
Existing Heating Pla	nt Efficiency	86.0%		AD44	
Existing Chiller Effi	ciency	3.2	COP	AD45	
Fan Power		0.0	kW	AD46	
Heating Pump Powe	r	0.0	kW	AD47	
Cooling Pump Powe	r	0.0	kW	AD48	
UnOcc. Fan & Pump	o Cycling	10.0%		AD49	% Operating Hours During UnOcc.
UnOcc. Kitchen Ver	nt. Reduction	0.0%		AD50	% CFM Saved
UnOcc. Ventilation	Reduction	0.0%		AD51	% CFM Saved
					-
Average Existing S	pace Temperature	s			
~ ~ ~	Cooling		Heating		Description
Occupied	72.0	AC55	67.0	AE55	
UnOccupied	72.0	AC56	67.0	AE56	
*					•
Average Proposed	Space Temperatu	res			
	Cooling		Heating		Description
Occupied	72.0	AC60	67.0	AE60	
UnOccupied	78.0	AC61	62.1	AE61	

Existing Space 7	Femperature	s			
	Cooling		Heating		Description
	72.0	AC55	67.0	AE55	
ed	72.0	AC56	67.0	AE56	

Proposed Space	e Temperatu	res			
	Cooling		Heating		Description
	72.0	AC60	67.0	AE60	
ied	78.0	AC61	62.1	AE61	

Appendix for ECM 4: Programmable Thermostats

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page intentionally left blank.

Even More Homeowner Friendly™

Features and Benefits

To Run the Setup Wizard?		
No	Yes	
Select L English Español Français Back	anguage	
Mon To Su	ın Program 🔺	

		un i	rogro	
			HEAT	COOL ▶
Wake	6:00	AM	70	78
Morn	8:00	AM	62	85
Eve	5:00	PM	70	78
Night	10:00	PM	62	82
J	Exit		Select	•

Tech S	upport
Model 9725i	vX.X
ABC HEAT	
555-1234	
	ROBERTSHAW (800) 445-8299
Back	(800) 445-8299

Set-up Wizard **NEW**

Helps speed through the installation process with step-by-step setup and programming instructions.

Trilingual Display Option Set to your customers' language of choice

– English, Spanish or French

Convenient Displays

View a full day of programming at once for quick review or easy adjustment.

Contractor ID Feature

Set it yourself or custom order with your information preloaded. Your name and phone number remind your customers when service is needed.

Daylight Saving Time Adjustment

Automatically adjusts to correct time regardless of seasonal changes.

Adjustable Backlighting

Choose to have backlighting on at all times or only when programming. You can also adjust the brightness and contrast for improved readability.

Time of Day Zoning

When coupled with a remote sensor (part #9020i), you can control the temperature in remote locations given different scheduled events.

DELUXE UNIVERSAL PROGRAMMABLE THERMOSTAT

Menu Driven Display Universal Staging up to 3 Heat / 2 Cool

Programming Made Even Easier

Do you want to spend less time installing and setting up thermostats?

The new 9725i2 makes installation even easier with our new Setup Wizard. The Setup Wizard allows you to spend 50% less time setting up the thermostat over competitive models. Plus everything is in plain language so there are no complicated codes or button combinations to memorize.

We've also made programming even easier for your customers. Menus are easier to navigate. We've even added additional convenience features such as Automated Time adjustment for Daylight Saving Time, along with new indoor air quality reminders.

The new 9725i2 is so user friendly, it sets a higher standard in efficiency and simplicity for programmable thermostats. It is truly programming made even easier.

Three Levels of Security NEW

Secure protection against unwanted changes to the programming menus, temperature or set-up functions with your own 4-digit PIN.

Auto Changeover

Automatically adjusts between heating and cooling cycles to maintain optimal comfort.

Worry-Free Memory Storage

Even during power outages, the thermostat maintains set point and programmed parameters.

Adjustable Temperature Offset

Change the displayed temperature from the actual sensed temperature.

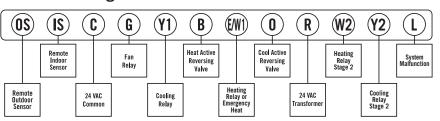
Adjustable Temperature Differential Maintains optimal customer comfort.

Intermittent Fan

Maintains optimal air filtration and circulation with minimal energy use.

P725i2 DELUXE UNIVERSIDE OF THE RECTAND

UNIVERSAL PROGRAMMABLE THERMOSTAT



THE ROBERTSHAW 972512 REPLACES:

White-Rodgers Co.*	1F92-71, 1F93-380, 1F94-71, 1F95-377
Honeywell, Inc.*	TH8320U1006
Carrier Corp.*	P274-1300, P274-2100, P374-1000, P374-1100, P474-1050

* Verify specific application requirements before substitution.

Terminal Designations

Optional Sensors: 9020i REMOTE INDOOR 9025i REMOTE OUTDOOR

Specifications

Electrical rating: 24 Volt AC (18-30 VAC) 1 amp maximum load per terminal (relay outputs) 3 amp total maximum load (all terminals combined) Temperature control range: 45°- 90°F (7°- 32°C) Accuracy: +/-1.0°F (+/-0.5°C) Power Source: 24 VAC Auto Changeover deadband: Selectable 2° to 8°F Temporary temperature override: 3 hour maximum or next setpoint Remote sensor capable: 1 indoor and 1 outdoor sensor System configurations: Multi-stage gas, oil or electric heating/cooling systems

Terminations: R, E/W1, W2, Y1, Y2, B, O, G, C, IS, OS, L

Shipping Information

Indiv. Ctn. Dim.: 6.625" x 4.25" x 1.625" Master Ctn. Qty.: 6 Master Ctn. Dim.: 9.25" x 5.625 x 7.5" Master Ctn. Cu. Ft.: .23 Master Ctn. Wt.: 3.5 lbs. Max. Pallet Qty.: 1260 Max. Pallet Wt.: 785 lbs. Item 9020i and 9025i Remote Sensors Indiv. Ctn. Dim.: 2.625" x 1.5625" x 4.4375" Master Ctn. Qty.: 6 Master Ctn. Dim.: 5.625" x 5.125" x 5.125" Master Ctn. Cu. Ft.: .09 Master Ctn. Wt.: .78 lbs.

Other Multi-Stage Heat / Cool Thermostats

9615: Programmable, 7 Day **9415:** Non-Programmable

Patent Information

This product is covered by one or more of the following U.S. patents. Foreign patent rights may be pending. 4967382, 5803357, 6502758, 7000849, D301207, D462940

INVENSYS © Controls Americas

515 South Promenade Avenue Corona California 92879-1736 USA Telephone +1 800 951 5526 Facsimile +1 630 260 7299 Technical Service +1 800 445 8299 M-F 7:00 a.m. - 5:30 p.m. CST www.about-i-series.com ©2006 Invensys Controls Americas 5/06 - #150-1979

	Invensys i2-Series	Honeywell Vision Pro	Carrier Infinity	White-Rodgers 1F97-371
Menu Driven (Ease of Programming)	Х			
Installation Wizard	Х			
Displays Complete Program	Х			
Adjustable Backlighting	Х			
Cooling System Monitor	Х			
Heating System Monitor	Х			
Multi-Language	Х			
1/2 Degree Resolution	Х			
Time of Day Zoning	Х			
Adjustable Timed Upstaging	Х	Î		
5/2 Program	Х			Х
24 Hour Programming	Х			Х
7-Day Programming	Х	Х	Х	1
Large Display	Х	Х	Х	
Adjustable Timed Override/Hold	Х	Х		
Automatic Daylight Saving Time Adjustment	Х	Х		
Adjustable Temperature Limits	Х	Х		
High/Low Balance Points	Х	Х		
LED Status Indicators	Х	Х		
Adjustable Differential	Х	Х		
Adjustable Compressor Short Cycle Protection	Х	Х		
Adjustable Residual Cooling	Х	Х		
Fossil Fuel Kit required on HP units	No	No	Yes	Yes
Battery Free Memory Retention	Х		Х	
Manual Override	Х	Х	Х	Х
Resume	Х	Х	Х	Х
Auto Changeover	Х	Х	Х	Х
Gas/Electric	Х	Х	Х	Х
Single Stage Heat Pump Compatible	Х	Х	Х	Х
Line Powered	Х	Х	Х	Х
Programmable Fan	Х	Х	Х	Х
Intermittent Fan	Х		Х	
°F and °C	Х	Х	Х	Х
12 or 24 Hour	Х	Х		Х
Air Filter Monitor	Х	Х	Х	Х
Humidifier Pad Monitor	Х	Х	Х	
UV Light Monitor	X	X	X	
Vacation Setting	X	X	X	Х
0 & B Terminals	X	X	Partial	X
Events per day	2, 4, 6	4	4	2.4
Remote Outdoor Sensor	χ	Combo	X	х
Remote Indoor Sensor	X		X	X
Energy Efficient Recovery	X	Х	X	X
Pre-set Program	X	X	X	X
Hidden Service Level	X	X	X	~
Security Key Pad	X	~	Λ	X
Temperature Recalibration	X	Х	X	^
Customizable Contractor ID	X	^	^	Factory Only

ECM 5: PC Load Management

ECM Overview

Ameresco proposes to install a client/server software application that will manage the power consumption of computers located throughout the Town of Sudbury buildings. Ameresco identified 149 personal computers (PCs) of various models located at a number of Town buildings. This software will save energy and money by reducing the time the computers spend in high power modes while not in use. These packages are easyto-deploy software utilities that address network energy waste and reduce operating costs without impacting computer users. The applications manage and minimize the energy consumed by the network's clients through one centralized interface.

Figure 5.1: These are typical computers found at the DPW Offices and throughout the other Town buildings as well.

ECM Detail

Existing System

Most Town employees use personal computers for their daily work. Some of these computers are left on even when the user is not present. Ameresco used computer counts based on details provided by the Town's Technology Administrator as well as onsite walk through visits. All Town computers are windows based and the majority use LCD monitors.

Buildings	No. of Computers
DPW Highway	7
DPW Offices	19
Flynn Building	49
Town Hall	7
Fairbank Community Center	16
Public Library	42
Fire Dept HQ	7
Fire Dept South	1
Fire Dept North	1
Total	149

ECM 5

Proposed System

Ameresco proposes to install a software utility that will allow measurement, management, and reduction of power usage of the Town's personal computers. This software will save energy consumed by computers during unoccupied periods. The software is fully configurable by Information Technology (IT) personnel and provides a means to schedule software updates as well as to reduce energy and power consumption. The software detects

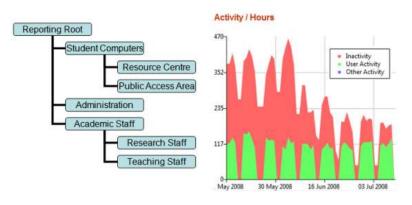


Figure 5.2: Example of Computer Usage Reporting available through PowerMAN software

user presence by tracking inputs such as mouse movement or use of the keyboard. During unoccupied periods the software resets parameters to reduce lower power consumption after a period of time specified by the IT department.

Ameresco proposes to install Data Synergy's PowerMAN Power Management or equivalent software for this purpose. This software will save energy when the computer is not in use without affecting performance while the computer is in use. Computer energy management is a financial and environmental priority for organizations today. Unfortunately, most IT personnel find the basic power saving options that are included with their workstation operating system to be disruptive to user and IT productivity.

PowerMAN Power Management changes all this by providing system administrators with minimally disruptive computer power management. By delivering enterprise level control over computer power configurations, workstations can now be configured to shutdown, standby and hibernate based upon CPU, disk, and application activity. The application activity feature is particularly useful if you would like a system to remain powered on whenever a certain application is running. PowerMAN even has the ability to generate detailed reports outlining enterprise-wide energy consumption levels and associated cost savings.

Using PowerMAN, system administrators have the ability to assign their workstations into groups, employ flexible scheduling and configuration options, and generate savings reports that prove this measure's return-on-investment.

Intelligent Configuration Settings

- Definitions can be based on CPU, disk, keyboard, mouse and application activity
- Shutdown without the loss of user productivity

Flexible Scheduling

• Options to turn off the monitor, and standby, hibernate or shutdown the computer

Final Investment Grade Audit

Page 2

- Schedule Wake-on-LAN, shutdown, or restart events
- Promotes user needs in tandem with energy conservation

Compatibility Options

- Customize the deployment as well as update and control the client workstations
- Localized in five languages: English, French, German, Spanish and Japanese

Customized Inactivity Definitions

- Employ energy saving actions when CPU or disk activity falls below a defined level
- Prevent the workstation from employing power saving actions when a particular application is running

Enterprise Control

- Provides unified workstation management capabilities
- Workstation grouping makes managing large deployments easy

Detailed workstation utilization reporting allows you to see how much power you are saving based upon your regional electricity cost.

In order to facilitate the installation of the software, the wake-on-LAN feature will need to be enabled on all of the computers. Ameresco has not included the labor to physically enable this feature on any disabled computers. The software will be installed on one of the existing servers and pushed out to all of the computers. Assistance by the IT staff during the installation is required for the pushing of the software into each computer. Ameresco will provide instructions and details to the IT staff for the installation of the software.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The computer load management software will enhance facility operations by reducing electricity usage associated with computers during unoccupied periods.

ECM 5

This page is intentionally left blank.

Page 4

Appendix for ECM 5: PC Load Management

I. Energy Savings Calculations

Final Investment Grade Audit

This page is intentionally left blank.

May 6, 2014

Town of Sudbury, Massachusetts

MAPC - Sudbury	
Energy and Demand Savings Summary	
Measure ID:	5
Measure Name:	PC Load Management
Measure Location:	
Engineers:	

Site Name:		DPW_Old	DPW_New	Flynn	Townhall	Fairbank	Library	FDHQ	Fire_S	Fire_N	Summary
Item	Units	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	
Electricity											
Energy On-Peak	kWh	812	2,105	4,978	627	1,638	4,388	644	89	89	15,369
Energy Off-Peak	kWh										0
Energy Total	kWh	812	2,105	4,978	627	1,638	4,388	644	89	89	15,369
Demand On-Peak, Monthly	kW										0.0
Demand On-Peak, Annual	kW										0.0
Demand Off-Peak, Monthly	kW										0.0
Demand Off-Peak, Annual	kW										0.0
Fossil Fuel											0
Natural Gas (NG)	Therms	-13	-36	-74	-12	-26	-69	-11	-2	-2	-244
Liquid Propane Gas (LPG)	Gallons	0	0	0	0	0	0	0	0	0	0
Steam	Mlbs	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #2	Gallons	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #4	Gallons	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #6	Gallons	0	0	0	0	0	0	0	0	0	0
Miscellaneous	Misc	0	0	0	0	0	0	0	0	0	0
Water											0
Water Savings	kGallons										0
Sewer											0
Sewer Savings	kGallons										0

MAPC - Sudbury PC Load Management

						Existing					Proposed					Savings
Total Qty of PCs	Building	PC type1	PC type2	CRT Monitor	LCD monitor	Existing Operating Hours	Overnight Standby Factor	Overnight Shutdown Factor	Overnight Operating Factor	Existing Power Consumption (kWh)	Proposed Operating Hours	Overnight Standby Factor	Overnight Shutdown Factor	Overnight Operating Factor	Proposed Power Consumption (kWh)	Savings (kWh)
[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]	[M]	[N]	[0]	[P]	[Q]
7	DPW Highway	0	7	2	5	2,477	30%	50%	20%	1,760	2,229	5%	95%	0%	974	787
	DPW Offices	0	19	0	19	2,500	30%	50%	20%	4,606	2,250	5%	95%	0%	2,558	2,047
49	Flynn Building	0	49	10	39	2,500	35%	50%	15%	11,218	2,250	5%	95%	0%	6,799	4,419
7	Town Hall	0	7	0	7	2,500	35%	50%	15%	1,557	2,250	5%	95%	0%	943	614
	Fairbank Community Center (Including Pool)	0	16	4	12	2,500	35%	50%	15%	3,687	2,250	5%	95%	0%	2,235	1,452
	Public Library	0	42	17	25	2,500	35%	50%	15%	9,887	2,250	5%	95%	0%	5,997	3,890
7	Fire Dept Headquarters	0	7	1	6	2,500	35%	50%	15%	1,589	2,250	5%	95%	0%	963	626
1	Fire Dept South	0	1	0	1	2,500	35%	50%	15%	222	2,250	5%	95%	0%	135	88
1	Fire Dept North	0	1	0	1	2,500	35%	50%	15%	222	2,250	5%	95%	0%	135	88
149		0	149	34	115					34,747					20,737	14.010
149		0	149	- 54	115					54,/4/					20,737	14,010
Thomas		Value	Units	cell ref	Remarks											r
Item	- PC (Units		Mac											
Watts used by Watts used by		165 195	W	[D62] [D63]	Mac Tower PC											
	y CRT Monitor	70	W	[D03]	TOWEITC											
	y LCD Monitor	35	W	[D65]												
	luring sleep mode	5	W	[D66]												
Computer Lo		30.0%	%	[D67]	Estimated com	puter power loa	ading									
	ge percentage	10.0%	%	[D68]			Cs to sleep for 1	0% of occupie	1 hours							
	riod usage factor	85.0%	%	[D69]			e off during exi									
Hours in a ye	ar	8,760	hr	[D70]		^										
Cell Ref.	Comment			•												
	Estimated quantity of machines appropriate for re-	etrofit, per IT Pe	ersonnel													
В	Location of Computers															
C	Estimated quantity of 165W machines appropriate															
	Estimated quantity of 195W machines appropriate															
E	Estimated quantity of CRT monitors appropriate															
F	Estimated quantity of LCD monitors appropriate	for retrofit, per	11 Personnel													
G H	Annual occupied hours of operation Percentage of computers currently put into stand	humodo oue:	aht													
<u>п</u> Т	Percentage of computers currently put into stand Percentage of computers currently shutdown ove		igni													
I	Percentage of computers currently shutdown over Percentage of computers currently left on overning	U														
K	= ((PC Power) x [D67] x [col G] \div 1,000) x [D		+ [col D]) x [D	66] x ([D70]	$-[col G]) \doteq 1.00$	$(0) \times [col H] + ($	(PC Power) x [D67.1 x ([D70	$1 - [col G]) \doteq 1$	000) x (1 - [col H	l - [col II)					
L	$= [col G] \times (1 - [D68])$			00 JA ([D/0]	[001 0]) . 1,00			Dot JA ([D10	j [coro]) - 1,							
	Percentage of computers proposed to be in stand	by mode overni	ight													
	g at the property of the stand	,	0													

N Percentage of computers proposed to be in standay mode over N Percentage of computers proposed to be shutdown overnight

O Percentage of computers proposed to be left on overnight

 $P = ((PC Power) x [D67] x (col L] \div 1,000) x [D69] + ((col C] + (col D)) x [D66] x ((col G] - [col L]) \div 1,000 x [D69] + (((col C] + (col D)) x [D66] x ([D70] - [col L]) \div 1,000) x [col M] + ((PC Power) x [D67] x ([D70] - [col L]) \div 1,000) x (1 - [col M] - [col N]) = (col N) = (col N$

MAPC - Sudbury PC Load Management Interactive Savings Calculation

	S	avings		Heating	g Penalty			Cooling	g Benefit	
Α	В	С	D	Ε	F	G	Н	Ι	J	K
					Heating	Heating				Cooling
	Annual		Heat Gain to	Heating	System	Penalty	Total Space	Cooling	Cooling	Benefit
Facility	kW	Annual kWh	Space	Months	Efficiency	MMBtu	Cooled	Months	System COP	MMBtu
DPW Highway		787	100.0%	5.0	86.0%	(1.3)	25.0%	5.0	3.22	0.1
DPW Offices		2,047	100.0%	5.0	82.0%	(3.6)	20.0%	5.0	2.93	0.2
Flynn Building		4,419	100.0%	5.0	85.0%	(7.4)	80.0%	5.0	2.64	1.9
Town Hall		614	100.0%	5.0	74.0%	(1.2)	15.0%	5.0	2.93	0.0
Fairbank Community Center (Including Pool)		1,452	100.0%	5.0	80.0%	(2.6)	90.0%	5.0	2.93	0.6
Public Library		3,890	100.0%	5.0	80.0%	(6.9)	90.0%	5.0	2.93	1.7
Fire Dept Headquarters		626	100.0%	5.0	80.0%	(1.1)	20.0%	5.0	2.93	0.1
Fire Dept South		88	100.0%	5.0	78.0%	(0.2)	10.0%	5.0	2.93	0.0
Fire Dept North		88	100.0%	5.0	78.0%	(0.2)	10.0%	5.0	2.93	0.0
Totals	0.0	14,010				(24.4)				4.6

Notes:	
А	Applicable building included in comprehensive energy audit
В	Measure demand savings {kW} associated with Measure retrofit measures
С	Measure energy savings {kWh} associated with Measure retrofit measures
D	Estimated percentage of Measure energy transmitted to conditioned space
Е	Estimated length of heating season
F	Estimated heating system efficiency, interacted with other measures
G	Resulting heating penalty due to Measure upgrades = $[col C] \times [col D] \times 3,413 \times ([col E] / 12) / [col F] / 1,000,000$
Н	Estimated percentage of space cooled
I	Estimated Length of cooling season
J	Estimated cooling system efficiency, interacted with other measures
К	Resulting cooling benefit due to Measure upgrades = $[col C] x [col D] x 3,413 x ([col I] / 12) / [col J] / 1,000,000$

Appendix for ECM 5: PC Load Management

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page is intentionally left blank.

May 6, 2014

Town of Sudbury, Massachusetts

PowerMAN Power Manager Overview

Release 5.2.4 July 2011

"We estimate this straightforward project, will save the Trust more than 350 tonnes of CO₂ and £70,000 per year...Direct financial savings are achieved by reducing the energy being used by computers being left idle by users." - **Phil Brennan, Estates Director, Sheffield NHS Teaching Hospitals**

Data Synergy PowerMAN Power Manager is an advanced software product giving organisations of all sizes a simple, effective and uniform solution to manage PC running costs. PowerMAN complements the built-in power management features of Microsoft Windows® by providing:

- Comprehensive, centralised, configuration of PC power management
- Web-based, enterprise-wide reporting of PC usage and costs

PowerMAN builds upon the features available in the Windows operating system to deliver power management that maximizes savings whilst avoiding any loss of productivity. The software's innovative approach allows PC power features to be simply managed using familiar Windows tools. This dramatically reduces implementation time and delivers rapid results. PowerMAN's unique web-based graphical system allows both IT and non-IT staff to monitor progress and identify areas for improvement.

"I only know one power management product that truly addresses our problems...PowerMAN" - Lisa Nelson, University of Liverpool

PowerMAN is a best of breed solution. The unique combination of effective power management **control** and **measurement reporting** greatly enhances the available savings:

PowerMAN Benefits

"This is a great opportunity to save a whole lot of money, but at a low cost" - Merry Rankin, Director of the Office of Sustainability, Iowa State University

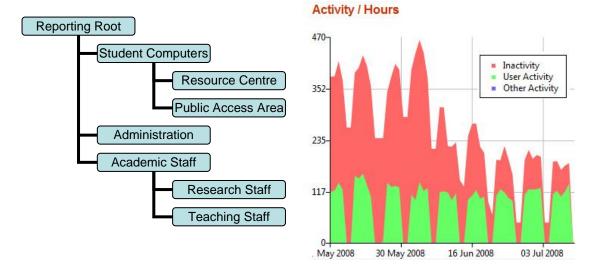
PowerMAN is very cost effective and will deliver effective power management whilst maintaining user productivity. The solution will deliver the following business benefits:

- Save up to 70% of PC energy costs
- Save up to £60 per annum per PC
- Flexible solution that overcomes common barriers to energy saving
- Pay for itself in weeks NOT months

The product is available with a **free 30 day, no-obligation, evaluation**. This will allow you to fully understand the powerful range of features available and measure the potential savings in your organisation. The evaluation is unlimited and we encourage you to use it on as many workstations as possible. The savings achievable can be estimated using our free, on-line, savings calculator.

The management software is highly flexible and offers numerous power management policy options:

- Rapid deployment using almost any industry standard technique
- Flexible policies per-user, per-workstation or per-group
- · Mix/match techniques to work alongside user requirements and maximize productivity
- Built-in wake-up support for patch management, anti-virus scans, and updates
- Minimally intrusive to users and includes an optional user override tool
- Uniform solution for all supported operating systems


The optional reporting suite provides:

- Management insight of workstation activity, waste and areas of best practice
- Reporting per area, department or physical location
- Measurement by time, estimated cost or CO₂ equivalence
- Informed decision making based upon reality and **NOT** guess work
- Optional hosted solution for ultra-rapid setup and low implementation cost

Enterprise PC Power Reporting

The optional PowerMAN web-based reporting solution is available as either **standalone**, **onpremise**, **software** or as **a hosted reporting service**. The system reports workstation power usage related information in a variety of easily accessible graphical and tabular formats. Both reporting solutions offer exactly the same reporting features:

- The **hosted (cloud) reporting service** can be setup in minutes and will securely report power statistics directly to Data Synergy's servers. This removes the need for a local server and associated backups. Hosted reporting is **included free for the first year** with all direct PowerMAN purchases.
- The **on-premise PowerMAN Enterprise Server** reporting software is particularly suitable for larger organisations and keeps all information in-house. The system offers an open database model that is ideal for further integration or development of custom queries.

A live demonstration of the reporting solution features is available on the <u>Data Synergy</u> <u>website</u>.

The reporting solution provides:

- On-going measurement of efficiency and waste over weeks, months or even years
- Reports true hours/minutes of activity and estimated cost and CO₂ equivalents
- Groups computers by area, use or location, display summary information and drilldown to individual PCs
- Ranks computers by inactivity level and highlights the most and least wasteful computers
- Displays data graphically and allows data download in Excel compatible format
- Provides multiple access security levels and only collects anonymous data. Does not create any privacy or data confidentiality issues and provides
- Minimal network overhead and storage requirements. There is no practical limit to historic data retention.

Technical Features and Requirements

PowerMAN is supported on Windows 2000 and later. The software uses a small agent which may be quickly deployed to each workstation:

Default User Power Settings Properties	? 🛛	3 •	Simple d
Setting Explain		1	or single required
🚳 Default User Power Settings			Deview
Not Configured		•	Deploy v XCOPY
Enabled			/
O Disabled		•	ADM/AD
Logout Timeout AC 1 Hour			Policy, Z settings
Logout Timeout DC Disabled	*		settings
Force Logout Disable	~	•	Define s
Idle Action AC Hibernate	~		compute
Idle Timeout AC 15 Minutes	~		
Idle Sensitivity% AC 5		•	Configur
Ide Action DC Hibernate	v v		hibernate
			Schedul
Previous Setting Next Setting			power-of
	Cancel Apply		
		•	Distinct p
	-		on
System Tools		Date	- /
Event Viewer	-		Enforce
Application			changes preventir
Internet Explorer		5/10/200	preventii
Power Management	à		Protect of
Security	<u>, , , , , , , , , , , , , , , , , , , </u>	5/10/200	
Gystein Shared Folders		5/10/200	Optional
🗉 🚮 Local Users and Groups	Information 2	5/10/200	Permit a
			power m

- Simple deployment via either standard MSI or single-EXE file. Less than 1MB on-disk required
- Deploy via GPO/AD, ZEN, SCCM, SMS, XCOPY or similar
- ADM/ADMX supplied Configure via Group Policy, ZEN, SCCM or even direct Registry settings
- Define separate policies per-user, percomputer, group or time of day
- Configure timeouts for logout, sleep, hibernate, and power-off
- Schedule wake-up, sleep, hibernate or power-off
- Distinct policies for when nobody is logged on

Enforce policies, prevent unauthorised
changes and override problem applications
preventing PC 'insomnia'
Protect critical applications or files

 (10/20) Optional opt-out by user and computer.
 (10/20) Permit authorised users to self opt-in/out to power management

The PowerMAN reporting solution requires less than 0.5KB of network bandwidth per workstation per day. The optional on-premise, PowerMAN Enterprise Server, reporting software is highly scalable and supports a minimum of 100,000 client computers. The software does not normally require a dedicated server and will work in a virtualised environment. The server software requires the following:

- Windows Server 2003 or later (x86 or x86-64) with at least 2GB of RAM. Larger installations may require more RAM.
- Approximately 1MB of data storage per client computer per year. e.g. 20,000 PCs will require approximately 20GB of storage.
- Microsoft® SQL Server Standard Edition 2005 or later. Smaller deployments may also use the free SQL Express Edition

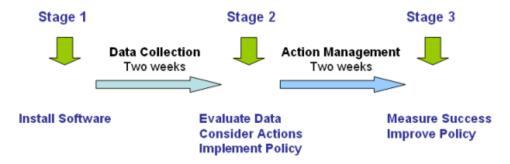
We also offer a range of <u>services</u> to help deploy, integrate, and customise PowerMAN in your organisation.

Better than Windows alone

PowerMAN leads the market because it significantly enhances the features available from Windows alone. This is because:

- Windows XP and earlier do not provide any built-in, centrally configured, power management.
- Windows® Vista / Windows® 7 only provide a single timeout-based power policy to be defined for all users on a particular computer. This policy applies at all times and can be changed by any user and remains in effect even when the user logs off. The policy may be easily circumvented by rouge applications causing 'PC Insomnia'

PowerMAN offers many more comprehensive features beyond those present in Windows alone. The following table highlights the key features of PowerMAN compared to Windows XP, Windows Vista/Windows 7 and the Energy Star EZ GPO tool:


Feature	Win XP	Win Vista/7	EZ GPO	PowerMAN
Configure power features via Group Policy	No	Basic	Basic	Advanced
Report power usage per PC/Site	No	No	No	Yes
Configure policy per user	Yes	No	Yes	Yes
Configure policy per PC	No	Yes	Yes	Yes
Distinct policy for no logged-on user	No	No	Yes	Yes
Enforce policy (prevent 'PC Insomnia')	No	No	No	Yes
Power Management Event Log	No	No	No	Yes
Prevent unauthorised policy changes	Yes	Yes	No	Yes
Optional user override tool	No	No	No	Yes
Supports logout/power-off	No	No	No	Yes
Supports scheduled sleep/shutdown	No	No	No	Yes
Supports scheduled wake-up	No	No	No	Yes
Remote ad-hoc wake-up	No	No	No	Yes
Full support for Windows® Vista/7	NA	NA	No	Yes
Regular updates available	NA	NA	No	Yes
Fully supported via email and telephone	NA	NA	No	Yes

Evaluate Free Today

We are confident PowerMAN will save you money but we know you will want to see this for yourself. The product is available with a **free 30 day, no-obligation, evaluation**.

The evaluation will allow you to fully understand the powerful range of features available and measure the potential savings in your organisation. The evaluation is **unlimited** and we encourage you to use it on as many representative workstations as possible. The typical evaluation cycle is:

Please talk to your Sales Representative to arrange your PowerMAN evaluation today.

Complementary Tools

Data Synergy provides a range of related software. The following tools complement PowerMAN:

- <u>WakeMyPC</u> provides a web-based, user-driven, remote desktop access gateway. This allows users to wake their own workstations when required for remote access. WakeMyPC is the ideal companion for PowerMAN and used together will maximize the savings achieved.
- Free <u>WOLMAN command-line</u> tool for investigating and debugging WoL network issues. This is included with the WakeMyPC Server and is also available directly from the Data Synergy website
- DMCMOS32 utility for configuring BIOS features, such as WoL, on large numbers of similar computers

Further Information

To find out more about **Data Synergy PowerMAN** please talk to your Sales Representative or authorised reseller. Alternatively please read the following documents available on the Data Synergy website:

- PowerMAN Administrator Guide provides full technical details and several installation walk-throughs
- **PowerMAN Reporting Guide** explains how to use the WakeMyPC Server software.
- PowerMAN Enterprise Server Guide explains how to deploy the on-premise reporting suite
- **<u>PowerMAN FAQ</u>** Answers frequently asked product questions

Our Customers

Data Synergy PowerMAN is already used successfully by a large number of both public and private sector customers. Some examples include:

About Data Synergy

Data Synergy is a British company based in Sheffield. We have over ten years' experience developing and supporting software solutions for enterprise PC deployment and management. We do not resell other vendors' products and do all of our development, sales and support from our UK base.

Our products have evolved through listening to customer ideas and applying our unrivalled knowledge of PC internals. If you have a suggestion for a new product or feature we would love to talk to you.

Data Synergy UK Ltd Cooper Buildings Sheffield Technology Parks Arundel Street Sheffield S1 2NS Website: <u>www.datasynergy.co.uk</u> Email: <u>sales@datasynergy.co.uk</u> Telephone: 08456 435 035

Registered in England and Wales Company Number 06682095 VAT Registration GB 939 7559 56

ECM 6: Demand Control Ventilation

ECM Overview

Ameresco identified energy saving opportunities at the Curtis Middle School and Haynes Elementary School through the installation of demand control ventilation (DCV) controls. DCV controls modulate the amount of outdoor air supplied to a space to maintain a required ventilation rate (CFM/person) based on the actual occupancy at that time. This strategy saves energy by reducing the amount of outdoor air that is conditioned during low occupancy periods.

ECM Detail

Figure 6.1: Existing constant air volume system serving the gymnasium at the Haynes Elementary School.

Existing System

Ameresco identified one (1) air-handling unit (AHU) at the Haynes Elementary School and three (3) AHUs at the Curtis Middle School that can be upgraded with DCV controls. All spaces have a high occupant density that varies throughout the day and all spaces are supplied with a large volume of air. These units currently use constant air volume strategies.

The gymnasium at the Haynes Elementary School is provided with heating and ventilation by a McQuay Model RDS rooftop unit, HV-4, equipped with a hot water coil and outside air damper. The 7.5 HP supply fan provides 9,000 CFM of conditioned air and 4,000 CFM of outside air. The air is distributed to the space through an exposed overhead ductwork system. Air is returned to HV-4 through a sidewall register located low within the space.

The cafeteria, gym, and auditorium at the Curtis Middle School are provided with heating and ventilation by AHU-8, AHU-10, and AHU-12 respectively. These units are Trane Model RAUCC rooftop units of various sizes equipped with hot water coils and economizers. AHU-8 has a 7.5 HP supply fan that provides 6,400 CFM of conditioned air and 4,500 CFM of outside air. AHU-10 has a 7.5 HP supply fan that provides 7,000 CFM of conditioned air and 5,100 CFM of outside air. AHU-12 has a 15 HP supply fan that provides 12,000 CFM of conditioned air and 7,500 CFM of outside air. These units distribute the conditioned air to the spaces through an overhead ductwork system and the air is returned to the units through sidewall registers.

Final Investment Grade Audit

ECM 6

Proposed System

Ameresco proposes to install demand control ventilation (DCV) on the four (4) AHU's listed in the following table. The single zone HV-4 serving the Haynes gymnasium will have a new CO₂ sensor installed in the return air ductwork. AHU-8, 10, and 12 have existing CO₂ sensors already installed that will be reused for this measure. All outdoor air damper actuators will be tested for proper operation (modulating). New and existing CO₂ sensors will monitor CO₂ levels in the spaces and control ventilation rates for each occupied space according to ASHRAE Standard 62 requirements. The sensors will be wired back to existing AHU controllers. The existing controls will be modified and programmed to control the outdoor air dampers via CO₂ levels. The new sensors will have the capability to override the outdoor air dampers based on CO₂ control algorithm. Work for this measure excludes repair of existing air handling equipment and dampers, actuators, etc.

Please refer to the following table for a list of AHU's to be retrofit in this measure.

Building	Unit	Serves
Curtis Middle School	AHU-8	Cafeteria
Curtis Middle School	AHU-10	Gymnasium
Curtis Middle School	AHU-12	Auditorium
Haynes Elementary School	HV-4	Gymnasium

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new DCV controls will reduce the over-ventilation of high volume spaces by providing the required amount of air based on actual occupancy. This strategy will save energy by reducing the amount of outdoor air that is conditioned during low occupancy periods.

Page 2

Appendix for ECM 6: Demand Control Ventilation

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Summary		
Measure ID:	6	
Measure Name:	Demand Control Ventilation	
Measure Location:		
Engineers:		

		Curtis	Harmon	Summany
Site Name:		Curus	Haynes	Summary
Item	Units	Savings	Savings	
Electricity				
Energy On-Peak	kWh	33,206	621	33,827
Energy Off-Peak	kWh			0
Energy Total	kWh			0
Demand On-Peak, Monthly	kW			0.0
Demand On-Peak, Annual	kW			0.0
Demand Off-Peak, Monthly	kW			0.0
Demand Off-Peak, Annual	kW			0.0
Fossil Fuel				0
Natural Gas (NG)	Therms	129	285	414
Liquid Propane Gas (LPG)	Gallons			0
Steam	Mlbs			0
Fuel Oil, #2	Gallons			0
Fuel Oil, #4	Gallons			0
Fuel Oil, #6	Gallons			0
Miscellaneous	Misc			0
Water				0
Water Savings	kGallons			0
Sewer				0
Sewer Savings	kGallons			0

MAPC - Sudbury

Curtis Middle School

Demand Control Ventilation

TMY-2 Weat	ther Data fo	or Worcester	r, MA					Existing Oc	cupancy Sch		Existing H	eating/Cooling	g Schedule		Existing M	otor Operatio	ng Schedule		Existing				Proposed								Savings			
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	M.C. Enthalpy Btu/lbma	01-08 Hours	s 09-16 Hour	s 17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	- Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	 Occ On- Peak Hrs. 	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.		UnOcc On- Peak Hrs.	- Occ Off- Peak Hrs.	UnOcc Off Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	ating Energy Consump.	UnOcc Cooling/He ating Energy Consump. (MMBTU)	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	UnOcc. Cool/ Heat Load (MBH)	Occ Cooling/He ating Energy Consump. (MMBTU)	UnOcc Cooling/He ating Energy Consump. (MMBTU)	Cooling Energy Savings (MMBTU)	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU)
Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																	· '	í
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	584	447	0	0	0	0	0	0	584	447	0	0	0	0	(
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	526	402	0	0	0	0	0	0	526	402	0	0	0	0	í
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	467	357	0	0	0	0	0	1	467	357	0	0	0	4	í –
90 to 95	92.5	69.8	34.2	0	8	0	8	2	1	0	6	2	0	0	6	2	0	0	6	409	313	0	1	2	0	0	6	409	313	0	1	0	30	
85 to 90	87.5	70.3	34.6	1	37	6	44	9	4	0	31	10	2	0	31	10	2	0	31	351	268	1	3	10	2	0	31	351	268	1	3	0	167	
80 to 85	82.5	68.4	33.0	8	138	29	175	34	15	0	125	41	9	0	125	41	9	0	125	292	223	4	10	41	9	0	125	292	223	4	10	0	663	
75 to 80	77.5	66.2	31.2	27	202	83	312	61	28	0	223	74	16	0	223	74	16	0	223	234	179	6	15	74	16	0	223	234	179	6	15	0	1,183	
70 to 75	72.5	64.3	29.7	64	269	160	493	97	44	0	352	116	25	0	352	116	25	0	352	175	134	7	17	116	25	0	352	175	134	7	17	0	1,869	
65 to 70	67.5	61.2	27.5	185	208	243	636	125	56	0	454	150	32	0	454	150	32	0	454	117	89	6	15	150	32	0	454	117	89	6	15	0	2,411	1
60 to 65	62.5	57.3	24.8	315	249	298	862	170	76	0	616	203	43	0	616	203	43	0	616	58	45	4	10	203	43	0	616	58	45	4	10	0	3,267	(
Heating																																	· · · · ·	1
55 to 60	57.5	52.7	0.0	303	245	276	824	162	73	0	589	194	41	0	589	194	41	0	589	(62)	(1)	0	0	194	41	0	589	(41)	(1)	0	0		3,123	0
50 to 55	52.5	47.8	0.0	262	184	228	674	133	60	0	482	159	33	0	482	159	33	0	482	(87)	(12)	0	0	159	33	0	482	(57)	(12)	0	0		2,555	0
45 to 50	47.5	42.5	0.0	204	230	211	645	127	57	0	461	152	32	0	461	152	32	0	461	(111)	(22)	0	0	152	32	0	461	(74)	(22)	0	0		2,445	0
40 to 45	42.5	38.3	0.0	210	191	234	635	125	56	0	454	150	32	0	454	150	32	0	454	(136)	(33)	0	1	150	32	0	454	(90)	(33)	0	0		2,407	1
35 to 40	37.5	33.8	0.0	321	301	286	908	179	80	0	649	214	45	0	649	214	45	0	649	(161)	(44)	0	3	214	45	0	649	(106)	(44)	0	0		3,442	2
30 to 35	32.5	28.7	0.0	356	221	313	890	175	79	0	636	210	44	0	636	210	44	0	636	(186)	(55)	0	4	210	44	0	636	(122)	(55)	0	1		3,374	3
25 to 30	27.5	23.5	0.0	228	211	211	650	128	58	0	464	153	32	0	464	153	32	0	464	(210)	(65)	0	3	153	32	0	464	(138)	(65)	0	1		2,464	2
20 to 25	22.5	19.1	0.0	104	94	124	322	63	28	0	230	76	16	0	230	76	16	0	230	(235)	(76)	0	2	76	16	0	230	(154)	(76)	0	1		1,221	1
15 to 20	17.5	14.3	0.0	144	78	117	339	67	30	0	242	80	17	0	242	80	17	0	242	(260)	(87)	0	3	80	17	0	242	(171)	(87)	0	1		1,285	1
10 to 15	12.5	9.3	0.0	118	40	85	243	48	21	0	174	57	12	0	174	57	12	0	174	(285)	(97)	0	2	57	12	0	174	(187)	(97)	0	1		921	1
5 to 10	7.5	5.0	0.0	52	10	15	77	15	7	0	55	18	4	0	55	18	4	0	55	(309)	(108)	0	1	18	4	0	55	(203)	(108)	0	1		292	0
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	1	0	16	5	1	0	16	(334)	(119)	0	1	5	1	0	16	(219)	(119)	0	0		83	0
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(359)	(129)	0	0	0	0	0	0	(235)	(129)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(384)	(140)	0	0	0	0	0	0	(251)	(140)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(500)	(151)	0	0	0	0	0	0	(293)	(151)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(513)	(162)	0	0	0	0	0	0	(306)	(162)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(526)	(172)	0	0	0	0	0	0	(319)	(172)	0	0		0	0
				2,920	2,920	2,920	8,760	1,725	775	0	6,260	2,065	435	0	6,260	2,065	435	0	6,260			28	90	2,065	435	0	6,260			28	77	0	33,206	13

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col M] + [col O]) \times MIN([col U] + internal gains, 0) + IF([col I] + [col K]) - ([col I] + [col K]) - ([col M] + [col O])) \times MIN([col V] + internal gains, 0), 0) + 1,000 + AD44$
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	Heating = -([col N] + [col P]) x MIN([col V] + internal gains, 0) + IF([col I] + [col K] < [col M] + [col O]), (([col M] + [col O]), ([col I] + [col K])) x MIN([col U] + internal gains, 0)) ÷ 1,000 ÷ AD44
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC61) \div ([col B] - AC56) \times [col U]$
	Heating = $([col B] - AE61) \div ([col B] - AE56) x [col U]$
AD	Proposed Unoccupied Cooling and Heating Loads:
	$Cooling = ([col B] - AC62) \div ([col B] - AC57) \times [col V]$
	Heating = ([col B] - AE62) ÷ ([col B] - AE57) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] \times ([col Y] + [col AA]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col Y] + [col AA]) \times MIN([col AC] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0), 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col I] + [col K]) - [(col Y] + [col AA])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X])) \times MIN([col AD] + internal gains, 0) + IF([col X] + [col X]$
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains , 0) + IF([col I] + [col K] < [col Y] + [col AA], (([col Y] + [col AA]) - ([col I] + [col K])) x MIN([col AC] + internal gains , 0)) ÷ 1,000 ÷ AD44
AG	= ([col W] + [col X]) - ([col AE] + [col AF])
	HVAC Fan and Pump Savings
AH	$Cooling = ([col Q] + [col T] + ([col T] + [col T]) \times AD49) \times (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) \times AD49) \times (AD46 + AD48)$
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD49 x AD46)) - (([col Y] + [col AB]) x AD49 + IF(B20<35,([col Z] + [col AB]) x AD49 x AD46, IF(B20>50,0,([col R] + [col AB]) x AD49 x AD46)))
AI	= ([col W] + [col X]) - ([col AE] + [col AF])

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	155,000	SF	AD43	
isting Heating Plant Efficiency	82.0%		AD44	Electric HW
isting Chiller Efficiency	2.9	COP	AD45	
n Power	26.5	kW	AD46	RTU-8,10,12
ating Pump Power	0.0	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	0.0%		AD51	% CFM Saved
c. Ventilation Reduction	5.2%		AD52	% CFM Saved due to DCV

erage Existing Space Temperatures											
	Heating		Description								
AC56	70.5	AE56									
AC57	58.0	AE57									
		AC56 70.5	AC56 70.5 AE56								

Average Proposed Space Temperatures												
	Cooling		Heating		Description							
Occupied	72.0	AC61	70.5	AE61								
UnOccupied	78.0	AC62	58.0	AE62								

MAPC - Sudbury

Haynes Elementary

Demand Control Ventilation

TMY-2 Wea	ther Data fo	r Worcester	, MA					Existing Oc	cupancy Sch	edule		Existing He	ating/Cooling	g Schedule		Existing M	otor Operati	ng Schedule		Existing				Proposed								Savings		
Amb. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B deg. F	Btu/lbma	01-08 Hours	s 09-16 Hour	s 17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Peak Hrs.	UnOcc On- Peak Hrs.	Peak Hrs.	UnOcc Off- Peak Hrs.	Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off Peak Hrs.		UnOcc. Cool/ Heat Load (MBH)	ating Energy Consump. (MMBTU)	UnOcc Cooling/He y ating Energy Consump. (MMBTU)	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Peak Hrs.	UnOcc Off- Peak Hrs.	Occ. Cool/ Heat Load (MBH)	Load (MBH)	t ating Energy Consump. (MMBTU)	Consump. (MMBTU)	Energy Savings (MMBTU)	HVAC Electrical Savings (kWh)	Heating Energy Savings (MMBTU
Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	v	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
Cooling																																	ı	
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	324	248	0	0	0	0	0	0	324	248	0	0	0	0	
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	291	223	0	0	0	0	0	0	291	223	0	0	0	0	
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	259	198	0	0	0	0	0	1	239	198	0	0	0	0	
90 to 95	92.5	69.8	34.2	0	8	0	8	1	1	0	6	2	1	0	6	2	1	0	6	227	173	0	0	2	1	0	6	207	173	0	0	0	1	<u> </u>
85 to 90	87.5	70.3	34.6	1	37	6	44	8	4	0	31	9	3	0	31	9	3	0	31	194	149	1	2	9	3	0	31	173	149	1	2	0	4	<u> </u>
80 to 85	82.5	68.4	33.0	8	138	29	175	33	17	0	125	37	13	0	125	37	13	0	125	162	124	2	6	37	13	0	125	146	124	2	6	0	14	<u> </u>
75 to 80	77.5	66.2	31.2	27	202	83	312	58	31	0	223	66	23	0	223	66	23	0	223	130	99	3	8	66	23	0	223	119	99	3	8	0	18	
70 to 75	72.5	64.3	29.7	64	269	160	493	92	49	0	352	104	36	0	352	104	36	0	352	97	74	3	10	104	36	0	352	91	74	3	10	0	29	
65 to 70	67.5	61.2	27.5	185	208	243	636	118	63	0	454	135	47	0	454	135	47	0	454	65	50	3	8	135	47	0	454	65	50	3	8	0	37	
60 to 65	62.5	57.3	24.8	315	249	298	862	160	86	0	616	183	63	0	616	183	63	0	616	32	25	2	6	183	63	0	616	32	25	2	6	0	50	
Heating																																	1	
55 to 60	57.5	52.7	0.0	303	245	276	824	153	82	0	589	175	61	0	589	175	61	0	589	(221)	(4)	0	5	175	61	0	589	(213)	(4)	0	5		48	0
50 to 55	52.5	47.8	0.0	262	184	228	674	125	67	0	482	143	50	0	482	143	50	0	482	(309)	(47)	0	13	143	50	0	482	(298)	(47)	0	12		39	0
45 to 50	47.5	42.5	0.0	204	230	211	645	120	64	0	461	137	47	0	461	137	47	0	461	(397)	(89)	4	41	137	47	0	461	(384)	(89)	2	41		52	2
40 to 45	42.5	38.3	0.0	210	191	234	635	118	63	0	454	135	47	0	454	135	47	0	454	(485)	(131)	17	70	135	47	0	454	(469)	(131)	15	70		51	3
35 to 40	37.5	33.8	0.0	321	301	286	908	169	90	0	649	192	67	0	649	192	67	0	649	(573)	(174)	44	141	192	67	0	649	(554)	(174)	40	141		73	5
30 to 35	32.5	28.7	0.0	356	221	313	890	166	88	0	636	189	65	0	636	189	65	0	636	(662)	(216)	62	179	189	65	0	636	(640)	(216)	57	179		72	5
25 to 30	27.5	23.5	0.0	228	211	211	650	121	65	0	464	138	48	0	464	138	48	0	464	(750)	(258)	59	161	138	48	0	464	(725)	(258)	55	160		52	4
20 to 25	22.5	19.1	0.0	104	94	124	322	60	32	0	230	68	24	0	230	68	24	0	230	(838)	(301)	36	94	68	24	0	230	(810)	(301)	34	94		26	2
15 to 20	17.5	14.3	0.0	144	78	117	339	63	34	0	242	72	25	0	242	72	25	0	242	(926)	(343)	45	115	72	25	0	242	(895)	(343)	42	114		27	3
10 to 15	12.5	9.3	0.0	118	40	85	243	45	24	0	174	51	18	0	174	51	18	0	174	(1,015)	(385)	37	93	51	18	0	174	(981)	(385)	35	93		20	2
5 to 10	7.5	5.0	0.0	52	10	15	77	14	8	0	55	16	6	0	55	16	6	0	55	(1,103)	(428)	13	33	16	6	0	55	(1,066)	(428)	13	33		6	1
0 to 5	2.5	2.2	0.0	18	3	1	22	4	2	0	16	5	2	0	16	5	2	0	16	(1,191)	(470)	4	10	5	2	0	16	(1,151)	(470)	4	10		2	0
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,279)	(512)	0	0	0	0	0	0	(1,237)	(512)	0	0		0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,367)	(555)	0	0	0	0	0	0	(1,322)	(555)	0	0		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,456)	(597)	0	0	0	0	0	0	(1,407)	(597)	0	0		0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,544)	(639)	0	0	0	0	0	0	(1,492)	(639)	0	0		0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(1,632)	(682)	0	0	0	0	0	0	(1,578)	(682)	0	0		0	0
				2,920	2,920	2,920	8,760	1,630	870	0	6,260	1,856	644	0	6,260	1,856	644	0	6,260			336	997	1,856	644	0	6,260			311	993	1	621	29

Cell Ref. Comment

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Existing Occupancy hours
M - P	Existing Heating/Cooling hours
Q - T	Existing Motor Operating Hours
U	Occupied Cooling and Heating loads (MBH)
V	Unoccupied Cooling and Heating loads (MBH)
W	$Cooling = [col U] x ([col M] + [col O]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col K], [col M] + [col O]) \times MIN([col U] + internal gains, 0) + IF([col I] + [col K] > [col M] + [col O], (([col I] + [col K]) - ([col M] + [col O])) \times MIN([col V] + internal gains, 0), 0) \div 1,000 \div AD44$
Х	$Cooling = [col R] x ([col J] + [col L]) \div 1,000 \div AD45$
	$Heating = -([col N] + [col P]) \times MIN([col V] + internal gains, 0) + IF([col I] + [col K] < [col M] + [col O], (([col M] + [col O]) - ([col I] + [col K])) \times MIN([col V] + internal gains, 0)) + 1,000 + AD44$
Y - AB	Proposed Operating hours
AC	Proposed Occupied Cooling and Heating Loads:
	Cooling = ([col B] - AC61) ÷ ([col B] - AC56) x [col U]
	Heating = ([col B] - AE61) ÷ ([col B] - AE56) x [col U]
AD	Proposed Unoccupied Cooling and Heating Loads:
	Cooling = ([col B] - AC62) ÷ ([col B] - AC57) x [col V]
	Heating = ([col B] - AE62) ÷ ([col B] - AE57) x [col V] ([col V] is modified to account for reduced kitchen and building ventilation due to EMS)
AE	$Cooling = [col AC] x ([col Y] + [col AA]) \div 1,000 \div AD45$
	$Heating = -MIN([col I] + [col A]), [col Y] + [col AA]) \times MIN([col AC] + internal gains, 0) + IF([col I] + [col K]) - [col Y] + [col AA]), (([col I] + [col A])) \times MIN([col AC] + internal gains, 0), 0) + 1,000 + AD44$
AF	$Cooling = [col AD] x ([col Z] + [col AB]) \div 1,000 \div AD45$
	Heating = -([col Z] + [col AB]) x MIN([col AD] + internal gains, 0) + IF([col I] + [col K] < [col Y] + [col AA]) - ([col Y] + ([col Y] + [col AA]) - ([col Y] + ([c
AG	= ([col X] - ([col AE] + [col AF]))
	HVAC Fan and Pump Savings
AH	Cooling = ([col Q] + [col S] + ([col R] + [col T]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Z] + [col AB]) x AD49) x (AD46 + AD48) - ([col Y] + [col AA] + ([col Y] + [col AA]) x (AD46 + AD48) - ([col Y] + [col Y] + ([col Y] + [col Y] + [col Y] + ([col Y] + ([col Y] + [col Y] + ([col Y] + ([c
	Heating =([col Q] + [col S]) x AD46 + IF(B20<35,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col T]) x AD49 x AD46, IF(B20>50,0,([col R] + [col R]) x AD4
AI	= ([col W] + [col X]) - ([col AE] + [col AF])

sumptions:	Value	Unit	CELL	Description
			REF	
cupied Area	62,811	SF	AD43	
sting Heating Plant Efficiency	78.0%		AD44	HW
sting Chiller Efficiency	2.9	COP	AD45	
n Power	4.3	kW	AD46	HV-4
ating Pump Power	0.0	kW	AD47	
oling Pump Power	0.0	kW	AD48	
Occ. Fan & Pump Cycling	10.0%		AD49	% Operating Hours During UnOcc.
Occ. Kitchen Vent. Reduction	0.0%		AD50	% CFM Saved
Occ. Ventilation Reduction	30.0%		AD51	% CFM Saved
c. Ventilation Reduction	3.9%		AD52	% CFM Saved due to DCV

erage Existing Space T	erage Existing Space Temperatures												
	Cooling		Heating		Description								
cupied	72.0	AC56	70.0	AE56									
Occupied	78.0	AC57	58.0	AE57									

	Space Temperature Cooling		Heating		Description
Occupied	72.0	AC61	70.0	AE61	2. Compton
UnOccupied	78.0	AC62	58.0	AE62	
-					
Assumptions:		Value	Unit	CELL	Description
Assumptions:		Value	Unit	CELL REF	Description

Appendix for ECM 6: Demand Control Ventilation

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page intentionally left blank.

CARBON DIOXIDE (CO2) DETECTORS

Corporate Space Enclosure

Air quality starts with sensing the problem

J

S

ш

0

Greystone's Carbon Dioxide (CO2) detectors provide unsurpassed accuracy, reliability and selection.

Peace of mind through reliable gas sensors

GREYSTONE IS AN ISO 9002 REGISTERED COMPANY

CO₂ DETECTOR

Environmental, industrial and commercial indoor Carbon Dioxide (CO_2) gas detector. Available in both a space and duct mount version.

APPLICATION:

To sense and transmit to any compatible electronic analog control, DDC/PLC controller or automation system for the control of ventilation equipment. Designed to meet ventilation requirements specified in ASHRAE Standard 62-1989.

FEATURES:

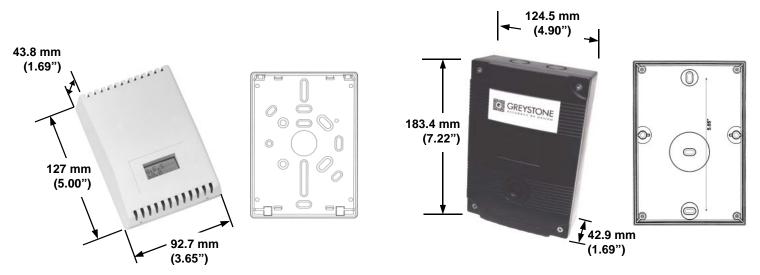
- Setup/calibration fully menu driven (requires LCD option)
- Monitors CO2 over range 0-2000 PPM (factory default)
- Field adjustable range from 0-1500 PPM up to 10,000 PPM without re-calibration!
- NDIR single beam with patented ACLP selfcalibration algorithm
- Guaranteed 5 year calibration interval
- Optional on board relay with field adjustable trip point
- Optional LCD for displaying PPM level and menu options
- Powered by either AC or DC source with no change to circuit required
- Choice of two field adjustable analog output signals, linearized over full range
- Easy to calibrate in the field

SPECIFICATIONS	CO ₂ DETECTOR – Product # CDD
Gas Detected	Carbon Dioxide (CO ₂)
Range	0 – 2000 ppm standard, programmable from 1500 up to 10,000 ppm in 500 ppm increments
Standard Accuracy	±75 PPM or3% of reading (whichever is greater) 15-32 C (59-90 F) for 0-2000 ppm range ±5% of reading for 2000-10,000 ppm
Extended Accuracy	± 150 ppm or 5% of reading (whichever is greater) 0-50 C (32-122 F) for 0-2000 ppm range $\pm 7\%$ of reading for 2000-10,000 ppm
Sensing Element	Non-Dispersive Infrared (NDIR)
Operation Conditions	0-50C(32-122F), 0-95% RH non-condensing
Repeatability	±20 PPM
Stability	±20 PPM typical, 5 year calibration interval
Manufacturing Process	ISO 9002 certified
Output Signal	4-20 mA active (sourcing), 0-5Vdc and 0-10Vdc, jumper selectable (Note correct part number)
Output Drive Capability	550 ohm max for current output, 10 Kohm min for voltage output
Output Resolution	10 bit PWM
LCD Display (optional)	LCD for displaying PPM level (required for field programming) 1 ppm resolution, 1.1" w x 0.5" h (28 x 13 mm) alpha-numeric 2 line x 8 characters
Field Calibration	Calibration, applying calibration gas standards (Contact Greystone for Calibration kit)
External Dimensions	Corporate Space – 91mm W x 127mm H x 43 mm D (3.6" x 5" x 1.7") Duct ABS – 124 mm W x 183 mm H x 43 mm D (4.9" x 7.22" x 1.69")

Duct Mount ABS Enclosure with Sampling Tube

SPECIFICATIONS (Con't)	CO₂ DETECTOR – Product # CDD
Pressure Dependence	0.13% of reading per mm Hg
Altitude Correction	Programmable from 0-5000 ft in 500 ft increments
Response Time	< 60 seconds for 90% step change
Warm-up Time	< two (2) minutes
Power Supply	20-30 Vac/dc (non-isolated half-wave rectified)
Consumption	80 mA max @ 24 Vdc, 36 mA avg @24 Vdc
Input Voltage Effect	Negligible over specified operating range
Protection Circuitry	Reverse voltage protected and output limited
Optional Relay Output	One Form C contact (N.O. and N.C.), status LED, 5 amps @ 250 Vac, 5 amps @ 30Vdc, p.f. = 1 Relay Trip Point – Programmable 500-1500 ppm in 50 ppm increments Relay Hysteresis – Programmable 25-200 ppm in 25 ppm increments
Programming and Selection	Via internal push-buttons and jumper
Wiring Connections	Screw terminal block (14 to 22 AWG)

CARBON DIOXIDE (CO2): PRODUCT ORDERING INFORMATION


MOD	EL	Descrip	tion										
CDI	C	Carbon	Dioxide D	etector (0	CO ₂)								
		CODE	Sensing	g Elemen	t								
		1	Non-Dis	persive Ir	nfrared (N	DIR)							
			CODE	Gas Ty	ре			Range					
			Α	CO ₂ – C	Carbon Dic	oxide Det	ector (CDD)	0-2000 PPM Standard	User programmable up to 10,000 PPM				
				CODE	Enclosu	ure and C	Dutputs						
				1 2 6	Corpora	te Space	c/w 4-20 mA and 0 c/w 4-20 mA and 0- mpling Tube, 4-20 n		outputs				
					CODE	Circuit	Board Relay						
					00 10	No Rela One Re		. or N.C., 5A @ 24 VDC)					
						CODE	Options						
						0 1 2	No options LCD RS-485 Communic	cation (Please contact Grey	rstone)				
CDD 1 A 1 00 0									I Number				

Example: NDIR CO2 Corporate No Relay No Options

Greystone Energy Systems, Inc. reserves the right to make design modifications without prior notice.

DIMENSIONS nts

ACLP SOFTWARE AND 5 YEAR CALIBRATION GUARANTEE

ACLP SOFTWARE

ACLP (Automatic Calibration Logic Program) software utilizes the computing power in the sensor's on-board microprocessor to remember the lowest CO2 concentration that takes place every 24 hours. The sensor assumes this low point is at outside levels. The sensor is also smart enough to discount periodic elevated readings that might occur if for example a space was used 24 hours per day over a few days. Once the sensor has collected 14 days worth of low concentration points it performs a statistical analysis to see if there has been any small changes in the sensor reading over background levels that could be attributable to sensor drift. If the analysis concludes there is drift, a small correction factor is made to the sensor calibration to adjust for this change.

5 YEAR CALIBRATION GUARANTEE

Based on the results of years of testing of ACLP software, Greystone now offers a 5 year calibration guarantee on all its CDD series wall and duct mount sensors used for CO2 based ventilation control when operated in an environment that can utilize ACLP software. If the sensor is found to be out of calibration more than 150 ppm as compared to a calibration gas or recently calibrated reference, Greystone will provide a free factory calibration of the sensor if returned to Greystone. This guarantee only applies if the sensor is operated in an environment where inside levels periodically drop to outside concentrations (i.e. during evenings or weekends when there is no occupancy) as is required by ACLP software. If a space does not experience a periodic drop to outside levels (e.g. where occupancy is 24 hours, 7 days/week), ACLP software should be deactivated off. With ACLP deactivated (via menu buttons) calibration may be required every 2 to 3 years.

Greystone Energy Systems Inc. 150 English Drive, Moncton, NB Canada E1E 4G7

(506) 853-3057 Fax: (506) 853-6014 e-mail: mail@greystoneenergy.com www.greystoneenergy.com Greystone Energy Systems Inc., established in 1983, is Canada's largest manufacturer of HVAC sensors and transducers for Building Automation Management Systems. We have conscientiously established a worldwide reputation as an industry leader by maintaining leadingedge design technology, prompt technical support, and a commitment to on-time deliveries. We take pride in our Quality Management System which is ISO 9002 certified, assuring our customers of consistent product reliability.

GREYSTONE IS AN ISO 9002 REGISTERED COMPANY

The H-Max Series adjustable frequency drive is specifically designed to meet the needs of the HVAC industry by offering leading HVAC software and hardware features. With an industry leading energy efficiency algorithm, high short circuit current rating and robust design, it offers customers increased efficiency, safety and reliability.

Product Range

- 0.75 125HP 230V AC
- 1.5 250HP 480V AC
- NEMA 1/IP21 or NEMA 12/IP54 Packaging

Benefits

- Industry leading
 energy efficient solution
- Easy menu navigation
- Multi-monitoring capability
- Corrosion resistant
 circuit boards
- · Extended shelf life
- Meets EMC Class C2 requirements
- Ideal feature set for HVAC

Features

- Active Energy control algorithm
- Graphic display and keypad
- On board communications (RS485: ModBus, BacNet, N2 Ethernet: ModBus TCP, BacNet IP)
- OnBoard I/O (6DI, 3RO, 2AI, 1AO)
- Conformal coated circuit boards
- Real-time clock with battery backup
- 5% DC link choke
- Thin metal film bus capacitors

Product	FS4		FS5		F	S6	FS	S 7	FS	58	FS9	
Voltage	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac
hp	0.75 - 4	1.5 - 7.5	5 - 10	10 - 20	15 - 20	25 - 40	25 - 30	50 - 75	50 - 75	100 -150	100 - 120	200 - 250
kW	0.55 - 3.0	1.1 - 5.5	4 - 7.5	7.5 - 15	11 - 15	18.5 - 30	18.5 - 30	37 - 55	37 - 55	75 - 110	75 - 90	132 - 160
Amps	3.7 - 12.5	3.4 - 12	18 - 31	16 - 31	48 - 62	38 - 61	75 - 105	72 - 105	140 - 205	140 - 205	261 - 310	261 - 310

Output Ratings

Output voltage	0 to Vin/Uin line voltage in					
Continuous output current	Ambient temperature max. 104°F (40°C)					
IL overload	1.1 x IL (1 min./10 min.)					
Overload current	110% (1 min./10 min.)					
Initial output current	150% for two seconds					
Output frequency	0 to 320 Hz					
Frequency resolution	0.01 Hz					

Input Ratings

Input voltage (V _{in})	200-240 Vac, 380-480 Vac, -10%/+10%
Input frequency (^f in)	50/60 Hz (variation up to 47–66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	100 kAIC

Protections

Overcurrent protection	Yes						
Overvoltage protection	Yes						
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)						
Undervoltage protection	Yes						
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)						
Input phase supervision	Yes (trips if any of the input phases are missing)						
Motor phase supervision	Yes (trips if any of the output phases are missing)						
Overtemperature protection	Yes						
Motor overload protection	Yes						
Motor stall protection	Yes						
Motor underload protection	Yes						
Short circuit protection	Yes						
Surge protection	Yes (varistor input)						
Conformed coated(varnished) boards	Yes (prevents corrosion)						

Ambient Conditions

Operating Temperature	14 degree's F (-10° C), no frost to 104 degree's F (40° C). (Drive can operate at 122° F (50° C), See Catalog for derating)					
Storage Temperature	-40 degree's F (-40° C) to 158° F (70° C)					
Relative Humidity	0 to 95%, noncondensing, non-corrosive, no dripping water					
Altitude	100% load capacity up to 3280ft (1000m) 1% derating for each 328ft (100m) above 3280ft (1000m); max. 9842ft (3000m); 380 - 480V					

Eaton Corporation Electrical Sector 1111 Superior Ave. Cleveland, OH 44114 United States 877-ETN-CARE (877-386-2273) Eaton.com

© 2012 Eaton Corporation All Rights Reserved Printed in USA Publication No. PA04000001E January, 2012

ECM 7: Variable Frequency Drives

ECM Overview

Ameresco proposes to install (2) variable frequency drives for the two rooftop units (RTU-1 and RTU-2) located at the Goodnow Library. The VFDs will be integrated to the new EMS system. The installation of VFDs and controls on these RTUs will allow them to modulate with varying load more efficiently than the existing inlet guide vane method of control, which will reduce electrical energy and to improve system efficiency.

ECM Detail

Existing System

Figure 7.1: Existing belt driven fan with inlet guide vanes inside RTU-1.

The Goodnow Library is provided with heating hot water by a Smith gas-fired boiler that distributes hot water supply to RTU-1 and RTU-2, in addition to VAV boxes and baseboard radiators. The two Trane Model YCD rooftop units provide heating, cooling, and ventilation to the entire library through an overhead variable air volume (VAV) distribution system. RTU-1 is equipped with a 15 HP supply fan that supplies 10,600 CFM of conditioned air, and RTU-2 is equipped with a 15 HP supply fan that supplies 14,150 CFM of conditioned air. Air is distributed to each zone through 31 VAV boxes equipped with air dampers that modulate the amount of conditioned air supplied to each space based on the demand for heating or cooling. As the VAV boxes close and increase the system pressure, the inlet guide vanes in the rooftop units close as well to maintain the pressure setpoint. This modulates the amount of air flow into the system while maintaining the fan at a constant speed.

Building	Unit	Service	Motor Horse Power
Public Library	RTU-1	1 st Level	15
Public Library	RTU-2	2 nd Level	15

Proposed System

Ameresco proposes to install (2) variable frequency drives on the supply fans in RTU-1 and RTU-2. The new VFD's will be integrated in the proposed EMS as described in ECM 3. The existing inlet guide vanes will be disconnected from the existing control system and will be locked in the wide open position. The existing system pressure sensor signals will be connected to the new VFDs. The EMS system will capture the distribution system pressure of the rooftop units. The RTU controllers will output to the VFDs for min/max control based on the system pressure setpoint. The existing 15 HP standard motors will be replaced with new inverter duty rated motors to protect against voltage spikes.

Final Investment Grade Audit

ECM 7

In addition, VFD's will also provide the motors with soft-start capability, which will help to decrease spikes in power draw and decrease mechanical stress to equipment. All VFD's specified will come with bypass to enable operators to keep the fans operational if any maintenance on the VFD is required.

Electric energy savings will be realized because of the reduced power consumption of the motors controlled by the VFDs. The savings analyses are based on a calculated speed reduction estimated for each motor.

Work for this measure excludes any repair work to the identified air handling equipment.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new VFD's will provide improved fan control and significantly reduce electrical energy. VFD's will also enable soft start capability, which will reduce power draw spikes and decrease mechanical damage to equipment.

Page 2

Appendix for ECM 7: Variable Frequency Drives

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

Town of Sudbury, Massachusetts May 6, 2014

MAPC - Sudbury		
Energy and Demand Savings Summary		
Measure ID:	7	
Measure Name:	Variable Frequency Drives	
Measure Location:		
Engineers:		

Site Name:		Library	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh	7,595	7,595
Energy Off-Peak	kWh	7,969	7,969
Energy Total	kWh	15,564	15,564
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	kW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			
Natural Gas (NG)	Therms		0
Liquid Propane Gas (LPG)	Gallons		0
Steam	Mlbs		0
Fuel Oil, #2	Gallons		0
Fuel Oil, #4	Gallons		0
Fuel Oil, #6	Gallons		0
Miscellaneous	Misc		0
Water			
Water Savings	kGallons		0
Sewer			
Sewer Savings	kGallons		0

MAPC - Sudbury Public Library Variable Frequency Drives

TMY-2 Wea	ther Data fo	r Worcester,	, MA					Proposed EMS Schedule and Loads E						Existing Fan Usage Propose			ed Fan Usage		Savings			
														Occ	UnOcc							
													UnOcc.	Cooling/Hea	Cooling/Hea	Peak	Off-Peak	Proposed	Occ	UnOcc		HVAC Fan
			M.C.									Occ. Cool/	Cool/ Heat	ting Energy	ting Energy	Cool/Heat	Cool/Heat	VFD Load	Cool/Heat	Cool/Heat	HVAC Fan	Savings
Amb. Temp	Ave Temp	M.C.W.B	Enthalpy				Total Bin	Occ On-	UnOcc On-	Occ Off-	UnOcc Off-	Heat Load	Load	Consump.	Consump.	Fan Usage	Fan Usage	Percentage	Fan Usage	Fan Usage	Savings	(Off-Peak
Bin deg. F	deg. F	deg. F	Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Hours	Peak Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(kWh)	(kWh)	(%)	(kWh)	(kWh)	(Peak kWh)	kWh)
Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W
Cooling											1											
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	1,160	705	0	0	0	0	100%	0	0	0	0
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	1,044	634	0	0	0	0	100%	0	0	0	0
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	0	928	564	0	0	4	4	100%	4	4	(0)	(0)
90 to 95	92.5	69.8	34.2	0	8	0	8	2	0	2	4	812	493	1	1	31	32	100%	31	33	(1)	(1)
85 to 90	87.5	70.3	34.6	1	37	6	44	13	0	11	20	696	423	6	3	152	159	90%	136	143	15	16
80 to 85	82.5	68.4	33.0	8	138	29	175	50	0	44	81	580	352	19	10	537	563	80%	419	439	118	123
75 to 80	77.5	66.2	31.2	27	202	83	312	89	0	79	144	464	282	27	14	837	878	70%	557	584	280	294
70 to 75	72.5	64.3	29.7	64	269	160	493	141	0	125	227	348	211	32	16	1,134	1,189	60%	627	657	507	532
65 to 70	67.5	61.2	27.5	185	208	243	636	182	0	161	293	232	141	27	14	1,219	1,279	50%	541	568	677	711
60 to 65	62.5	57.3	24.8	315	249	298	862	246	0	218	398	116	70	18	10	1,321	1,386	40%	449	471	872	915
Heating																						
55 to 60	57.5	52.7	0.0	303	245	276	824	235	0	209	380	(134)	(3)	0	12	1,263	1,325	40%	429	450	834	875
50 to 55	52.5	47.8	0.0	262	184	228	674	192	0	171	311	(187)	(36)	12	20	1,205	1,265	47%	493	517	713	748
45 to 50	47.5	42.5	0.0	204	230	211	645	184	0	163	298	(240)	(69)	31	36	1,318	1,383	53%	633	664	686	719
40 to 45	42.5	38.3	0.0	210	191	234	635	181	0	161	293	(294)	(102)	49	51	1,460	1,532	60%	807	847	653	685
35 to 40	37.5	33.8	0.0	321	301	286	908	259	0	230	419	(347)	(135)	96	97	2,320	2,434	67%	1,455	1,527	865	907
30 to 35	32.5	28.7	0.0	356	221	313	890	254	0	225	411	(401)	(168)	120	118	2,501	2,624	73%	1,759	1,846	742	779
25 to 30	27.5	23.5	0.0	228	211	211	650	186	0	165	300	(454)	(202)	106	103	1,993	2,091	80%	1,556	1,632	437	459
20 to 25	22.5	19.1	0.0	104	94	124	322	92	0	82	149	(508)	(235)	62	60	1,069	1,122	87%	919	964	150	158
15 to 20	17.5	14.3	0.0	144	78	117	339	97	0	86	156	(561)	(268)	75	72	1,213	1,272	93%	1,139	1,195	74	77
10 to 15	12.5	9.3	0.0	118	40	85	243	69	0	62	112	(614)	(301)	61	58	931	977	100%	950	997	(19)	(20)
5 to 10	7.5	5.0	0.0	52	10	15	77	22	0	20	36	(668)	(334)	22	20	295	310	100%	301	316	(6)	(6)
0 to 5	2.5	2.2	0.0	18	3	1	22	6	0	6	10	(721)	(367)	7	6	84	88	100%	86	90	(2)	(2)
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	(775)	(400)	0	0	0	0	100%	0	0	0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	(828)	(433)	0	0	0	0	100%	0	0	0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	(882)	(466)	0	0	0	0	100%	0	0	0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	(935)	(499)	0	0	0	0	100%	0	0	0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	(988)	(532)	0	0	0	0	100%	0	0	0	0
				2,920	2,920	2,920	8,760	2,500	0	2,219	4,041			769	720	20,886	21,914		13,291	13,945	7,595	7,969

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Proposed Operating hours
М	Proposed Occupied Cooling and Heating Loads from EMS
Ν	Proposed Unoccupied Cooling and Heating Loads from EMS
0	Proposed Occupied Cooling and Heating Usage from EMS
Р	Proposed Unoccupied Cooling and Heating Usage from EMS
Q	$= ([col I] + [col J] x P47) x P44 x [col S]^P45$
R	= ([col K] + [col L] x P47) x P44 x [col S] ^ P45
S	Estimated VFD Loading based on 100% at design day load and 40% at minimum
Т	= ([col I] + [col J] x P47) x P44 x [col S] ^ P46 ÷ 0.98
U	= ([col K] + [col L] x P47) x P44 x [col S] ^ P46 ÷ 0.98
V	$= ([\operatorname{col} Q] - [\operatorname{col} T])$
W	= ([col R] - [col U])

	 . =					.,	.,
						2469.17882	2,591
						5125.8712	5,378
Assumptions:	Value	Unit	CELL	Description			
			REF				
Occupied Area	32,800	SF	P43				
Fan Power	13.4	kW	P44	2 RTUs with	15 HP Fan N	lotors	
Exisiting VAV Factor	1.0		P45	IGV			
Proposed VAV Factor	2.2		P46	VFD with sta	tic pressure o	control	
UnOcc. Fan Cycling	10.0%		P47	% Operating	Hours Durin	g UnOcc.	

Appendix for ECM 7: Variable Frequency Drives

II. Manufacturer Specification Sheets

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 7

This page intentionally left blank.

Town of Sudbury, Massachusetts May 6, 2014

The H-Max Series adjustable frequency drive is specifically designed to meet the needs of the HVAC industry by offering leading HVAC software and hardware features. With an industry leading energy efficiency algorithm, high short circuit current rating and robust design, it offers customers increased efficiency, safety and reliability.

Product Range

- 0.75 125HP 230V AC
- 1.5 250HP 480V AC
- NEMA 1/IP21 or NEMA 12/IP54 Packaging

Benefits

- Industry leading
 energy efficient solution
- Easy menu navigation
- Multi-monitoring capability
- Corrosion resistant
 circuit boards
- · Extended shelf life
- Meets EMC Class C2 requirements
- Ideal feature set for HVAC

Features

- Active Energy control algorithm
- Graphic display and keypad
- On board communications (RS485: ModBus, BacNet, N2 Ethernet: ModBus TCP, BacNet IP)
- OnBoard I/O (6DI, 3RO, 2AI, 1AO)
- Conformal coated circuit boards
- Real-time clock with battery backup
- 5% DC link choke
- Thin metal film bus capacitors

Product	FS	54	F	S5	F	S6	FS	S 7	FS	58	FS	S 9
Voltage	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac	230 Vac	480 Vac
hp	0.75 - 4	1.5 - 7.5	5 - 10	10 - 20	15 - 20	25 - 40	25 - 30	50 - 75	50 - 75	100 -150	100 - 120	200 - 250
kW	0.55 - 3.0	1.1 - 5.5	4 - 7.5	7.5 - 15	11 - 15	18.5 - 30	18.5 - 30	37 - 55	37 - 55	75 - 110	75 - 90	132 - 160
Amps	3.7 - 12.5	3.4 - 12	18 - 31	16 - 31	48 - 62	38 - 61	75 - 105	72 - 105	140 - 205	140 - 205	261 - 310	261 - 310

Output Ratings

Output voltage	0 to Vin/Uin line voltage in
Continuous output current	Ambient temperature max. 104°F (40°C)
IL overload	1.1 x IL (1 min./10 min.)
Overload current	110% (1 min./10 min.)
Initial output current	150% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz

Input Ratings

Input voltage (V _{in})	200-240 Vac, 380-480 Vac, -10%/+10%
Input frequency (^f in)	50/60 Hz (variation up to 47–66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	100 kAIC

Protections

Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated(varnished) boards	Yes (prevents corrosion)

Ambient Conditions

Operating Temperature	14 degree's F (-10° C), no frost to 104 degree's F (40° C). (Drive can operate at 122° F (50° C), See Catalog for derating)
Storage Temperature	-40 degree's F (-40° C) to 158° F (70° C)
Relative Humidity	0 to 95%, noncondensing, non-corrosive, no dripping water
Altitude	100% load capacity up to 3280ft (1000m) 1% derating for each 328ft (100m) above 3280ft (1000m); max. 9842ft (3000m); 380 - 480V

Eaton Corporation Electrical Sector 1111 Superior Ave. Cleveland, OH 44114 United States 877-ETN-CARE (877-386-2273) Eaton.com

© 2012 Eaton Corporation All Rights Reserved Printed in USA Publication No. PA04000001E January, 2012

H-Max Series Drives

H-Max Series Drives

2

Product Overview

H-Max Family Introduction

Eaton's H-Max™ Series VFD is the next generation of drives specifically engineered for HVAC pump and fluid control applications. The H-Max family of products boasts industry leading energy efficiency algorithms for your applications. Not only are the drives ultra-efficientthey contain software that minimizes motor winding energy loses in your applications. Designed for easy installation, simple startup, and long life; the H-Max Series drive family provides exceptional value to our customers,

Product Range

Open Style Drives:

• 0.75–125 hp at 230 Vac

• 1.5–250 hp at 480 Vac

Note: Available in NEMA 1 or NEMA 12 designs.

IntelliPass/IntelliDisconnect Drives:

- 1–30 hp at 208 Vac
- 1-30 hp at 230 Vac
- 1–75 hp at 480 Vac

Note: Available in NEMA 1, NEMA 12, or NEMA 3R enclosures.

Contents

Description	Page
H-Max Series Drives	
H-Max Drives	V6-T2-139
H-Max IntelliPass and IntelliDisconnect Drives	V6-T2-149

Application Description

The H-Max Series drive was designed specifically for HVAC pump and fluid control applications. It is intended to be used on variable torque loads with the intent of moving air or liquids. With this in mind, the H-Max drive has onboard I/O pre-programmed to meet the common needs for these applications. The H-Max drive supports items such as standard speed control, PID functionality, as well as multi-motor applications. The drive easily supports interlock, second motor parameter set, as well as fire mode functionality.

Key Feature

Active Energy Control Algorithm

Eaton's H-Max Series drives have been designed to provide industry leading energy saving solutions. Not only is the drive ultra-efficient, the drive seeks the most efficient operating point of the motor, minimizing energy loss in the windings per the given load requirements. This is an Eaton protected control algorithm exclusive to H-Max drives.

2

H-Max Drives

H-Max Drives

Product Description

Eaton's H-Max Series VFD has software and hardware designed specifically for the HVAC, pump industry. The ultra-efficient DC capacitor and power structure allows the drive to consume less energy, lowering greenhouse gases.

The I/O configuration is designed with wiring ergonomics in mind by including removable terminal blocks. The main, easily removable, control board used for all drive frames with six digital IN, two analog IN, one analog OUT, three relay OUT accepts two additional I/O or communication board. In addition, the control board has built-in RS-485 and Ethernet communication.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

In addition to the Active Energy Control Algorithm to maximize motor efficiency, the drive boasts an ultraefficient DC capacitor and power structure to allow less energy consumption, lowering greenhouse gases.

Features and Benefits Hardware

- Thin metal capacitor design—ultra-efficient drive operation and extended self life (up to five years without reforming)
- Integrated 5% DC link choke with Input surge protection—protects against voltage spikes and provides a clean wave form to the motor
- EMI/RFI filters standard on all drives—meets EMC Category 2 for commercial applications
- Real-time clock—supports calendaring and PLC functionality
- Graphic LCD display and keypad—supports simple menu navigation as well as on-screen diagnostics and troubleshooting
- HAND-OFF-AUTO and drive-bypass selector on keypad—simplifies control
- Standard I/O: 6DI, 2AI, 1AO, 2 Form C RO (NO/ NC), 1 Form A RO (NO) supports requirements for most installations

- Onboard RS 485: Modbus, N2, BACnet—meets needs of most communication requirements
- Onboard Ethernet: BACnet/ IP, Modbus/TCP—meets needs of most communication requirements
- Two expansion slots intended to support additional I/O or communication protocols as necessary
- Quick disconnect terminals for I/O connections supports fast easy installation

Software

- Active energy control minimizes energy losses in your motor resulting in industry leading energy efficiency for your application
- Quick Start Wizard upon initial power up—supports fast easy installation
- Copy/paste functionality on drive keypad—allows for fast setup of multiple drives
- Pre-programmed I/O supports fast easy installation for most applications

Contents

Description	Page
H-Max Drives	
Catalog Number Selection	V6-T2-140
Product Selection	V6-T2-141
Accessories	V6-T2-144
Replacement Parts	V6-T2-145
Technical Data and Specifications	V6-T2-146
Wiring Diagram	V6-T2-147
Dimensions	V6-T2-148
H-Max IntelliPass and IntelliDisconnect Drives	V6-T2-149

Standards and Certifications

Product

- IEC 61800-5-1
- CE

• cUL

Safety

- UL 508C
- EN 61800-5-1
- CE
- cUL

• C-Tick Mark

Catalog Number Selection

H-Max Series Drives 3D4 <u>HMX</u> Product **Braking/Application** HMX = HVAC drive N = No brake chopper (low overload) Phase Enclosure 3 = Three-phase 1 = Open NEMA Type 1 IP21 2 = Open NEMA Type 12 IP54 Voltage **2** = 200–240V **Input Options Frame and** 4 = 380-480V **Voltage Specific 2** = EMC C2 **Software Series** A-Z Keypad **G** = Graphical panel Amperes 200-240 Volts 380-480 Volts 3D7 = 3.7A-0.75 hp, 0.55 kW 062 = 62A-20 hp, 15 kW 3D4 = 3.4A-1.5 hp, 1.1 kW 046 = 46A-30 hp, 22 kW 4D8 = 4.8A-1 hp, 0.75 kW 075 = 75A–25 hp, 18.5 kW 4D8 = 4.8–2 hp, 1.5 kW 061 = 61A-40 hp, 30 kW 6D6 = 6.6A-1.5 hp, 1.1 kW 088 = 88A-30 hp, 22 kW 5D6 = 5.6A-3 hp, 2.2 kW 072 = 72A-50 hp, 37 kW 8D0 = 8A-2 hp, 1.5 kW 105 = 105A-40 hp, 30 kW **8D0** = 8A–4 hp, 3 kW 087 = 87A-60 hp, 45 kW 011 = 11A-3 hp, 2.2 kW 140 = 140A-50 hp, 37 kW **9D6** = 9.6A–5 hp, 4 kW 105 = 105A-75 hp, 55 kW 012 = 12A-4 hp, 3 kW 170 = 170A-60 hp, 45 kW 012 = 12A-7.5 hp, 5.5 kW 140 = 140A-100 hp, 75 kW 018 = 18A-5 hp, 4 kW 205 = 205A-75 hp, 55 kW 016 = 16A-10 hp, 7.5 kW 170 = 170A-125 hp, 90 kW 024 = 24A-7.5 hp, 5.5 kW 261 = 261A-100 hp, 75 kW **023** = 23A–15 hp, 11 kW 205 = 205A-150 hp, 110 kW 031 = 31A-10 hp, 7.5 kW 310 = 310A-125 hp, 90 kW 031 = 31A-20 hp, 15 kW 261 = 261A-200 hp, 132 kW 048 = 48A-15 hp, 11 kW 038 = 38A-25 hp, 18.5 kW **310** = 310A–250 hp, 160 kW

Notes

All boards are varnished (conformed coated). Corrosion resistant.

Battery included in all drives for real-time clock.

Keypad kit includes HOA bypass.

Keypad kit includes HOA, back reset for Europe application.

EMI/RFI filters included.

DC link choke included.

2

H-Max Series Drives

Product Selection

H-Max Series Drives—230 Vac

NEMA Type 1/IP21

NEMA Type 1

Drive Output Current Assigned Motor Ratings FS Frame Low Overload Full Drive kW 230 Vac Low Overload Full Catalog Size Load Amps at 40°C Horsepower 230 Vac/50 Hz NEC Amps ① Load Amps at 50°C Number 4 3.7 0.75 0.55 3.2 2.6 HMX32AG3D721-N HMX32AG4D821-N 4.8 1 0.75 4.2 3.7 6.6 1.5 1.1 6.6 4.8 HMX32AG6D621-N HMX32AG8D021-N 8 2 1.5 6.8 6.6 11 3 2.2 9.6 8 HMX32AG01121-N 12.5 HMX32AG01221-N 4 3 N/A 11 5 18 5 4 15.2 12.5 HMX32AG01821-N 24 22 HMX32AG02421-N 7.5 5.5 18 HMX32AG03121-N 31 7.5 24 10 28 6 HMX32AG04821-N 48 15 11 42 31 62 20 15 54 48 HMX32AG06221-N 7 75 25 18.5 68 62 HMX32AG07521-N 88 80 HMX32AG08821-N 22 75 30 105 40 30 104 88 HMX32AG10521-N 8 140 50 37 130 105 HMX32AG14021-N 170 60 45 154 140 HMX32AG17021-N 205 75 55 192 170 HMX32AG20521-N 9 261 100 75 248 205 HMX32AG26121-N 310 HMX32AG31021-N 125 90 N/A 261

NEMA Type 12

NEMA Type 12/IP54

FS Frame Size	Drive Output Current Low Overload Full Load Amps at 40°C	Horsepower	Assigned Motor Ratings Drive kW 230 Vac/50 Hz	230 Vac NEC Amps ①	Low Overload Full Load Amps at 50°C	Catalog Number
4	3.7	0.75	0.55	3.2	2.6	HMX32AG3D722-N
	4.8	1	0.75	4.2	3.7	HMX32AG4D822-N
	6.6	1.5	1.1	6.6	4.8	HMX32AG6D622-N
	8	2	1.5	6.8	6.6	HMX32AG8D022-N
	11	3	2.2	9.6	8	HMX32AG01122-N
	12.5	4	3	N/A	11	HMX32AG01222-N
5	18	5	4	15.2	12	HMX32AG01822-N
	24	7.5	5.5	22	18	HMX32AG02422-N
	31	10	7.5	28	24	HMX32AG03122-N
6	48	15	11	42	31	HMX32AG04822-N
	62	20	15	54	48	HMX32AG06222-N
,	75	25	18.5	68	62	HMX32AG07522-N
	88	30	22	80	75	HMX32AG08822-N
	105	40	30	104	88	HMX32AG10522-N
	140	50	37	130	105	HMX32AG14022-N
	170	60	45	154	140	HMX32AG17022-N
	205	75	55	192	170	HMX32AG20522-N
)	261	100	75	248	205	HMX32AG26122-N
	310	125	90	N/A	261	HMX32AG31022-N

Note

① For sizing reference.

H-Max Series Drives

NEMA Type 1/IP21

NEMA Type 12/IP54

H-Max Series Drives—480 Vac

FS Frame Size	Drive Output Current Low Overload Full Load Amps at 40°C	Horsepower	Assigned Motor Ratings Drive kW 400 Vac/50 Hz	480 Vac NEC Amps ①	Low Overload Full Load Amps at 50°C	Catalog Number
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D421-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D821-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D621-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D021-N
	9.6	5	4	7.6	8	HMX34AG9D621-N
	12	7.5	5.5	11	9.6	HMX34AG01221-N
5	16	10	7.5	14	12	HMX34AG01621-N
	23	15	11	21	16	HMX34AG02321-N
	31	20	15	27	23	HMX34AG03121-N
6	38	25	18.5	34	31	HMX34AG03821-N
	46	30	22	40	38	HMX34AG04621-N
	61	40	30	52	46	HMX34AG06121-N
7	72	50	37	65	61	HMX34AG07221-N
	87	60	45	77	72	HMX34AG08721-N
	105	75	55	96	87	HMX34AG10521-N
8	140	100	75	124	105	HMX34AG14021-N
	170	125	90	156	140	HMX34AG17021-N
	205	150	110	180	170	HMX34AG20521-N
9	261	200	132	240	205	HMX34AG26121-N
	310	250	160	302	261	HMX34AG31021-N

NEMA Type 12

Frame Size	Low Overload Full Load Amps at 40°C	Horsepower	Drive kW 400 Vac/50
4	3.4	1.5	1.1
	4.8	2	1.5
	5.6	3	2.2
	8.0	4	3.0
	9.6	5	4
	12	7.5	5.5

FS Frame Size	Drive Output Current Low Overload Full Load Amps at 40°C	Horsepower	Assigned Motor Ratings Drive kW 400 Vac/50 Hz	480 Vac NEC Amps 1)	Low Overload Full Load Amps at 50°C	Catalog Number
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D422-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D822-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D622-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D022-N
	9.6	5	4	7.6	8	HMX34AG9D622-N
	12	7.5	5.5	11	9.6	HMX34AG01222-N
5	16	10	7.5	14	12	HMX34AG01622-N
	23	15	11	21	16	HMX34AG02322-N
	31	20	15	27	23	HMX34AG03122-N
6	38	25	18.5	34	31	HMX34AG03822-N
	46	30	22	40	38	HMX34AG04622-N
	61	40	30	52	46	HMX34AG06122-N
7	72	50	37	65	61	HMX34AG07222-N
	87	60	45	77	72	HMX34AG08722-N
	105	75	55	96	87	HMX34AG10522-N
8	140	100	75	124	105	HMX34AG14022-N
	170	125	90	156	140	HMX34AG17022-N
	205	150	110	180	170	HMX34AG20522-N
9	261	200	132	240	205	HMX34AG26122-N
	310	250	160	302	261	HMX34AG31022-N

Note

^① For sizing reference.

Onboard Network Communications

Johnson Controls Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys™ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.

Modbus TCP

Ethernet based protocol.

H-Max Series Option Board Kits Available for Slot B

The factory issued relay option board can be replaced with the following option boards to customize the drive for your application needs.

The standard board provides 2 Form C RO (NO/NC) and 1 Form A RO (NO).

Modbus RTU

stop bit is 1.

H-Max Series provides

communication to Modbus

RTU RS-485 as a slave on a

communication parameters

None, Odd or Even; and the

Modbus network. Other

include an address range

from 1-247; a parity of

Option Boards Mounted in Slot B

Option Kit Description	Option Kit Catalog Number
I/O expander card, 2 RO and thermistor input	Relay Board 2

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of two option boards.

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board.

Ontion Vit

Option Boards Mounted in Slots D and E

XMX-IO-B1-A
XMX-10-B2-A
XMX-IO-B4-A
XMX-IO-B5-A
XMX-10-B9-A
XMX-IO-BF-A
XMX-COM-C4-A

NEMA Type 1 to NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 option kit is used to convert a NEMA Type 1 to a NEMA Type 12 drive. Kit consists of a drive cover, fan kit and plugs.

NEMA Type 12/IP54 Cover

Option Kit Description	Option Kit Catalog Number
FS4-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS4-N12KIT
FS5-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS5-N12KIT
FS6-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS6-N12KIT

Accessories

Flange Kits

2

The flange kit is used when the power section heat sink is mounted through the back panel of an enclosure.

Flange Kit NEMA Type 1/IP21

Includes flange, mounting brackets, and screws.

Flange Kit NEMA Type 12/IP54

Includes flange, mounting components, air shroud brackets, NEMA Type 12 fan screws and plugs.

Frames FS4–FS9 12

Catalog
Number

Number
FS4-Flange-N12KIT
FS5-Flange-N12KIT
FS6-Flange-N12KIT
FS7-Flange-N12KIT

Keypad Accessories

Remote Mounting Keypad Kit

Frames FS4–FS9

Description	Catalog Number
Remote mounting keypad kit—bezel and cable	OPTRMT-BP-HMAX

Drive Demo

H-Max Series Drive Demo

Demos and Power Supply

Description	Catalog Number
H-Max Series drive demo	H-MAX-DEMO
H-Max Series bypass demo	H-MAX-BYPASS-DEMO
Hand-held 24V auxiliary power supply—used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	9000XAUX24V

Notes

^① For installation of a NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

⁽²⁾ Frame size 8 and 9 must be ordered from the factory as a flange mount unit.

H-Max Series Drives

Replacement Parts

Control Board/Keypad

Description	Current Catalog Number
H-Max Series graphic bypass, HOA	KeypadbypassHOA
H-Max Series graphic back, HOA	KeypadbackHOA

PC Cable

Description	Catalog Number
Remote download USB to RJ-45 cable with software driver disk	REM-USB-Down

Replacement Relay Board in Slot B

Description	Catalog Number
Replacement relay board qty 2 Form C relay, qty 1 Form A relay	Relay board 1

Main Fan

Description	Catalog Number
FS4 main fan	FS4-Main Fan
FS5 main fan	FS5-Main Fan
FS6 main fan	FS6-Main Fan
FS7 main fan	FS7-Main Fan

Internal Fan

Description	Catalog Number
FS4 internal fan (IP54/NEMA 12)	FS4-Internal Fan
FS5 internal fan (IP54/NEMA 12)	FS5-Internal Fan
FS6 internal fan (IP54/NEMA 12)	FS6-Internal Fan
FS7 internal fan (IP54/NEMA 12)	FS7-Internal Fan

Technical Data and Specifications

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage (V _{in})	200–240 Vac, 380–480 Vac, -10%/+10%
Input frequency (f _{in})	50/60 Hz (variation up to 47–66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to V_{in}/U_{in} line voltage in
Continuous output current	Ambient temperature max. 104°F (40°C)
I _L overload	1.1 x I _L (1 min./10 min.)
Overload current	110% (1 min./10 min.)
Initial output current	150% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristic	CS
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	1–310 amps FS4–9: default 6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy ±1% Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: 30% x T _n
Ambient Conditions	
Ambient operating temperature	FS4–FS9: 14°F (–10°C), no frost to 104°F (40°C) (Drive can operate at 122°F (50°C), see Pages V6-T2-141 and V6-T2-142)
Storage temperature	-40° to 158°F (-40° to 70°C)
Relative humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft (1000m); 1% derating for each 328 ft (100m) above 3280 ft (1000m); max. 9842 ft (3000m); 380–480V
Vibration	FS4–FS9: EN 61800-5-1, EN 60068-2-6; 5 to 150 Hz, displacement amplitude 1 mm (peak) at 5 to 15.8 Hz, max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 61800-5-1, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent— +EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.

Description	Specification
Control Connections	
Analog input voltage	0 to 10V, R = 200 kohms differential Resolution 0.1%; Accuracy ±1% Dip switch selection (voltage/current)
Analog input current	0(4) to 20 mA; R_i –250 ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	+24V ±10%, max. 250 mA
Output reference voltage	+10V +3%, max. load 10 mA
Analog output	0–10V, 0(4) to 20 mA; R _L max. 500 ohms; Resolution 10 bit; Accuracy ±2% Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: 24 Vdc/8A, 250 Vac/8A, 125 Vdc/0.4A
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	RS485 = off A01 = current A12 = current A11 = voltage
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated	Yes (prevents corrosion)

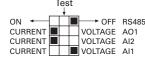
Wiring Diagram

Control Input/Output, PID Application

BACnet/IP Ethernet Industrial Protocol Modbus/TCP Transmission Control Protocol (Ethernet Based) RJ-45 R+ DB Ontional Chopper Resistor R-Optional 5% DC Link Reactor L1 U (T1) Three-Phase Input Circuit Three-Phase Input L2 V (T2) Motor Breaker Output (Single-Phase not available) L3 W (T3) Slot A Terminal Factory Default Signal Resistor 1 +10V **Reference Output** Analog Input Voltage (Range 0–10 Vdc) AI-1+ 2 (can be programmed to current 4-20 mA) 3 Vin Analog Output Common (Ground) Analog Input Current (Range 4-20 mA) (can be programmed to voltage 0-10 Vdc) 4 AI-2+ PI Setpoint or Feedback Analog Input Common Factory AI-2-5 PI Setpoint or Feedback Jumper Test 6 24Vout Control Voltage Output (0.1A max.) ON 🖣 7 GND I/O Ground CURRENT 8 DIN1 START/STOP (Contact closed = start) CURRENT 9 DIN2 External Fault (Closed = fault) Run Interlock Permissive IP Interlock 10 DIN3 (Closed = OK)сом 11 DIN1-DIN6 Common 12 24Vout Control Voltage Output (0.1A max.) 13 GND I/O Ground 14 DIN4 Speed Select 0-100% (Preset speed) 15 DIN5 Fire Mode (Contact closed = fire mode) 16 DIN6 Force Bypass (Contact closed = bypass) **Terminal Block Layout** 17 CMB **DIN1–DIN6** Common AO-1+ Output Frequency (0-20 mA) 18 R 19 AO-1-Analog Output Common (Ground) 21 22 23 24 25 26 30 24 Vdcin Auxiliary Input Voltage Analog RO1 RO1 RO1 RO2 RO2 RO2 Programmable BACnet, A DATA-RS-485 DATA-Modbus, FLN, N2 NC сом NO NC сом NO В RS-485 DATA+ DATA+ Slot B 21 Relay Board 1 12 13 14 15 16 17 18 19 Default Signal 22 COM DI1-6 24 Vdc GND DI4 DI5 DI6 A01+ A01 **RO1 Bypass Run** out 23 24 Vdc/8A 1 2 3 4 5 6 7 8 24 Δ 250 Vac/8A Slot +10 Al1+ Al1-Al2+ Al2-24 Vdd GND DI1 125 Vdc/0.4A 25 **RO2 Drive Run** Vdc out 26 32 **RO3** Fault Factory Jumper 33 External Interlock

Standards

- Digital inputs D1–D6, relay out, analog in/out are freely programmed
- The user can assign a single input to multiple functions


Includes

- Six digital input
- Two analog input
- One analog output •
- Three relay output
- RS-485 •
- Ethernet (BACnet and . Modbus)

Reliability

- Pretested components
- Conformal coated (varnished) boards
- 40°C rated
- 110% overload for one . minute
- Eaton Electrical Services & . Systems national network of AF drive specialists

2

32 33

RO3 RO3

сом NO

30 A В

24 Vdc

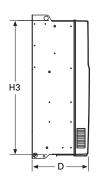
in

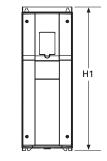
9 10 11

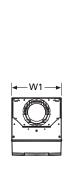
DI2 DI3 COM

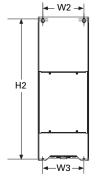
RS-485 RS-485

Data+ DataSlot

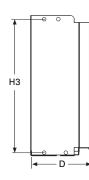

m

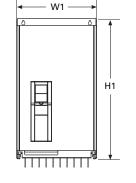

Dimensions

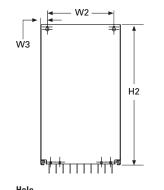

2.5


Approximate Dimensions in Inches (mm)

H-Max Series Frames FS4–FS7







Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)				
FS4															
230 Vac	0.75–4	0.55–3.0	3.7-12.5	7.77	12.89	12.32	11.22	5.04	3.94	3.94	13.2				
480 Vac	1.5–7.5	1.1–5.5	3.4–12	(197.3)	(327.5)	(327.5) (313.0)	(285.0)	(128.0)	(100.0)	(100.0)	(6)				
FS5															
230 Vac	5–10	4-7.5	18–31	8.73 (221.6)				15.04	5.67	4.53	3.94	22.0			
480 Vac	10-20	7.5–15	16–31			(221.6)	(221.6)	(221.6)	(221.6)	(221.6)	(419.0)	(406.0)	(382.0)	(144.0)	(115.0)
FS6															
230 Vac	15-20	11–15	48–62	9.29	21.93	21.28	20.24	7.68	5.83	5.83	44.1				
480 Vac	25-40	18.5–30	38–61	(236.0)	(557.0)	(540.5)	(514.0)	(195.0)	(148.0)	(148.0)	(20)				
FS7															
230 Vac	25–30	18.5–30	75–105	10.49	25.98	25.98 25.39	24.29	24.29 9.06	7.48	7.48	82.6				
480 Vac	50-75	37–55	72–105	(266.5)	(660.0)	(645.0)	(617.0)	(230.0)	(190.0)	(190.0)	(37.5)				

H-Max Series Frames FS8 and FS9

Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)		
FS8													
230 Vac	50-75	37–55	140-205	140-205	140-205	13.76	38.02	37.26	37.26	11.42	9.29	1.42	154.3
480 Vac	100-150	75–110		(349.6)	9.6) (965.7)	(946.4)	(946.4)	(290.1)	(236.0)	(36.0)	(70)		
FS9													
230 Vac	100-120	75–90	261-310	14.63	33.09	31.89	31.89	18.90	15.75	1.57	238.1		
480 Vac	200-250	132-160		(371.6)	(371.6) (890.4)	(810.0)	(810.0)	(480.0)	(400.0)	(40.0)	(108)		

Note: For flange dimension, please reference User Manual.

H-Max Series Drives

2

H-Max IntelliPass and IntelliDisconnect Drives

H-Max IntelliPass and IntelliDisconnect Drives

Product Description

The IntelliPass electronic bypass is a two or optional three contactor design using a 24 Vdc **XT** Series contactor with an optional manual override switch that allows the unit to run in bypass without the H-Max Series drive.

The IntelliPass software parameters utilize engineering units common to the HVAC industry. Onboard startup wizard guarantees flawless commissioning with plug-andplay screen entry. Available in NEMA/UL Type 1 and 12 with optional pre-engineered operator devices to meet all customized specification requirements.

The IntelliPass construction features allow for easy installation, reliable operation and serviceability with additional onboard wire space and removable conduit plates with knockouts.

Features and Benefits

Industry leading energy saving solution—uses the Eaton H-Max drive with Active Energy Control algorithm.

Built to be as tough as the application—Eaton's robust design boasts an industrial grade enclosure and industry proven components.

- PSG Industrial Power Supply
- **XT** Contactors
- 22 mm Pilot Devices

Contents

Page
V6-T2-139
V6-T2-150
V6-T2-151
V6-T2-155
V6-T2-156
V6-T2-158

Designed with Our Customers in Mind

- Removable top and bottom entry panels
- Door mounted graphic display and keypad
- Easily accessible connection terminals with removable I/O terminal connections

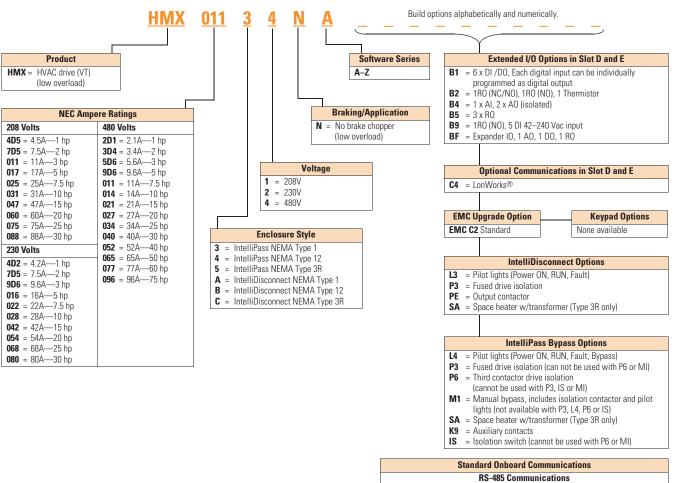
Engineered Product Solution

 The Eaton H-Max IntelliPass and IntelliDisconnect products are available with a variety of factory tested and certified options meeting or exceeding UL508C requirements

Standards and Certifications

- IEC 61800-5-1
- CEcUL

Safety


- UL 508CEN 61800-5-1
- EN 61800-5
- CE • cUL
 - $C \in (I)^{C}$
- Plenum Rated

H-Max Series Drives

H-Max Series IntelliPass and IntelliDisconnect Drives

Catalog Number Selection

2

BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485 Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes N2 = Johnson Controls Metasys N2 network

> Onboard Ethernet-Based Communications (port left side of keypad)

BACnet/IP Ethernet industrial protocol

Modbus/TCP Transmission control protocol (Ethernet-based)

Notes

IntelliPass-two contactor electronic bypass standard.

All boards are varnished. Corrosion resistant.

Battery included in all drives for real-time clock. Three year lifetime.

Keypad kit includes HOA bypass.

EMI/RFI filters included.

DC link choke included.

Product Selection

H-Max Series IntelliPass NEMA Type 1—Two Contactor Bypass Standard

208 Vac HMX_ FS

Ð

Frame Size	Horsepower	NEC Amps	Catalog Number
4	1	4.5	HMX4D531NA
	2	7.5	HMX7D531NA
	3	10.6	HMX01131NA
5	5	16.7	HMX01731NA
	7.5	24.2	HMX02531NA
	10	30.8	HMX03131NA
6	15	46.2	HMX04731NA
	20	59.4	HMX06031NA
7	25	74.9	HMX07531NA
	30	88	HMX08831NA

Drive Rated

230 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D232NA
	2	7.5	HMX7D532NA
	3	9.6	HMX9D632NA
5	5	15.2	HMX01632NA
	7.5	22	HMX02232NA
	10	28	HMX02832NA
6	15	42	HMX04232NA
	20	54	HMX05432NA
7	25	68	HMX06832NA
	30	80	HMX08032NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D134NA
	2	3.4	HMX3D434NA
	3	5.6	HMX5D634NA
	5	9.6	HMX9D634NA
	7.5	11	HMX01134NA
5	10	14	HMX01434NA
	15	21	HMX02134NA
	20	27	HMX02734NA
6	25	34	HMX03434NA
	30	40	HMX04034NA
	40	52	HMX05234NA
7	50	65	HMX06534NA
	60	77	HMX07734NA
	75	96	HMX09634NA

Notes

For Wiring Diagrams, see Page V6-T2-157.

For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150.

Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.

H-Max Series Drives

H-Max Series IntelliDisconnect NEMA Type 1—Main Disconnect Standard

2.5

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.5	HMX4D5A1NA
	2	7.5	HMX7D5A1NA
	3	11	HMX011A1NA
5	5	17	HMX017A1NA
	7.5	25	HMX025A1NA
	10	31	HMX031A1NA
6	15	47	HMX047A1NA
	20	60	HMX060A1NA
7	25	75	HMX075A1NA
	30	88	HMX088A1NA

230 Vac

208 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D2A2NA
	2	7.5	HMX7D5A2NA
	3	9.6	HMX9D6A2NA
5	5	15.2	HMX016A2NA
	7.5	22	HMX022A2NA
	10	28	HMX028A2NA
6	15	42	HMX042A2NA
	20	54	HMX054A2NA
7	25	68	HMX068A2NA
	30	80	HMX080A2NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D1A4NA
	2	3.4	HMX3D4A4NA
	3	5.6	HMX5D6A4NA
	5	9.6	HMX9D6A4NA
	7.5	11	HMX011A4NA
5	10	14	HMX014A4NA
	15	21	HMX021A4NA
	20	27	HMX027A4NA
6	25	34	HMX034A4NA
	30	40	HMX040A4NA
	40	52	HMX052A4NA
7	50	65	HMX065A4NA
	60	77	HMX077A4NA
	75	96	HMX096A4NA

Notes

For Wiring Diagrams, see Page V6-T2-157.

For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150.

Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.

Onboard Network Communications

Johnson Controls Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys™ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.

Modbus TCP

Ethernet based protocol.

Modbus RTU

H-Max Series provides communication to Modbus RTU RS-485 as a slave on a Modbus network. Other communication parameters include an address range from 1–247; a parity of None, Odd or Even; and the stop bit is 1.

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of two option boards.

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board.

Option Boards Mounted in Slots D and E

Option Kit Description	Option Kit Catalog Number
6 x DI /DO, each digital input can be individually programmed as digital output	XMX-IO-B1-A
1RO Form C (NO/NC), 1RO Form A (NO), 1 thermistor	XMX-IO-B2-A
1 x Al, 2 x AO (isolated)	XMX-IO-B4-A
3 x R0 Form A (N0)	XMX-10-B5-A
1RO Form A (NO), 5DI 42–240 Vac input	XMX-10-B9-A
LonWorks®	XMX-COM-C4-A
1 x A0, 1 x D0, 1 x R0	XMX-IO-BF-A

H-Max Series Drives

Extended I/O Options in Slot D and E

Description	Suffix Number
6 x DI /DO, Each digital input can be individually programmed as digital output	B1
1R0 (NC/NO), 1R0 (NO), 1 Thermistor	B2
1 x AI, 2 x AO (isolated)	B4
3 x R0	B5
1R0 (N0), 5 DI 42–240 Vac input	B9
Expander IO, 1 AO, 1 DO, 1 RO	BF

Optional Communications in Slot D and E

Description

LonWorks[®]

Suffix

C4

Number

EMC Upgrade Option

Keypad Options Suffix Description Number

EMC C2

Description	Suffix Number
None available	—

IntelliDisconnect Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L3
Fused drive isolation (cannot be used with PE)	P3
Output contactor (cannot be used with P3)	PE
Space heater w/transformer (Type 3R only)	SA

Standard

IntelliPass Bypass Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L4
Fused drive isolation (can not be used with P6)	P3
Third contactor drive isolation (cannot be used with P3 or IS)	P6
Manual bypass switch located on front door	M1
Space heater w/transformer (Type 3R only)	SA
Auxiliary contacts	К9
Isolation switch	IS

Standard Onboard Communications

Description	Suffix Number
RS-485 Communications	
BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485	BACnet
Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes	Modbus
Johnson Controls Metasys N2 network	N2
Onboard Ethernet-Based Communications (port left side of keypad)	
BACnet/IP Ethernet industrial protocol	BACnet
Modbus/TCP Transmission control protocol (Ethernet-based)	Modbus

H-Max Series Drives

IntelliPass

Optional

Standard

Standard

Standard

Description Isolation switch

Top entry (power)

Output contactor

Bottom entry (power)

2.5

IntelliDisconnect

N/A

Standard

Standard

Optional

Technical Data and Specifications

Primary Design Features

Description	IntelliPass	IntelliDisconnect
CB MMP	Standard	Standard
2 contactor bypass	Standard	N/A
Mechanical interlock	Standard	N/A
Electrical interlock	Standard	N/A
Third contactor (isolation)	Optional	N/A

Description	Specification
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent— +EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.
Control Connections	
Analog input voltage	0 to 10V, R = 200 kohms differential Resolution 0.1%; Accuracy ±1% Dip switch selection (voltage/current)
Analog input current	0(4) to 20 mA; R_i –250 ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	+24V ±10%, max. 250 mA
Output reference voltage	+10V +3%, max. load 10 mA
Analog output	0–10V, 0(4) to 20 mA; R _L max. 500 ohms; Resolution 10 bit; Accuracy ±2%; Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: 24 Vdc/8A, 250 Vac/8A, 125 Vdc/0.4A
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	RS485 = off A01 = current A12 = current A11 = voltage
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated (varnished) board	Yes (prevents corrosion)

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage (V _{in})	208, 230, 480 Vac, -10%/+10%
Input frequency (f _{in})	50/60 Hz (variation up to 47–66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	65 kAIC combination
Output Ratings	
Output voltage	0 to V _{in} /U _{in} line voltage in
Continuous output current	Ambient temperature max. 104°F (40°C)
I _L overload	1.1 x I _L (1 min./10 min.)
Overload current	110% (1 min./10 min.)
Initial output current	150% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristi	cs
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	1–310 amps; adjustable with parameter 2.6.9 FS4–FS7: default 6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy ±1% Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: 30% x T _n
Ambient Conditions	
Ambient operating temperature	FS4–FS7: 14°F (–10°C), no frost to 104°F (40°C) (Drive can operate at 122°F (50°C)
Storage temperature	-40° to 158°F (-40° to 70°C)
Relative humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft (1000m); 1% derating for each 328 ft (100m) above 3280 ft (1000m); max. 9842 ft (3000m); 380–480V
Vibration	FS4–FS7: IEC 60068-2-6, 10–150 Hz Displacement amplitude = 1 mm peak-to-peak from 10–15.8 Hz Max. acceleration amplitude = 1G peak from 15.8–150 Hz
Shock	FS4–FS7: IEC 60068-2-27, 15G peak acceleration at 11 ms duration, 1/2-sine. ISTA 1A Certified
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)

Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent— +EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.
Control Connections	
Analog input voltage	0 to 10V, R = 200 kohms differential Resolution 0.1%; Accuracy ±1% Dip switch selection (voltage/current)
Analog input current	0(4) to 20 mA; R_i –250 ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	+24V ±10%, max. 250 mA
Output reference voltage	+10V +3%, max. load 10 mA
Analog output	0–10V, 0(4) to 20 mA; R _L max. 500 ohms; Resolution 10 bit; Accuracy ±2%; Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: 24 Vdc/8A, 250 Vac/8A, 125 Vdc/0.4A
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	RS485 = off A01 = current A12 = current A11 = voltage
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated	Yes (prevents corrosion)

H-Max Series Drives

Wiring Diagrams

Control Input/Output, PID Application

								_	ı (i]								
		RJ-4	45 BACnet/I Modbus/	P Ethernet Industrial Proto TCP Transmission Control	ocol I Protocol (Etl		DB Chopper	R+	{	Optio Resist									
Optional	-1	L1		5	5% DC Link			R- U (T1)				<i></i>	~`						
Circuit Breaker		L2	Three-P Input	hase Input	Reactor	Thre	ee-Phase	V (T2)				Mot							
Breaker		L3	(Single-	Phase not avai	ilable)		Output	W (T3)				NIUL	/ 10						
			lot A																
			minal	Factory Defa	ult Sign	al													
	Resistor	1	+10V	Reference Ou		. (D	10)(-1-)												
	^	2	AI–1+	Analog Input (can be prog	ramme	d to curren	nt 4–20 m/	A)											
		3	Vin	Analog Outp Analog Input															
		4	AI–2+	(can be progr PI Setpoint o	ramme	d to voltag		c)											
Facto Jump		5	AI-2-	Analog Input PI Setpoint o											Test				
Jump		6	24Vout	Control Volta			nax.)							_		• •		2405	
		7	GND	I/O Ground										ENT 📕		VOLTA		D1	
		8	DIN1	START/STOP	o (Conta	ct closed =	= start)						CURR CURR			VOLTA(VOLTA(
		9	DIN2	External Faul															
		10	DIN3	Run Interlock		sive IP Int	erlock												
		11	COM	DIN1-DIN6 C	, Commoi	า													
		12	24Vout	Control Volta	ige Outp	out (0.1A n	nax.)												
		13	GND	I/O Ground															
 		14	DIN4	Speed Select	t 0–100 %	6 (Preset s	peed)												
		15	DIN5	Fire Mode (C	Contact	closed = fir	re mode)												
Ĺ_		16	DIN6	Force Bypass	s (Conta	ct closed =	= bypass)												
		17	CMB	DIN1-DIN6 C	Commoi	ı			Terminal Block Layout										
(<u>_</u>	18	AO-1+	Output Frequ	uency (C)–20 mA)													
(17	<)	19	A0-1-	Analog Outp	ut Com	mon (Groເ	und)						1						
Ana	alog	30	24 Vdcin	Auxiliary Inp	ut Volta	ge				21	22	23		24	25	26		32	;
	0	А	DATA-	RS-485 DATA		Programm		net,		RO1	RO1	RO1		RO2	RO2	RO2		RO3	F
		В	DATA+	RS-485 DATA	4+	Modbus, F	-LN, N2			NC	СОМ	NO	J	NC	СОМ	NO		COM	
		21		Relay Board ² Default Signa		Slot B				12	13	14	15	16	17	18	19	30	
		22		RO1 Bypass						24 Vdc out	GND	DI4	DI5	DI6	COM DI1-6	A01+	A01-	24 Vdc in	RS Di
		23																	
		24				24 Vdc/8A 250 Vac/8A				1	2	3	4	5	6	7	8	9	Ľ
		25		RO2 Drive Ru	un	125 Vdc/0.4	4A		Slot	+10 Vdc	Al1+	Al1–	Al2+	Al2-	24 Vdc out	GND	DI1	DI2	
		26																	
		32																	
		33		RO3 Fault												Factor Exterr			,
															'		arint	GITUCK	•

Standards

- Digital inputs D1–D6, relay out, analog in/out are freely programmed
- The user can assign a • single input to multiple functions

Includes

- Six digital input
- Two analog input
- One analog output
- Three relay output
- RS-485
- Ethernet

Reliability

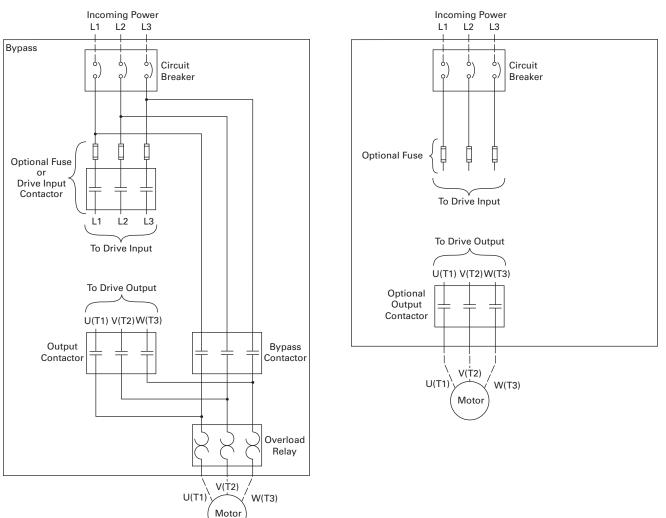
• Pretested components

32 33

30 А В

9 10 11 COM DI1-6

DI2 DI3


RO3 RO3 сом NO

24 Vdc RS-485 RS-485 in Data- Data+

Slot E

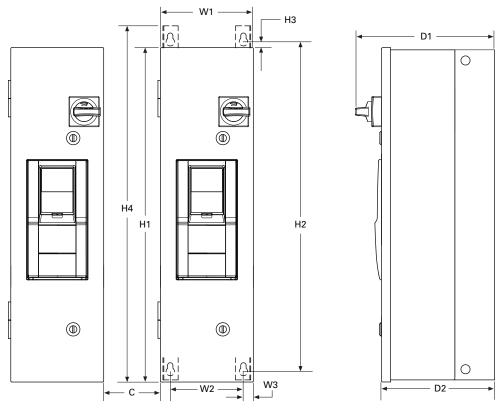
- Conformal coated (varnished) boards
- 40°C rated
- 110% overload for one minute
- Eaton Electrical Services & Systems national network of AF drive specialists

H-Max Series Drives

H-Max Series IntelliPass

H-Max Series IntelliDisconnect Power Wiring

2


2.5

H-Max Series Drives

Dimensions

Approximate Dimensions in Inches (mm)

H-Max Series IntelliPass and IntelliDisconnect Drives

Consult factory or use manual for final dimensions.

Frame Size	Voltage	Horsepower (I _L)	H1	H2	H3	H4	C	W1	W2	W3	D1	D2	Weight in Lbs (kg)
FS4	208	1–3	29.69	37.12	0.25	31.00	3.00 (76.2)	7.88	6.33	0.75	11.40	9.27 (235.5)	45 (20.41)
	230	1–3	- (754.1)	(942.9)	(6.35)	(914.4)		2) (200.2)	00.2) (160.8)	(19.1)	(289.6)		
	480	1–7.5	_										
FS5	208	5–10	37.00	34.47	0.25 (6.35)	38.31 (973.0)	3.00 (76.2)	9.40	7.75	0.75	15.30 (388.6)	13.17 (334.6)	57.5 (26.10)
	230	5–10	- (939.8)	(875.5)				(238.8)	(196.9)	(19.1)			
	480	10-20	_										
FS6	208	15–20	45.08	40.28	0.25 (6.35)	46.4 (1178.6)	4.00 (101.6)	10.90	9.35	0.75	15.75	13.62	98.0 (44.45)
	230	15–20	— (1145.0)	(1023.1)				.6) (276.9)	.9) (327.5)	(19.1)	(400.0)	(346.0)	
	480	25-40	_										
FS7	208	25–30	58.32	56.30	0.25	59.46	5.00	13.98	12.35	0.75	15.50	13.55	165.0 (74.84)
	230	25–30	— (1481.3)	(1430.0)	(6.35)	(1510.3)	(127.0)	(355.1)	(313.7)	(19.1)	(393.7)	(244.2)	
	480	50-75											

Note: C distance is spacing required to mount multiple drives.

LEESON

All WATTS/

All 180 an

ΗP 1/3

1/2

3/4

11/2

71/2

WATTSAVER® PREMIUM EFFICIENCY MOTORS **GENERAL PURPOSE • THREE PHASE**

THREE PHASE • TEFC • RIGID BASE 208-230/460V

THREE PHASE • DRIP-PROOF • RIGID BASE 208-230/460V

5-25	0/ +00	/ V								200	J-2J	0/400	V V							
RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (Ibs.)	Meets NEMA Premium	F.L. Amps 230V	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)	HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Meets NEMA Premium	F.L. Amps 230V	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
1725	S56	103017	Α	23	N/A	1.3	73.5	77.0	10.24	1/3	1725	S56	103019	А	24	N/A	1.3	73.5	77.0	10.19
1725	S56	103018	Α	26	N/A	1.8	73.8	77.0	10.74	1/2	1725	S56	103020	А	27	N/A	1.8	73.8	77.0	10.69
1725	56	116738	Α	30	N/A	2.4	80.4	81.5	10.86	3/4	1725	56	116739	А	31	N/A	2.4	80.2	81.5	11.31
3450	56	116128	Α	29	1	2.8	78.5	80.0	10.18	1	3450	56	116129	Α	29	1	2.8	80.0	80.0	11.31
1725	56	116752	A	36	1	3.2	84.7	85.5	11.68		1725	56	116757	A	32	1	3.2	84.7	85.5	12.81
1725	143T	121003	B	36	<u> </u>	3.2	84.7	85.5	12.12		1725 1725	143T 143T	120921 171640	B B	32 50	5	3.2 3.2	84.7 84.7	85.5 85.5	13.25 13.46
1160	145T	121517	B	41	<u> </u>	3.8	81.5	82.5	12.62		1160	145T	121520	B	47		3.8	81.5	82.5	13.75
3450 3450	56 143T	116753 121514	A B	36 36	5	4.0 4.0	83.5 83.5	84.0 84.0	11.84 12.28		1140	145T	171643	B	58	· ·	3.8	81.5	82.5	13.46
1725	56	116754	Α	35	1	4.8	86.1	86.5	12.22	1 ½	3450	56	116758	Α	33	1	4.0	83.0	84.0	12.81
1725	145T	121004	В	35	1	4.8	86.1	86.5	12.62		3450	143T	121518	В	33	1	4.0	83.0	84.0	13.25
1170	182T	131971	В	70	1	5.6	86.0	86.5	14.69		3450	143T	171642	B	49	<u> </u>	4.0	83.0	84.0	13.46
3450	56	116755	A B	43	5	4.8	86.8 96 9	85.5 85.5	12.18		1725 1725	56 145T	116759 120922	A B	34 34	1	4.8 4.8	86.1 86.1	86.5 86.5	13.31 13.75
3450 1725	145T 56H	121515 116756		43 37		4.8 5.8	86.8 86.7	85.5 86.5	12.62		1725	145T	171646	В	54	1	4.8	86.1	86.5	13.46
1725	145T	121005	A B	37	1	5.8	86.7	86.5	13.62		1170	182T	131980	В	89	1	5.6	87.4	87.5	15.96
1170	184T	131972	В	81	1	7.2	87.5	87.5	15.19	2	3450	56	116760	А	44	1	4.8	84.8	85.5	13.31
3450	145T	121516	В	45	1	7.2	85.5	86.5	12.62		3450	145T	121519	B B	44	1	4.8	84.8	85.5 85.5	13.75
1760	182T	131519	В	75	1	7.8	90.2	89.5	13.69		3450 1725	145T 56H	171648	A	56 45	<u> </u>	4.8 5.8	84.8 86.7	85.5	13.46 14.32
1190	213T	171574	С	154	1	10.0	87.5	88.5	16.38		1725	145T	116761 120923	B	45 45	1	5.8 5.8	86.7	86.5 86.5	14.32
3450	184T	131986	В	92	1	12.0	86.8	86.5	15.19		1725	145T	171647	В	58	1	5.8	86.5	86.5	13.46
1760	184T	131520	В	86	1	12.8	89.4	89.5	14.69		1170	184T	131981	В	92	1	7.2	88.4	88.5	15.96
1190	215T	171575	С	291	1	15.0	89.5	90.2	16.38	3	3450	182T	131985	В	66	1	7.6	86.1	86.5	13.96
3450	184T	131988	В	106	1	17.6	88.0	88.5	16.19		1760	182T	131463	В	80	1	7.8	89.0	89.5	14.96
1760	213T	140470	В	133	1	20.6	91.7	91.0	16.25		1760	182T	171320	<u> </u>	104	<u> </u>	7.8	89.5	90.2	16.14
1760	213T	170142	C	160	<u> </u>	19.8	91.7	91.0	16.38	<u></u>	1180	213T	171378	C	170	<u> </u>	9.4	88.5	89.5	18.19
1170	254T 213T	170145 140753	C B	281 160	<u> </u>	22.4 23.4	91.0 89.5	91.7	20.94	5	3450 1760	184T 184T	131987	B	88 94	<u> </u>	12.0 12.8	89.0 90.1	88.5 89.5	16.46 15.96
3515 3510	213T	170143	C	150	1	23.4 23.6	89.5 91.0	89.5 91.0	16.38		1760	184T	171322	C	109	1	12.8	90.1 89.9	89.5 89.5	16.80
1760	215T	140472	В	144	1	26.8	91.0	91.7	17.25		1180	215T	171379	С	176	1	14.4	89.5	89.5	19.61
1760	215T	170144	С	200	1	25.6	91.7	91.7	17.87	7 ½	3510	213T	140756	С	156	1	17.8	89.5	90.2	19.84
1190	256T	170146	С	305	1	29.6	91.7	91.7	22.60	-	3510	213T	170158	С	147	1	18.0	91.0	91.0	18.19
3510	215T	140754	В	170	1	35.0	91.0	91.0	18.55		1760	213T	140450	C	144	1	21.4	90.6	91.7	18.70
3510 1770	215T 254T	170064	C C	175 279	<u> </u>	34.6 37.0	91.0 93.0	91.0 93.0	17.87	-	1760 1170	213T 254T	170157	C C	155 249		18.6 22.2	91.7 91.0	91.7 91.7	18.19 23.19
1170	284T	170065	C	414		39.4	93.0	93.0	20.94	10	3510	2541 215T	140755	B	170		22.2	91.0	91.7	23.19
3525	254T	170032	C	275		46.0	93.0	93.0	20.94	10	3510	215T	170159	C	181	1	23.0	91.7	91.7	19.61
1770	256T	170002	C	324		51.0	93.0	93.0	22.60	-	1760	215T	140451	В	161	1	26.6	91.6	91.7	19.70
1190	286T	170000	C	467	· ·	55.0	92.4	92.4	25.00	_	1760	215T	170140	С	177	1	25.0	91.7	91.7	19.61
3525	256T	170034	C	327	· /	57.4	93.0	93.0	22.60		1170	256T	170123	С	300	1	29.0	91.7	91.7	24.92
1770	284T	170009	С	404	1	59.6	93.6	93.6	23.54	15	3525	254T	170062	С	282	1	34.6	92.4	92.4	23.19
1190	324T	170002	С	705	1	67.0	93.0	93.0	26.02	-	1770		170066	С	280		36.0	92.4	92.4	23.19
3550	284TS	170036	С	396	1	67.0	94.1	94.1	22.17		1170	284T	170068	C	333	<u> </u>	40.6	92.0	92.4	26.26
1770	286T	170013	С	471	1	71.0	94.5	94.1	25.00	20	3525	256T	170033	C	316	<i>\</i>	46.0	92.4	92.4	24.92
1190	326T	170004	С	760	1	78.0	93.6	93.6	27.52	-	1770	256T	170007	<u>C</u>	322	<u> </u>	49.0	93.0	93.0	24.92
3550	286TS	170038	С	441	1	91.2	94.1	93.6	23.62	25	1170	286T	170001	<u>C</u>	392		54.0	92.4	92.4	27.83
1780	324T	170017	С	560	1	96.0	94.1	94.1	26.02	20	3550	284TS	170035	C C	383	/	56.8	93.0	93.0	24.88
1190	364T	170147	С	892	1	103.0	94.1	94.1	28.01	-	1770 1190	284T 324T	170011 170003	С С	385 545	✓ ✓	59.0 66.0	93.6 92.4	93.6 93.0	26.26 29.53
ATTSA	VER [®] mo	tors have norma	ally clos	sed the	ermosta	ts for o	ver-tem	peratu	re alert.	30	3550	286TS	170003	с С	385		67.6	92.4	93.0	29.55
80 an	d 210 fra	me Rolled Stee	el moto	ors ha	ve Clas	s F Ins	ulation			50 -	1770	286T	170037	с С	432		70.0	93.0	93.0	27.83
										-		326T	170015	C	615		77.2	93.6	93.6	31.02
SH	ADED F	RAME INDIC	ATES (CAST	IRON	CONS	TRUC	TION		A II 14		VED [®] mo					<u></u>			

SHADED FRAME INDICATES CAST IRON CONSTRUCTION

All three phase motors, 1 HP and above, are inverter rated. Refer to page 5 for speed ranges.

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

Catalog numbers in blue are available in 3rd quarter 2008.

A WATTSAVER® PREMIUM EFFICIENCY MOTORS LEESON

GENERAL PURPOSE • THREE PHASE

THREE PHASE • DRIP-PROOF • RIGID BASE 208-230/460V • CONTINUED

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (Ibs.)	Meets NEMA Premiu	Amps	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
50	3550	324TS	170040	С	548	1	112.0	95.0	94.1	24.53
	1780	326T	170021	С	614	1	118.0	94.5	94.5	27.52
	1190	365T	170148	С	918	1	128.0	94.7	94.5	31.18
60	3550	326TS	170042	С	590	1	136.0	95.0	94.1	26.02
	1780	364T	170025	С	716	1	139.0	95.0	95.4	28.01
	1190	404T	170149	С	1031	1	159.0	94.0	94.5	32.76
75	3570	364TS	170044	С	720	1	176.0	94.5	93.6	26.89
	1780	365T	170029	С	766	1	172.0	95.4	95.4	31.18
	1190	405T	170150	С	1095	1	196.0	94.0	94.5	34.25
100	3570	365TS	170151	С	775	1	234.0	94.5	94.5	29.06
	1780	404T	170152	С	1141	1	225.0	95.4	95.4	32.76
	1190	444T	170255 *	С	1975	1	118.0♦	95.4	95.4	40.00
125	3570	404TS	170154	С	1015	1	284.0	94.5	94.5	29.76
	1780	405T	170155	С	1236	1	280.0	95.4	95.4	34.25
	1190	445T	170259*	С	2022	1	148.0♦	95.8	95.8	40.00
150	3570	405TS	171449*	С	1085	1	169.0♦	94.5	94.5	31.26
	1780	444T	171522 *	С	2000	1	164.0♦	95.8	95.8	40.00
	1190	445T	171576 *	С	2040	1	206.0♦	95.8	95.8	40.00
200	3570	444TS	171573*	С	1765	1	216.0♦	95.4	95.4	36.25
	1780	445T	171523*	С	2037	1	220.0♦	95.8	95.8	40.00
	1190	447T	171577*	С	2820	1	239.0♦	95.8	96.2	43.12

-	60	9		
	R	27	1	
	10 Barres		11	2
1	and a		2.1	

THREE PHASE • TEFC • RIGID BASE 208-230/460V • CONTINUED

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Meets NEMA Premiur	Amps	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
40	3550	324TS	170039	С	504	1	90.0	93.6	93.6	28.03
-	1780	324T	170019	С	528	1	92.0	93.6	94.1	29.53
-	1180	364T	170096	С	636	1	102.0	94.1	94.1	32.64
50	3550	326TS	170041	С	554	1	111.0	95.0	94.5	29.53
-	1780	326T	170023	С	587	1	117.0	94.5	94.5	31.02
-	1180	365T	170097	С	672	1	124.0	94.1	94.1	33.62
60	3570	364TS	170043	С	735	1	136.0	93.6	94.1	30.51
	1780	364T	170027	С	666	1	137.0	95.0	95.4	32.64
	1190	404T	170098	С	870	1	142.0	94.5	94.5	36.42
75	3570	365TS	170045	С	780	1	169.0	94.5	94.5	31.50
	1780	365T	170031	С	733	1	171.0	95.8	95.8	33.62
	1190	405T	170099	С	975	1	176.0	95.0	95.0	37.91
100	3570	405TS	170160	С	955	1	218.0	94.5	95.0	34.92
	1780	405T	170087	С	1070	1	225.0	95.4	95.4	37.91
	1190	444T	170256*	С	1457	1	121.0♦	95.0	95.0	42.87
125	1790	444T	170369*	С	1950	1	137.5♦	95.4	95.4	42.87
	1190	445T	170260*	С	1596	1	155.0♦	95.4	95.4	44.88
	3570	444TS	171580*	С	1316	1	132.0	94.5	95.0	39.10
150	1790	445T	170371*	С	1627	1	163.0♦	95.8	95.8	44.88
	1190	447T	171315*	С	2230	1	185.5♦	95.8	95.8	48.00
	3570	445TS	171578*	С	1445	1	161.0	94.5	95.0	44.88
200	1790	447T	170352*	С	2227	1	216.0♦	96.2	96.2	48.00
	1190	449T	171316*	С	2542	1	241.5♦	95.8	95.8	52.80
	3570	447TS	171579*	С	1977	1	216.5	95.0	95.4	48.00

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

★ 460V only
♦ Full Load Amps 460V

SHADED FRAME INDICATES CAST IRON CONSTRUCTION

WATTSAVER[®] PREMIUM EFFICIENCY MOTORS GENERAL PURPOSE • THREE PHASE

208-230/460V

THREE PHASE • DRIP-PROOF • C FACE LESS BASE 208-230/460V

	RPM				Ann	Meets	F.L.	3/4	%	"C"
	60	NEMA	Catalog	Disc.	App. Wgt.	NEMA	Amps	J/4 Load	% F.L.	Dim.
HP	Hz	Frame	Number	Sym.	(lbs.)	Premium	230V	Eff.	Eff.	(Inches)
	1 IZ	Traine	Number	Synn.	(105.)	Fremulti	230 V	LII.	LII.	(Inches)
1/3	1725	S56C	102695	А	22	N/A	1.3	73.5	77.0	10.24
1/2	1725	S56C	102200	А	25	N/A	1.8	73.8	77.0	10.74
3/4	1725	56C	114934	Α	29	N/A	2.4	80.4	81.5	10.86
1	1725	56C	116740	Α	32	1	3.4	84.7	85.5	11.68
	1725	143TC	121064	В	32	1	3.4	84.7	85.5	12.12
1 ½	1725	56C	116741	Α	36	1	5.6	86.1	86.5	12.68
	1725	145TC	121063	В	36	1	5.6	86.1	86.5	13.12
2	1725	56C	116742	Α	41	1	5.8	86.7	86.5	13.18
	1725	145TC	121071	В	41	1	5.8	86.7	86.5	13.62
3	1760	182TC	131518	В	75	1	7.8	90.2	89.5	14.20
5	1760	184TC	131517	В	96	1	12.8	90.1	89.5	15.20
7 ½	1760	213TC	140483	В	132	1	20.6	91.7	91.0	16.25
10	1760	215TC	140485	В	144	1	26.8	92.2	91.7	17.25

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Meets NEMA Premium	F.L. Amps 230V	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
1/3	1725	S56C	103021	А	23	N/A	1.3	73.5	77.0	10.24
1/2	1725	S56C	103022	А	26	N/A	1.8	73.8	77.0	10.74
3/4	1725	56C	116762	А	30	N/A	2.4	80.4	81.5	10.86
1	1725 1725	56C 143TC	116763 121674	A B	33 34	5	3.4 3.4	84.7 84.7	85.5 85.5	11.68 12.12
11/2	1725 1725	56C 145TC	116764 121675	A B	37 37	5	5.6 5.6	86.1 86.1	86.5 86.5	12.68 13.12
2	1725 1725	56HC 145TC	116765 121676	A B	42 42	\$ \$	5.8 5.8	86.7 86.7	86.5 86.5	13.18 13.62
3	1760	182TC	132081	В	76	1	7.8	90.2	89.5	14.20
5	1760	184TC	132082	В	97	1	12.8	90.1	89.5	15.20
7 ½	1760	213TC	140767	В	132	1	20.6	91.7	91.0	16.25
10	1760	215TC	140768	В	144	1	26.8	91.7	91.7	17.25

THREE PHASE • DRIP-PROOF • C FACE WITH BASE

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

THREE PHASE • TEFC • C FACE LESS BASE 208-230/460V

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Meets NEMA Premium	F.L. Amps 230V	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
1/3	1725	S56C	102696	А	22	N/A	1.3	73.5	77.0	10.19
1/2	1725	S56C	101780	Α	25	N/A	1.8	73.8	77.0	10.69
3/4	1725	56C	114213	Α	27	N/A	2.7	80.2	81.5	11.31
1	3450	56C	116748	Α	29	1	2.8	80.0	80.0	11.31
	1725	56C	114638	Α	34	N/A	3.4	84.7	85.5	12.81
	1725	143TC	121067	В	36	1	3.4	84.7	85.5	13.25
	1160	56C	116749	Α	47	1	3.8	81.5	82.5	13.75
11/2	3450	56C	116750	А	33	1	4.0	83.0	84.0	13.25
	1725	56C	116743	Α	41	1	4.8	86.1	86.5	13.31
	1725	145TC	121066	В	41	1	5.6	86.1	86.5	13.75
2	3450	56C	116751	А	44	1	4.8	84.8	85.5	14.25
	1725	56C	116744	Α	45	1	5.8	86.7	86.5	13.82
	1725	145TC	121065	В	45	1	5.8	86.7	86.5	14.26
3	1760	182TC	131503	В	72	1	7.8	89.0	89.5	14.96
5	1760	184TC	131501	В	90	1	12.8	90.1	89.5	15.97
7 ½	1760	213TC	140486	В	144	1	21.4	90.6	91.7	18.70
10	1760	215TC	140484	В	160	1	26.6	91.6	91.7	19.70

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

All 180 and 210 frame Rolled Steel motors have Class F Insulation.

SHADED FRAME INDICATES CAST IRON CONSTRUCTION

All three phase motors, 1 HP and above, are inverter rated. Refer to page 5 for speed ranges.

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

THREE PHASE • TEFC • C FACE WITH BASE 208-230/460V

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Meets NEMA Premium	F.L. Amps 230V	3/4 Load Eff.	% F.L. Eff.	"C" Dim. (Inches)
1/3	1725	S56C	102697	А	22	N/A	1.3	73.5	77.0	10.19
1/2	1725	S56C	102024	Α	23	N/A	1.8	73.8	77.0	10.69
3/4	1725	56C	114624	Α	25	N/A	2.7	80.2	81.5	11.31
1	1725	56C	116745	Α	34	1	3.4	84.7	85.5	12.81
	1725	143TC	121179	В	34	1	3.4	84.7	85.5	13.25
11⁄2	3450	143TC	121672	В	33	1	3.6	83.0	84.0	13.25
	1725	56C	116746	А	37	1	5.6	86.1	86.5	13.31
	1725	145TC	121180	В	37	1	5.6	86.1	86.5	13.75
2	3450	145TC	121673	В	44	1	4.8	84.8	85.5	13.75
	1725	56HC	116747	A	43	1	5.8	86.7	86.5	13.82
	1725	145TC	121181	В	43	1	5.8	86.7	86.5	14.26
3	3450	182TC	132079	В	70	1	7.6	86.1	86.5	13.96
	1760	182TC	131504	В	75	1	7.8	89.0	89.5	14.96
5	3450	184TC	132080	В	100	1	12.8	88.0	88.5	16.46
	1760	184TC	131502	В	99	1	12.8	90.1	89.5	15.97
7 ½	3450	213TC	140770	В	160	1	17.8	89.5	90.2	19.64
	1760	213TC	140521	В	144	1	21.4	90.6	91.7	18.70
10	3510	215TC	140769	В	175	1	23.6	92.4	91.7	21.09
	1760	215TC	140522	В	160	1	26.6	91.6	91.7	19.70
15	3525	254TC	171586	С	292	1	34.6	92.0	92.4	23.19
	1770	254TC	171587	С	290	1	36.0	92.4	92.4	23.19
20	3525	256TC	171588	С	326	1	46.0	93.0	92.4	24.92
	1770	256TC	171589	С	332	1	49.0	93.0	93.0	24.92
25	3550	284TSC	171590	С	393	1	56.8	93.3	93.0	24.88
	1770	284TC	171591	С	395	1	59.0	94.0	93.6	26.26
30	1770	286TC	171592	С	442	1	70.0	94.1	94.1	27.83
40	1780	324TC	171593	С	538	1	92.0	94.0	94.1	29.53
50	1780	326TC	171594	С	597	1	117.0	94.6	94.5	31.02
60	1780	364TC	171595	С	676	1	137.0	95.0	95.4	32.64
75	1780	365TC	171596	С	743	1	170.0	95.8	95.8	33.62
100	1780	405TC	171597	С	1002	1	225.0	95.4	95.4	37.91

All WATTSAVER® motors have normally closed thermostats for over-temperature alert.

WATTSAVER® PREMIUM EFFICIENCY MOTORS **GENERAL PURPOSE • SINGLE PHASE • FHP THREE PHASE**

WATTSAVER® PREMIUM EFFICIENCY **HIGH TORQUE**

WATTSAVER® Premium Efficiency Motors provide enhanced operating efficiencies, cooler operating temperatures, and reduced running amperage. See page 13 for complete list of features.

SINGLE PHASE • TEFC • RIGID BASE

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Voltage	Over- load Prot.	F.L. Amps 230V	% F.L. Eff.	"C" Dim. (Inches)
1/3	1725	56	113765☆	А	27	115/208-230	Man.	1.7	76.0	10.81
1/2	1725	56	113766 ☆	Α	30	115/208-230	Man.	2.5	78.0	11.31
3/4	1725	56	113767 ☆	А	35	115/208-230	Man.	3.2	82.0	11.81
1	1725	56	113768 ☆	А	37	115/208-230	Man.	4.2	83.0	12.31
1 ¹ / ₂	1725	56H	113769 ☆□	А	43	115/208-230	Man.	6.5	84.0	13.31
2	1725	56HZ	113770☆∎	А	49	230	Man.	8.2	85.0	14.25

WATTSAVER® PREMIUM EFFICIENCY FAN MOTORS

Premium efficiency motors for agricultural and industrial belted-fan applications.

Features include quiet bearings, resilient cradle base, and quiet flowthrough ventilation. Class "F" insulated, with spade connectors on terminal board for quick and easy installation.

SINGLE PHASE • DRIP-PROOF • RESILIENT BASE

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (Ibs.)	Voltage	Over- load Prot.	F.L. Amps 115V	% F.L. Eff.	"C" Dim. (Inches)
1/4	1725	48	101602	А	19	115	Auto.	2.5	71.0	10.39
1/3	1725	48	101405	А	19	115	Auto.	3.2	75.0	10.39
	1725/ 1140	56HZ	113771@D	A	30	115	Auto.	3.0	73.0	11.44
	1725/ 1140	56HZ	113970@D	A	30	115	Auto.	3.2	73.0	11.94
	1725/ 850	56HZ	113674@D	A	30	115	Auto.	3.1	70.0	11.44
	1725/ 850	56HZ	113969@D	A	30	115	Auto.	3.2	73.0	11.94
1/2	1725	48	101585	А	25	115	Auto.	4.6	76.0	11.39

These combination 56H base motors have mounting holes for 56 and 2

143-5T, and a 1/2" diameter shaft with flat 1¹/2" long. Capacitor start/capacitor run design for reduced amperage, others are ☆

capacitor start/induction run. Combination 56 H base motors have mounting holes for NEMA 56 and

NEMA 143-5T and a standard NEMA 56 shaft. Combination 56 HZ base has mounting holes for NEMA 56 and 143-5T and a standard NEMA 145T frame shaft of 7/8" diameter.

D Motors are to be discontinued once the inventory is depleted.

FHP MOTORS FOR AC DRIVES

- · Compact 48-frame design with keyed shaft
- Class F insulation
- · 20:1 Constant torque rated
- Inverter IRIS[™] insulation system
- 1/2" diameter keyed shaft with 48-C Face
- · 115/230V 3-phase design optimized for FHP drives

THREE PHASE • TEEC • C FACE WITH BASE

		1 1 17 15		0.17	()L			
HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	F.L. Amps 230V	% F.L. Eff.	"C" Dim. (Inches)
1/6	1725	48CZ	102792	А	25	1.25	56.0	8.94
1/4	1725	48CZ	102793	Α	26	1.4	58.0	8.94
1/3	1725	48CZ	102794	Α	28	1.6	64.3	9.19
1/2	1725	48CZ	102795	А	30	1.8	77.0	10.19

All three phase motors, 1 HP and above, are inverter rated. Refer to page 5 for speed ranges.

SEVERE DUTY WATTSAVER PLUS & LEESON

Sppecial Voltages

General Specifications:

Designed specifically to meet severe duty environments that you may find in applications such as chemical plants, foundries, pulp and paper mills, waste management facilities, refineries, above ground mines or other applications that demand corrosion protection for long motor life and dependability.

- Mechanical Protection Features: · Full cast iron construction
- Two-part Epoxy paint
- · Inpro Shaft Seal on output shaft and Forsheda seal on non-drive end
- · Internal corrosion protection
- · Regreasable bearings 250 Frame and above
- Three Year warranty
- Stainless Steel nameplate
- · Corrosion Resistant hardware
- **Electrical Performance and Protection Features:**
- 1.15 Service Factor
- Meets IP 55 enclosure protection
- · Dual voltage design
- Normally Closed Thermostats

Standards and Approvals:

- · UL and CSA recognized
- · Construction is CSA Certified for safety report number LR62104
- UL recognized construction, file number E57948

General Specifications:

Designed for harsh environments that you may find in refineries, above-ground mines, foundries, paper and pulp mills, cement plants or other severe duty applications requiring a premium efficient motor.

Mechanical Protection Features:

- · Inpro Shaft Seals installed
- · Re-greasable bearings by using extended grease tubes.
- · Five-year warranty
- · Two part epoxy painted
- Brass breather and drain plug

Electrical Performance and Protection Features:

- Tested to IEEE-841 Standards
- Actual test and vibration Data supplied with each motor
- Meets NEMA MG1 1.26.6 Waterproof Specification
- · Nameplate stamped to Division 2 CSA certification for hazardous locations, Class 1 Groups A, B, C, D, Temperature code T2B
- · Meets NEMA Premium Efficient standards
- 1.15 Service Factor

· Class F Insulation System

Standards and Approvals:

- UL Recognized and CSA Certified
- Tested to IEEE45 USCG Marine Duty, API RP14F for offshore platforms
- Meets IP56

SEVERE DUTY • WATTSAVER PLUS

HP	RPM 60 Hz	NEMA Frame	Catalog Number	Disc. Sym.	App. Wgt. (Ibs.)	Voltage	Over- load Prot.	F.L. Amps 230V	"C" Dim. (Inches)
3	1760	182T	171623	С	112	208-230/460	7.8	90.2	16.64
	1180	213T	171634	С	180	208-230/460	9.4	89.5	18.69
5	1760	184T	171630	С	120	208-230/460	12.8	89.5	17.30
	1180	215T	171635	С	186	208-230/460	14.4	89.5	20.11
7 ½	3510	213T	171616	С	155	208-230/460	18	91.0	18.69
	1760	213T	171622	С	165	208-230/460	18.6	91.7	18.69
	1170	254T	171636	С	263	208-230/460	22.2	91.7	23.69
10	3510	215T	171617	С	190	208-230/460	23	91.7	20.11
	1760	215T	171631	С	187	208-230/460	25	91.7	20.11
	1170	256T	171637	С	312	208-230/460	29	91.7	25.42
15	3525	254T	171620	С	294	208-230/460	34.6	92.4	23.69
	1770	254T	171632	С	294	208-230/460	36	92.4	23.69
	1170	284T	171638	С	346	208-230/460	40.6	92.4	26.76
20	3525	256T	171621	С	330	208-230/460	46	92.4	25.42
	1770	256T	171633	С	335	208-230/460	49	93.0	25.42
	1170	286T	171639	С	405	208-230/460	54	92.4	28.33

IEEE 841 PREMIUM EFFICIENT MOTORS

HP	RPM	NEMA Frame	IEEE 841 Catalog Number	Disc. Sym.	App. Wgt. (lbs.)	Voltage	F.L. Amps 230V	% F.L. Eff.	"C" Dim. (Inches)
1	1725	143T	811541	С	55	460	1.5	85.5	10.43
1 ½	3460	143T	811542	С	58	460	2.0	86.5	10.43
	1730	145T	811543	С	65	460	2.2	84.0	11.43
2	3500	145T	811544	С	68	460	2.5	85.5	11.43
	1735	145T	811545	С	68	460	3.0	85.5	11.43
3	3525	182T	811546	С	105	460	3.8	87.5	12.71
	1760	182T	811547	С	100	460	4.0	90.2	12.71
5	3505	184T	811548	С	142	460	5.9	89.5	16.19
	1755	184T	811549	С	130	460	6.2	90.2	16.19
7 ½	3540	213T	811550	С	200	460	8.9	91.7	17.18
	1770	213T	811551	С	200	460	9.6	91.7	19.73
10	3535	215T	811552	С	218	460	11.2	91.7	20.97
	1765	215T	811553	С	225	460	12.5	91.7	19.73
15	3550	254T	811554	С	345	460	17.5	91.7	23.52
	1775	254T	811555	С	350	460	18.8	92.4	23.52
20	3537	256T	811556	С	375	460	23.4	92.4	25.27
	1775	256T	811557	С	425	460	24.1	93.0	25.27
25	3560	284TS	811558	С	481	460	28.1	93.6	24.97
	1775	284T	811559	С	478	460	31.0	93.6	26.34

All three phase motors, 1 HP and above, are inverter rated. Refer to page 5 for speed ranges.

SHADED FRAME INDICATES CAST IRON CONSTRUCTION

ECM 9: Vending Machine Controls

ECM Overview

Ameresco proposes to install occupancy sensing, plug load controllers to reduce the unnecessary operation of the Town's vending machines during unoccupied periods. Each vending machine controller will save energy used by the refrigerated vending machine during unoccupied hours without compromising product quality. The controller will use a sensor to detect when the space is unoccupied and turn off the vending machine. Existing non-refrigerated snack machines will also be controlled.

Figure 9.1: Soda and drink vending machines will be controlled and set back by the VendingMiser®, or equal, resulting in electrical savings.

ECM Detail

Existing System

Vending machines were found throughout the Town's buildings. The vending machines are typically stocked with soda, juice and sports drinks and are cooled and illuminated year-round regardless of occupancy. Snack vending machines were also found in the same areas.

Ameresco identified the following vending machines for VendingMiser® controller installation:

Building	Snack Qty.	Drink Qty.
DPW Highway	0	1
Fairbank Community Center	1	3
Fire Department HQ	1	1
Fire Department South	0	1
Fire Department North	0	1
Loring Elementary School	0	1
Noyes Elementary School	0	1
Haynes Elementary School	0	1
Nixon Elementary School	0	1
Totals	2	11

Proposed System

Ameresco proposes to install a VendingMiser[™] controller, or equal, on the soft drink and snack vending machine to save energy during unoccupied periods. This device controls the vending machine operation without compromising its product quality. The controller is external to the vending machine, therefore not

Final Investment Grade Audit

ECM 9

requiring vendor maintenance. Major soft drink producers have approved the controller for use on vending machines offering their products.

The controller employs infrared sensing technology to interrupt power to a vending machine when the surrounding area is unoccupied. Regardless of occupancy, the controller automatically enables the vending machine to ensure that its product remains cold. The controller is designed so that it will not de-energize the vending machine during a cooling compressor cycle.

As reported by the American Council for an Energy Efficient Economy (ACEEE), the 2.5 million vending machines operating in the U.S. consume nearly \$600 million in energy and demand costs. Since Town buildings are not constantly occupied, the Town's refrigerated vending machines consume more energy than needed.

Figure 9.2: Soda and drink vending machines at Fairbank Community Center.

According to the manufacturer's representative, if switched off, this product's resumes normal operation once its power is restored.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new vending machine controls will enhance facility operations by reducing electricity usage during unoccupied periods. Students, teachers and administrators will notice no reduction in drink quality as a result of this measure.

Page 2

Appendix for ECM 9: Vending Machine Controls

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Summary		
Measure ID:	9	
Measure Name:	Vending Machine Controls	
Measure Location:		
Engineers:		

Site Name:		DPW_Old	Fairbank	FDHQ	Fire_S	Fire_N	Loring	Noyes	Haynes	Nixon	Summary
Item	Units	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	
Electricity											
Energy On-Peak	kWh										0
Energy Off-Peak	kWh	2,356	3,451	1,713	1,423	1,423	1,227	2,573	1,325	1,310	16,801
Energy Total	kWh	2,356	3,451	1,713	1,423	1,423	1,227	2,573	1,325	1,310	16,801
Demand On-Peak, Monthly	kW										0.0
Demand On-Peak, Annual	kW										0.0
Demand Off-Peak, Monthly	kW										0.0
Demand Off-Peak, Annual	kW										0.0
Fossil Fuel											0
Natural Gas (NG)	Therms	-38	-54	-30	-26	-26	-21	-42	-23	-22	-282
Liquid Propane Gas (LPG)	Gallons	0	0	0	0	0	0	0	0	0	0
Steam	Mlbs	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #2	Gallons	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #4	Gallons	0	0	0	0	0	0	0	0	0	0
Fuel Oil, #6	Gallons	0	0	0	0	0	0	0	0	0	0
Miscellaneous	Misc	0	0	0	0	0	0	0	0	0	0
Water											0
Water Savings	kGallons										0
Sewer											0
Sewer Savings	kGallons										0

Building	Quantity of Snack Machines	Quantity of Refrigerated Drink Machines	Total Connected Demand	Existing Hours of Operation	Existing Electric Consumption	Proposed Hours of Operation	Proposed Electric Consumption	Operating Months per Year
[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]
DPW Highway	0	1	0.43	8,760	3,741	3,415	1,458	12
Fairbank Community Center (Including Pool)	1	3	0.73	8,760	6,417	4,583	3,357	12
Fire Dept Headquarters	1	1	0.51	8,760	4,441	5,475	2,776	12
Fire Dept South	0	1	0.43	8,760	3,741	5,475	2,338	12
Fire Dept North	0	1	0.43	8,760	3,741	5,475	2,338	12
Loring Elementary	0	1	0.20	8,760	1,789	2,818	575	12
Noyes Elementary	0	1	0.43	8,760	3,741	2,818	1,203	12
Haynes Elementary	0	1	0.22	8,760	1,887	2,818	607	12
Nixon Elementary	0	1	0.22	8,760	1,887	2,781	599	12
	2	11	3.58		31,383		15,252	

Item	Value	Units	cell ref	Remarks
Existing Annual Hours of Operation per Machine	8,760	Hrs.	[C62]	Vending Machines are constantly plugged in.
Time Between Auto Repower	2.00	Hrs.	[C63]	based on Bayview Tech data
Duration of Auto Repower	0.40	Hrs.	[C64]	based on Bayview Tech data
Non-perishable Snack Machine Average Power Dr	80	watts	[C65]	Average power draw
Refrigerated Drink Machine Average Power Draw	427	watts	[C66]	Average power draw
Refrigerated Drink Machine Average Power Draw	233	watts	[C67]	Energy Star model RVRVV 500-64 average power draw
Refrigerated Drink Machine Average Power Draw	215	watts	[C68]	Energy Star model RVCC660 average power draw
Refrigerated Drink Machine Average Power Draw	204	watts	[C69]	Energy Star model DN501E average power draw

Cell Ref.	Comment
А	Facility
В	Number of Snack Machines
С	Number of Drink Machines
D	Total connected electric demand per building
E	= [C62]
F	= [col D] x [col E]
G	Building Occ. hours + ([C62] - Building Occ. hours) ÷ ([C63] + [C64]) x [C64]
Н	= [col D] x [col G]
I	Months per year the machine is powered on
J	$= [\operatorname{col} F] x [\operatorname{col} H]$

MAPC - Sudbury Vending Machine Controls Interactive Savings Calculation

	S	avings		Heating	Penalty		Cooling Benefit					
Α	В	С	D	Е	F	G	Н	Ι	J	K		
Facility	Annual kW	Annual kWh	Heat Gain to Space	Heating Months	Heating System Efficiency	Heating Penalty MMBtu	Total Space Cooled	Cooling Months	Cooling System COP	Cooling Benefit MMBtu		
DPW Highway		2,282	100.0%	5.0	86.0%	(3.8)	25.0%	5.0	3.22	0.3		
Fairbank Community Center (Including Pool)		3,060	100.0%	5.0	80.0%	(5.4)	90.0%	5.0	2.93	1.3		
Fire Dept Headquarters		1,665	100.0%	5.0	80.0%	(3.0)	20.0%	5.0	2.93	0.2		
Fire Dept South		1,403	100.0%	5.0	78.0%	(2.6)	10.0%	5.0	2.93	0.1		
Fire Dept North		1,403	100.0%	5.0	78.0%	(2.6)	10.0%	5.0	2.93	0.1		
Loring Elementary		1,213	100.0%	5.0	83.0%	(2.1)	8.0%	5.0	2.93	0.0		
Noyes Elementary		2,537	100.0%	5.0	85.0%	(4.2)	10.0%	5.0	2.93	0.1		
Haynes Elementary		1,280	100.0%	5.0	78.0%	(2.3)	25.0%	5.0	2.93	0.2		
Nixon Elementary		1,288	100.0%	5.0	83.0%	(2.2)	12.0%	5.0	2.93	0.1		
Totals	0.0	16,131				(28.2)				2.3		

Notes:	
А	Applicable building included in comprehensive energy audit
В	Measure demand savings {kW} associated with Measure retrofit measures
С	Measure energy savings {kWh} associated with Measure retrofit measures
D	Estimated percentage of Measure energy transmitted to conditioned space
Е	Estimated length of heating season
F	Estimated heating system efficiency, interacted with other measures
G	Resulting heating penalty due to Measure upgrades = $[col C] \times [col D] \times 3,413 \times ([col E] / 12) / [col F] / 1,000,000$
Н	Estimated percentage of space cooled
Ι	Estimated Length of cooling season
J	Estimated cooling system efficiency, interacted with other measures
К	Resulting cooling benefit due to Measure upgrades = $[col C] x [col D] x 3,413 x ([col I] / 12) / [col J] / 1,000,000$

Appendix for ECM 9: Vending Machine Controls

II. Manufacturer Specification Sheets

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 9

This page intentionally left blank.

SnackMiser[™]

ENERGY MANAGEMENT SYSTEM For Snack Vending Machines

The power behind the profits...

SnackMiser[™] puts the power of savings into your environment.

With SnackMiser, your current snack venders can achieve maximum energy savings resulting in a reduction in both operating costs and greenhouse gas emissions. Compatible with nonrefrigerated snack vending machines, SnackMiser incorporates innovative, energy-saving technology into a small, plugand-play unit that installs in minutes.

A Practical approach to power

SnackMiser uses a Passive Infrared Sensor (PIR) to determine if there is anyone within 25 feet of the machine. It waits for 15 minutes of vacancy, then powers down the machine. If a customer approaches the machine while powered down, SnackMiser will sense the presence and power up immediately. In addition to reducing energy costs, this practical power play lengthens the expected lifetime of your machine and reduces its exposure to power line spikes.

On average, SnackMiser reduces energy consumption annually per machine by \$50 and CO2 emissions by 470 lbs. and 770 grams of NOx, based on occupancy and the Energy Information Administration's national average of greenhouse gas emissions and electricity generation.

This Miser runs the bank

For a bank of machines, SnackMiser can use its embedded Sensor Repeater, which allows it to be controlled from the PIR sensor of any other Miser in the bank. SnackMiser can stand alone or be an ideal partner for VendingMiser[®].

SnackMiser offers...

- A quick, inexpensive solution to energy savings and conservation
- Longer machine lifespan
- Environmental benefits
- Early return on investment

SnackMiser Technical Specifications Electrical Specifications Input Voltage: 115 Volts Input Frequency: 50/60 Hz Maximum Load: 1050 Watts (Steady-State) Power Consumption: Less than 1 Watt (Standby)

Environmental Specifications

Operating Temp: 0°C to 50°C Storage Temp: -20°C to 60°C Relative Humidity: 95% Maximum (Non-Condensing)

Compatibility

Snack Vending Machines: Any type, as long as SnackMiser's maximum power rating is not exceeded

Inactivity Timeouts Occupancy Timeout: 15 minutes

Dimensions

Size: 4.5"W x 1.75"H x 3.25"D Weight: 2 lbs. (includes power cable)

Regulatory Approvals

Safety: UL/C-UL Listed Information Technology Equipment (ITE) 9T79

Other energy-saving products offered by USA Technologies include VendingMiser[®], VM2IQ^m, CoolerMiser^m and PlugMiser^m.

Frequently Asked Questions

How Does SnackMiser[™] Work?

SnackMiser[™] uses a PIR sensor to determine if there is anyone within 25 feet of the machine. SnackMiser[™] waits for 15 minutes of vacancy and then powers off the snack machine. If a customer approaches the snack machine while powered down, SnackMiser[™] will sense the person's presence and power up immediately.

Will SnackMiser[™] affect the lifetime of the lights in my machine?

The replacement frequency of the fluorescent lamps will be reduced. While it is true that power cycling fluorescent lamps will shorten their life, the hours that the machine is powered down greatly exceeds this reduction in burn hours. The net effect is that the lamps will need replacement less often.

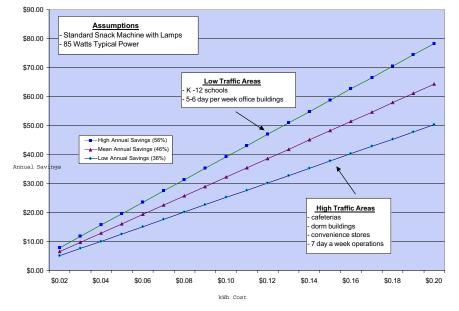
Are there any locations not appropriate for SnackMiser[™]?

A machine in a location that is occupied 24-hours, 7 days a week will likely generate little savings.

Is the SnackMiser[™] easy to install?

Yes. The SnackMiser[™] can be installed on the wall with the supplied bracket holder or it can be attached to the snack machine using the new Easy-Install system. Because many SnackMisers[™] are installed with a VendingMiser[®], sensor installation might not even be needed.

Technical Specifications


ELECTRICAL SPECIFICATIONS

U) LISTED

ELECTRICAL SPECIFICATION	JNS	
Input Voltage:	115 Volts (230 Volts available)	
Input Frequency:	50/60 Hz	
Maximum Load:	1050 Watts (Steady-State)	
Power Consumption:	Less than 1 Watt (Standby)	
ENVIRONMENTAL SPECIFI	CATIONS	
Operating Temp:	0°C to 50°C	
Storage Temp:	-20°C to 60°C	
Relative Humidity:	80% Maximum	
-	(Non-Condensing)	
COMPATIBILITY		
Snack Machines:	Any type, as long as	
	SnackMiser's maximum	
	power rating is not exceeded	
INACTIVITY TIMEOUTS		
Timeout Period:	15 minutes	
DIMENSIONS		
Size:	4.5"W x 1.75"H x 3.25"D	
Weight:	2 lb. (incl. power cable)	
REGULATORY APPROVALS		
Safety:	UL/C-UL Listed	
	Information Technology	
	Equipment (ITE) 9T79	
\frown	\frown	

LISTED

Typical Saving Generated with SnackMiser™

_		
	SM150	SnackMiser with PIR Sensor
	SM151	SnackMiser only
	SM170	Easy-Install SnackMiser with PIR Sensor
	SM171	Easy-Install SnackMiser only

SnackMiser[™] Products

For more information about the SnackMiser[™] Contact Optimum Energy Products Ltd. 333, 11979 - 40th Street S.E. Calgary, Alberta T2Z 4M3

VendingMiser[®]

ENERGY MANAGEMENT SYSTEM For Refrigerated Vending Machines

Improve the profitability of your existing cold drink machines. Vending Miser[®] puts you on a cost-effective refresher course for energy savings and conservation.

VendingMiser cuts energy costs down to size

VendingMiser incorporates its innovative energy-saving technology into a small, plug-and-play powerhouse that installs in minutes either on the wall or on the vending machine. It's that easy.

With VendingMiser there's no need to have new machines to achieve maximum energy savings resulting in a reduction in operating costs and greenhouse gas emissions. When equipped with the VendingMiser, refrigerated beverage vending machines use less energy and are comparable in daily energy performance to new ENERGY STAR® qualified machines.

Power play

Compatible with all types of cold drink vending machines, the VendingMiser uses a Passive Infrared Sensor (PIR) to power down the machine when the area surrounding it is vacant. Then it monitors the room's temperature and automatically re-powers the cooling system at one- to three-hour intervals, independent of sales, to ensure that the product stays cold.

This Miser runs the bank

For a series of up to four machines, VendingMiser can use its embedded Sensor Repeater, which allows it to be controlled from the PIR sensor of any other Miser in the bank.

Refresher course

VendingMiser's microcontroller will never power down the machine while the compressor is running, eliminating compressor short-cycling. In addition, when the machine is powered up, the cooling cycle is allowed to finish before again powering down. This reduces the wear and tear on your machines, extending the lifespan and prolonging your profitability. Maintenance savings is generated through reduced running time of vendor components – estimated at \$40 - \$80 per year, per machine. The VendingMiser has been tested and accepted for use by major bottlers.

VendingMiser reduces energy consumption an average of 46%—typically \$150 per machine.

Vending Miser offers...

- A quick, inexpensive solution to energy savings and conservation
- Longer machine lifespan
- Early return on investment
- Environmental benefits

VendingMiser can also control other cooled product vending machines, such as refrigerated candy machines.

VendingMiser Technical Specifications

Electrical Specifications Input Voltage: 115 Volts Input Frequency: 50/60 Hz Maximum Load: 12 Amps (Steady-State) Power Consumption: Less than 1 Watt (Standby)

Environmental Specifications

Operating Temp: -15°C to 75°C Storage Temp: -40°C to 85°C Relative Humidity: 95% Maximum (Non-Condensing)

Compatibility

Vending Machines: Any machine, except those containing perishable goods such as dairy products

Inactivity Timeouts

Occupancy Timeout: 15 minutes Auto Re-power: One to three hours, dynamically adjusted, based on ambient temperature

Dimensions

Size: 4.5"W x 1.75"H x 3.25"D Weight: 2.2 lbs. (includes power cable)

Regulatory Approvals Safety: UL/C-UL Listed

Information Technology Equipment (ITE) 9T79

Other energy-saving products offered by USA Technologies include VM2IQ[™], CoolerMiser[™], SnackMiser[™] and PlugMiser[™].

Frequently Asked Questions

Will VendingMiser[®] keep my drinks cold?

Absolutely - VendingMiser[®] has been tested and accepted for use by both major bottlers.

Is the VendingMiser[®] easy to install?

Yes! VendingMiser[®] is a simple external plug-and-play product. The VendingMiser[®] can be installed on the wall with simple hand tools or it can be attached to the vending machine without tools using the new Easy-Install system. The Easy-Install System allows guick installation in 5 minutes.

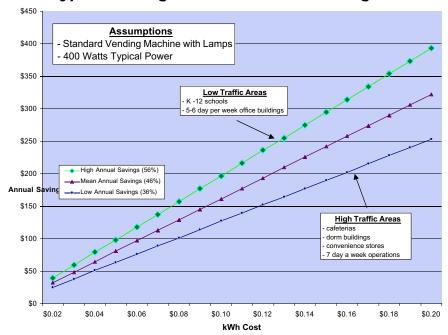
Is VendingMiser[®] safe for all machines?

Yes! VendingMiser[®] is compatible with all types of cold drink vending machines. In fact, by reducing run time of the machines, VendingMiser[®] reduces maintenance costs.

Has VendingMiser[®] been field tested?

Tens of thousands of VendingMisers[®] are operational in the field. Typical energy savings have been independently documented to be between 35% and 45%. Measurement and verification test results as well as testimonials are available on the website.

Are there any locations not appropriate for VendingMiser®?


VendingMiser's[®] savings are generated as a result of location vacancy. Therefore, a machine in a location that is occupied 24-hours, 7 days a week will likely generate little savings. Our VM2IQ is more appropriate for this type of location and will typically save up to 35% energy use.

Technical Specifications

ELECTRICAL SPECIFICATIONS

LEECINICAL SI LEII ICA	
Input Voltage:	115 Volts (230 Volts available)
Input Frequency:	50/60 Hz
Maximum Load:	12 Amps (Steady-State)
Power Consumption:	Less than 1 Watt (Standby)
ENVIRONMENTAL SPECI	FICATIONS
Operating Temp:	-15°C to 75°C
Storage Temp:	-40°C to 85°C
Relative Humidity:	95% Maximum
	(Non-Condensing)
COMPATIBILITY	
Vending Machines:	Any machine, except those
	containing perishable goods
	such as dairy products.
INACTIVITY TIMEOUTS	
Occupancy Timeout:	15 minutes
Auto Repower:	One to three hours,
	dynamically adjusted, based
	on ambient temperature
DIMENSIONS	
Size:	4.5"W x 1.75"H x 3.25"D
Weight:	2.2 lb. (incl. power cable)
REGULATORY APPROVA	LS
Safety:	UL/C-UL Listed
	Information Technology
	Equipment (ITE) 9T79

Typical Saving Generated with VendingMiser[®]

VendingMiser[®] Products

VM150	VendingMiser® with PIR Sensor
VM151	VendingMiser® only
VM160	Weatherproof VendingMiser® with PIR Sensor
VM161	Weatherproof VendingMiser® only
VM170	Easy-Install VendingMiser® with PIR Sensor
VM171	Easy-Install VendingMiser® only
VM180	Weatherproof Easy-Install VendingMiser w/PIR sensor
VM181	Weatherproof Easy-Install VendingMiser only

ECM 11: Weatherization

ECM Overview

Ameresco proposes to perform a number of infiltration reduction measures at a number of buildings throughout the Town of Sudbury. Exterior doors, windows, roofwall intersections, soffit overhangs, and wall penetrations at the identified buildings have many gaps that allow outside air to infiltrate the building. The new weather-stripping and sealants will greatly reduce heat loss as well as increase occupant comfort due to fewer drafts. All of the buildings were surveyed and evaluated, but not all infiltration reduction opportunities were included in the project due to poor payback.

Figure 11.1: By reducing building infiltration through leaky windows, energy savings will be achieved through reduced heating and cooling loads. Shown above is a single pane window at the Fairbank Community Center.

ECM Detail

Existing System

The infiltration of outdoor air can be a significant load on a building's central heating and cooling systems. There are many sources of infiltration in a building's exterior envelope that can be considerably reduced with proper weather-stripping and air sealing methods. The major sources of infiltration are exterior doors, windows, walls and roof-wall intersections.

Ameresco evaluated the exterior of each building and found many areas that were in need of proper weatherstripping. The majority of the doors recommended for weather-stripping replacement had worn weatherstripping and door sweeps causing large gaps between the door jam and door.

The various opportunities evaluated for each building are as follows:

Doors - These are generally the main source of air leakage. Weather-stripping is typically worn and/or missing. Also, older doors do not close tight or latch correctly as when first installed. A number of exterior doors at Fairbank Community Center, Fire Station Headquarters, Curtis Middle School, Haynes Elementary School and Nixon Elementary School have weather stripping that is in poor condition and in need of replacement.

Roof-Wall Interface - This is the most often missed area in a building during construction. This occurs above the ceiling tiles where the wall assembly meets the roof deck. Most wall assemblies are not fully

Final Investment Grade Audit

ECM 11

completed above the ceiling line. The Fairbank Community Center, Goodnow Library, Curtis Middle School, Loring Elementary School and Noyes Elementary School have large gaps between the metal fluted roof and the steel framing. There is no continuous air barrier installed and there is excessive infiltration as a result.

Exterior Shell – The Senior Center area of the Fairbank Community Center and areas of the Goodnow Library have fiberglass batt insulation installed in the wall cavities above the dropped ceiling. There is however no continuous air barrier installed to prevent infiltration, greatly reducing the thermal performance of the insulation. The Pool Building area of the Fairbank Community Center, second level of the Goodnow Library, and various areas of the Curtis Middle School, Loring Elementary School and Noyes Elementary School have soffit overhangs that do not have continuous air barriers.

Windows – Windows throughout the Fire Department Headquarters, Curtis Middle School, Loring Elementary School and Haynes Elementary School are double hung styles of various sizes. The upper sash on most of the windows at the Fire Department Headquarters does not close properly, creating a gap at the upper sash and the meeting joint of the upper and lower sash. Most of the windows throughout these buildings are also missing sealant between the window stops and window frames, allowing infiltration.

Compartmentalization – At the Fire Department Headquarters and Fire Department North the doors between the garage and office areas are not weather stripped. At the Fairbank Community Center and the Nixon Elementary School the doors between mechanical rooms and occupied spaces are not weather stripped. These doors allow air to transfer from the garage and mechanical rooms to the remaining occupied spaces. Because the garage and mechanical rooms are maintained at low setpoint temperatures and have high air change rates, this door can be a source of unwanted infiltration.

Proposed System

Ameresco proposes to reduce the infiltration of outside air and the leaking of conditioned air by implementing proper weather-stripping and air-sealing of doors, windows, exterior shell and roof/wall junctions. Ameresco performed a survey at each building to determine the location and severity of air leakage. Based on the findings, there are many areas in each building where infiltration can be reduced. Table 11.1 shows the buildings that will receive new door weather-stripping and Table 11.2 shows buildings that will receive new door weather-stripping and Table 11.2 shows buildings that will receive new door weather-stripping and Table 11.2 shows buildings that will receive other air sealing strategies.

Doors & Compartmentalization - New weather-stripping and door sweeps will be installed to exterior doors and those doors identified in the compartmentalization measure. The new weather-stripping will conform to existing aesthetics as best as possible. Q-lon weather-stripping or equal with like colors will be used on main doors.

Windows – Ameresco proposes to seal air gaps in the window systems at Fire Department Headquarters, and Haynes Elementary School. This includes applying a siliconized acrylic latex caulk to all non-operational window joints such as window casing, jamb and trim. The upper sash of the double hung windows at the Fire Department Headquarters will be fastened shut and caulked to provide an air-tight seal.

Proposed work excludes repair to any existing damage of the building infrastructure (i.e. mortar, brick, painting, patching and wood), adjustments to existing doors and windows, and hazardous waste removal or

Final Investment Grade Audit

Page 2

remediation. Ameresco does not believe any of these cases will occur, though it won't be known fully until construction begins.

Table 11.1 & 11.2 below contains the crack area for each location of infiltration at each building.

Table 11.1: Proposed square feet of door air sealing

Building	Quantity of Doors	Crack Area (ft ²)
Fire Station Headquarters	2 Single	0.21
Haynes Elementary School	7 Single, 3 Double	0.55
Total		0.76

Table 11.2: Proposed square feet of air sealing in addition to door air sealing

Building	Roof/Wall Junction Crack Area (ft ²)	Exterior Shell Crack Area (ft ²)	Window Crack Area (ft ²)	Compartmentalization (Garage/Mech from Interior Doors)
Fire Station Headquarters	0	0	1.29	0.05
Fire Station North	0	0	0	0.37
Haynes Elementary School	0	0	5.21	0
Total	0	0	6.5	0.42

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new weather-stripping and air sealing will enhance facility operations by reducing infiltration that causes drafts during the winter. Students, teachers, administrators and Town employees will notice a more comfortable environment in which to work and learn.

ECM 11

This page is intentionally left blank.

Page 4

Appendix for ECM 11: Weatherization

I. Energy Savings Calculations

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 11

This page is intentionally blank.

MAPC - Sudbury		
Energy and Demand Savings Su	Immary	
Measure ID:	11	
Measure Name:	Weatherization	
Measure Location:		
Engineers:		

Site Name:		FDHQ	Fire_N	Haynes	Summary
Item	Units	Savings	Savings	Savings	
Electricity					
Energy On-Peak	kWh	11	1	21	33
Energy Off-Peak	kWh				0
Energy Total	kWh	11	1	21	33
Demand On-Peak, Monthly	kW				0.0
Demand On-Peak, Annual	kW				0.0
Demand Off-Peak, Monthly	kW				0.0
Demand Off-Peak, Annual	kW				0.0
Fossil Fuel					0
Natural Gas (NG)	Therms	338	71	903	1,312
Liquid Propane Gas (LPG)	Gallons				0
Steam	Mlbs				0
Fuel Oil, #2	Gallons				0
Fuel Oil, #4	Gallons				0
Fuel Oil, #6	Gallons				0
Miscellaneous	Misc				0
Water					0
Water Savings	kGallons				0
Sewer					0
Sewer Savings	kGallons				0

MAPC - Sudbury Fire Dept Headquarters Weatherization

TMY-2 Weat	her Data for \	Worcester, M	A					Operating H	ours			Savings								
			M.C.										Average	Infiltration	Occ. Heating / Cooling	UnOcc. Heating / Cooling	Occ. Cooling		Occ. Heating	UnOcc. Heating
Amb. Temp	Ave Temp	M.C.W.B	Enthalpy							Occ Off-Peak		Total Crack		Flow Rate	Savings	Savings	Savings	Savings	Savings	Savings
Bin deg. F	deg. F	deg. F	Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Hours	Hrs.	Peak Hrs.	Hrs.	Peak Hrs.	Area (ft ²)	(MPH)	(CFM)	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(MMBTU)	(MMBTU)
Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U
Cooling																				
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	1.6	10.5	104	4	4	0	0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	1.6	10.5	104	3	3	0	0		
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	1	0	1.6	10.5	104	3	3	0	0		
90 to 95	92.5	69.8	34.2	0	8	0	8	2	0	6	0	1.6	10.5	104	2	2	0	0		I
85 to 90	87.5	70.3	34.6	1	37	6	44	13	0	31	0	1.6	10.5	104	2	2	0	0		
80 to 85	82.5	68.4	33.0	8	138	29	175	50	0	125	0	1.6	10.5	104	1	1	0	0		I
75 to 80	77.5	66.2	31.2	27	202	83	312	89	0	223	0	1.6	10.5	104	1	1	0	0		·
70 to 75	72.5	64.3	29.7	64	269	160	493	141	0	352	0	1.6	10.5	104	0	0	0	0		·
65 to 70	67.5	61.2	27.5	185	208	243	636	182	0	454	0	1.6	10.5	104	0	0	0	0		
60 to 65	62.5	57.3	24.8	315	249	298	862	246	0	616	0	1.6	10.5	104	0	0	0	0		
Heating 55 to 60	57.5	52.7	0.0	303	245	276	824	235	0	589	0	1.6	12.8	127	2	0			2	0
50 to 55	52.5	47.8	0.0	262	184	276	674	192	0	482	0	1.6	12.8	127	2	1			2	0
45 to 50	47.5	47.8	0.0	202	230	228	645	192	0	482	0	1.6	12.8	127	3	2			2	0
43 to 30 40 to 45	47.5	38.3	0.0	204	191	211	635	184	0	461	0	1.6	12.8	127	3 4	2			3	0
40 to 43 35 to 40	37.5	33.8	0.0	321	301	234	908	259	0	649	0	1.6	12.8	127	4	3			5	0
30 to 35	32.5	28.7	0.0	356	221	313	890	254	0	636	0	1.6	12.8	127	5	4	-		6	0
25 to 30	27.5	23.5	0.0	228	211	211	650	186	0	464	0	1.6	12.8	127	6	4			5	0
20 to 25	22.5	19.1	0.0	104	94	124	322	92	0	230	0	1.6	12.8	127	6	5			3	0
15 to 20	17.5	14.3	0.0	144	78	117	339	97	0	242	0	1.6	12.8	127	7	6			3	0
10 to 15	12.5	9.3	0.0	118	40	85	243	69	0	174	0	1.6	12.8	127	8	6			2	0
5 to 10	7.5	5.0	0.0	52	10	15	77	22	0	55	0	1.6	12.8	127	9	7				0
0 to 5	2.5	2.2	0.0	18	3	1	22	6	0	16	0	1.6	12.8	127	9	8	1		0	0
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	1.6	12.8	127	10	9			0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	1.6	12.8	127	11	9			0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	1.6	12.8	127	11	10			0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	1.6	12.8	127	12	11			0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	1.6	12.8	127	13	11			0	0
				2,920	2,920	2,920	8,760	2,500	0	6,260	0						0	0	34	0

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Occupied hours as per the RFP data
М	Total Crack area of windows and doors
N	Average wind speed during the cooling and heating seasons
0	= [col M] x [col N] x 5286 ÷ 60 x P51
Р	= 1.08 x [col O] x (Q55 - [col B]) ÷ 1000 ÷ P46
Q	= 1.08 x [col O] x (Q56 - [col B]) ÷ 1000 ÷ P46
R	[col P] x ([col I] + [col K]) ÷ 1,000 ÷ P47 x P48
S	[col Q] x ([col J] + [col L]) ÷ 1,000 ÷ P47 x P48
Т	[col P] x ([col I] + [col K]) ÷ 1,000 ÷ P46
U	[col Q] x ([col J] + [col L]) ÷ 1,000 ÷ P46

Assumptions:	Value	Unit	CELL	Description
			REF	
Total Crack Area	1.55	SF	P43	
		SF	P44	
		SF	P45	
Existing Boiler Plant Efficiency	80.0%		P46	
Existing Cooling Plant Efficiency	2.93	COP	P47	
Percent Building Cooled	20.0%		P48	
Average Winter Wind Speed	12.8	MPH	P49	
Average Summer Wind Speed	10.5	MPH	P50	
Crack Area Windward Diversity	7.3%		P51	

	Cooling		Heating		Description
Occupied	72.0	055	70.0	Q55	average temperature for all areas
UnOccupied	72.0	O56	60.0	Q56	

MAPC - Sudbury Fire Dept North Weatherization

TMY-2 Weat	her Data for V	Worcester, M	A					Operating H	ours			Savings								
Amb. Temp	Ave Temp	M.C.W.B	M.C. Enthalpy				Total Bin	Occ On-Peak	UnOcc On-	Occ Off-	UnOcc Off-	Total Crack	Average Wind Speed	Infiltration Flow Rate	Occ. Heating / Cooling Savings	UnOcc. Heating / Cooling Savings	Occ. Cooling Savings	UnOcc. Cooling Savings	Occ. Heating Savings	UnOcc. Heating Savings
Bin deg. F	deg. F	deg. F	Btu/lbma	01-08 Hours	09-16 Hours	17-24 Hours	Hours	Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Area (ft ²)	(MPH)	(CFM)	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(MMBTU)	(MMBTU)
A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U
Cooling																				
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	0.4	10.5	25	1	1	0	0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	0.4	10.5	25	1	1	0	0		
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	1	0	0.4	10.5	25	1	1	0	0		
90 to 95	92.5	69.8	34.2	0	8	0	8	2	0	6	0	0.4	10.5	25	1	1	0	0		
85 to 90	87.5	70.3	34.6	1	37	6	44	13	0	31	0	0.4	10.5	25	0	0	0	0		
80 to 85	82.5	68.4	33.0	8	138	29	175	50	0	125	0	0.4	10.5	25	0	0	0	0		
75 to 80	77.5	66.2	31.2	27	202	83	312	89	0	223	0	0.4	10.5	25	0	0	0	0		
70 to 75	72.5	64.3	29.7	64	269	160	493	141	0	352	0	0.4	10.5	25	0	0	0	0		
65 to 70	67.5	61.2	27.5	185	208	243	636	182	0	454	0	0.4	10.5	25	0	0	0	0		
60 to 65	62.5	57.3	24.8	315	249	298	862	246	0	616	0	0.4	10.5	25	0	0	0	0		
Heating																				
55 to 60	57.5	52.7	0.0	303	245	276	824	235	0	589	0	0.4	12.8	30	0	0			0	0
50 to 55	52.5	47.8	0.0	262	184	228	674	192	0	482	0	0.4	12.8	30	0	0			0	0
45 to 50	47.5	42.5	0.0	204	230	211	645	184	0	461	0	0.4	12.8	30	1	0			0	0
40 to 45	42.5	38.3	0.0	210	191	234	635	181	0	454	0	0.4	12.8	30	1	1			1	0
35 to 40	37.5	33.8	0.0	321	301	286	908	259	0	649	0	0.4	12.8	30	1	1			1	0
30 to 35	32.5	28.7	0.0	356	221	313	890	254	0	636	0	0.4	12.8	30	1	1			1	0
25 to 30	27.5	23.5	0.0	228	211	211	650	186	0	464	0	0.4	12.8	30	1	1			1	0
20 to 25	22.5	19.1	0.0	104	94	124	322	92	0	230	0	0.4	12.8	30	1	1			1	0
15 to 20	17.5	14.3	0.0	144	78	117	339	97	0	242	0	0.4	12.8	30	2	1			1	0
10 to 15	12.5	9.3	0.0	118	40	85	243	69	0	174	0	0.4	12.8	30	2	2			1	0
5 to 10	7.5	5.0	0.0	52	10	15	77	22	0	55	0	0.4	12.8	30	2	2			0	0
0 to 5	2.5	2.2	0.0	18	3	1	22	6	0	16	0	0.4	12.8	30	2	2			0	0
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	0.4	12.8	30	2	2			0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	0.4	12.8	30	2	2			0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	0.4	12.8	30	3	2			0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	0.4	12.8	30	3	2			0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	0.4	12.8	30	3	3			0	0
				2,920	2,920	2,920	8,760	2,500	0	6,260	0						0	0	7	0

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Occupied hours as per the RFP data
М	Total Crack area of windows and doors
N	Average wind speed during the cooling and heating seasons
0	= [col M] x [col N] x 5286 ÷ 60 x P51
Р	= 1.08 x [col O] x (Q55 - [col B]) ÷ 1000 ÷ P46
Q	= 1.08 x [col O] x (Q56 - [col B]) ÷ 1000 ÷ P46
R	[col P] x ([col I] + [col K]) ÷ 1,000 ÷ P47 x P48
S	$[col Q] x ([col J] + [col L]) \div 1,000 \div P47 x P48$
Т	$[col P] x ([col I] + [col K]) \div 1,000 \div P46$
U	$[col Q] x ([col J] + [col L]) \div 1,000 \div P46$

Assumptions:	Value	Unit	CELL	Description
			REF	
Total Crack Area	0.37	SF	P43	
		SF	P44	
		SF	P45	
Existing Boiler Plant Efficiency	78.0%		P46	
Existing Cooling Plant Efficiency	2.93	COP	P47	
Percent Building Cooled	10.0%		P48	
Average Winter Wind Speed	12.8	MPH	P49	
Average Summer Wind Speed	10.5	MPH	P50	
Crack Area Windward Diversity	7.3%		P51	

	Cooling		Heating		Description
Occupied	72.0	055	66.0	Q55	average temperature for all areas
UnOccupied	72.0	O56	60.0	Q56	

MAPC - Sudbury Haynes Elementary Weatherization

TMY-2 Weat	her Data for	Worcester, M	A					Operating H	ours			Savings								
			NG											¥ (*1	Occ. Heating	UnOcc. Heating /		UnOcc.	0 H -	UnOcc.
Amph. Town	A T	M.C.W.B	M.C. Enthalpy				Total Bin	Occ On-Peak	UnOne On	Occ Off-	UnOcc Off-	Total Crack	Average Wind Speed	Infiltration Flow Rate	/ Cooling Savings	Cooling Savings	Occ. Cooling Savings	Cooling Savings	Occ. Heating Savings	Heating Savings
Amb. Temp Bin deg. F	Ave Temp deg. F	м.с.w.в deg. F	Btu/lbma	01.09.11	09-16 Hours	17 24 Hauna	Hours	Hrs.	Peak Hrs.	Peak Hrs.	Peak Hrs.	Area (ft ²)	(MPH)	(CFM)	(MBH)	(MBH)	(MMBTU)	(MMBTU)	(MMBTU)	(MMBTU)
A A	B	C ueg. r	D D	E	F	G	H	TIS.	r cak mis.	K	L	M M	(MFH) N	(CFM)	(WIBH) P	(MBH) 0	(WIWIBTO) R	(WIWIBTO)	(WIWIB10) T	U U
Cooling	В	C	D	E	г	G	11	1	J	ĸ	L	IVI	19	0	r	Q	K	3	1	0
105 to 110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	5.8	10.5	386	15	12	0	0		
100 to 105	102.5	0.0	0.0	0	0	Ő	0	0	0	0	0	5.8	10.5	386	13	10	0	0		
95 to 100	97.5	0.0	34.2	0	1	0	1	0	0	0	1	5.8	10.5	386	11	8	0	0		
90 to 95	92.5	69.8	34.2	0	8	0	8	2	1	0	6	5.8	10.5	386	9	6	0	0		
85 to 90	87.5	70.3	34.6	1	37	6	44	9	3	0	31	5.8	10.5	386	6	4	0	0		
80 to 85	82.5	68.4	33.0	8	138	29	175	37	13	0	125	5.8	10.5	386	4	2	0	0		
75 to 80	77.5	66.2	31.2	27	202	83	312	66	23	0	223	5.8	10.5	386	2	0	0	0		
70 to 75	72.5	64.3	29.7	64	269	160	493	104	36	0	352	5.8	10.5	386	0	0	0	0		
65 to 70	67.5	61.2	27.5	185	208	243	636	135	47	0	454	5.8	10.5	386	0	0	0	0		
60 to 65	62.5	57.3	24.8	315	249	298	862	183	63	0	616	5.8	10.5	386	0	0	0	0		
Heating																				
55 to 60	57.5	52.7	0.0	303	245	276	824	175	61	0	589	5.8	12.8	469	6	0			1	0
50 to 55	52.5	47.8	0.0	262	184	228	674	143	50	0	482	5.8	12.8	469	9	3			2	2
45 to 50	47.5	42.5	0.0	204	230	211	645	137	47	0	461	5.8	12.8	469	11	5			2	3
40 to 45	42.5	38.3	0.0	210	191	234	635	135	47	0	454	5.8	12.8	469	14	8			2	5
35 to 40 30 to 35	37.5 32.5	33.8 28.7	0.0	321	301 221	286 313	908 890	192 189	67	0	649 636	5.8	12.8 12.8	469 469	16	10			4	10
	27.5	28.7	0.0	356 228	221 211		650	189	65 48	0	464	5.8	12.8	469	19	13			5	12
25 to 30 20 to 25	27.5	23.5	0.0	228 104	94	211 124	322	68	48 24	0	230	5.8 5.8	12.8	469	22 24	15			4	10 6
20 to 23 15 to 20	17.5	19.1	0.0	104	94 78	124	339	72	24	0	230	5.8	12.8	469	24	21			2	7
10 to 15	17.5	9.3	0.0	144	40	85	243	51	18	0	174	5.8	12.8	409	29	23			2	6
5 to 10	7.5	5.0	0.0	52	10	15	243	16	6	0	55	5.8	12.8	409	32	25	1		1	2
0 to 5	2.5	2.2	0.0	18	3	15	22	5	2	0	16	5.8	12.8	469	34	28			0	
-5 to 0	(2.5)	0.0	0.0	0	0	0	0	0	0	0	0	5.8	12.8	469	37	31			0	0
-10 to -5	(7.5)	0.0	0.0	0	0	0	0	0	0	0	0	5.8	12.8	469	39	33	1		0	0
-15 to -10	(12.5)	0.0	0.0	0	0	0	0	0	0	0	0	5.8	12.8	469	42	36			0	0
-20 to -15	(17.5)	0.0	0.0	0	0	0	0	0	0	0	0	5.8	12.8	469	44	38			0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0	0	5.8	12.8	469	47	41			0	0
				2,920	2,920	2,920	8,760	1,856	644	0	6,260						0	0	27	63

Cell Ref.	Comment
A-H	TMY-2 Weather Data for Worcester, MA
I - L	Occupied hours as per the RFP data
М	Total Crack area of windows and doors
N	Average wind speed during the cooling and heating seasons
0	= [col M] x [col N] x 5286 ÷ 60 x P51
Р	= 1.08 x [col O] x (Q55 - [col B]) ÷ 1000 ÷ P46
Q	= 1.08 x [col O] x (Q56 - [col B]) ÷ 1000 ÷ P46
R	$[col P] x ([col I] + [col K]) \div 1,000 \div P47 x P48$
S	[col Q] x ([col J] + [col L]) ÷ 1,000 ÷ P47 x P48
Т	$[col P] x ([col I] + [col K]) \div 1,000 \div P46$
U	$[col Q] x ([col J] + [col L]) \div 1,000 \div P46$

Assumptions:	Value	Unit	CELL	Description
			REF	
BE Retrofit Total Crack Area	5.76	SF	P43	
		SF	P44	
		SF	P45	
Existing Boiler Plant Efficiency	78.0%		P46	
Existing Cooling Plant Efficiency	2.93	COP	P47	
Percent Building Cooled	25.0%		P48	
Average Winter Wind Speed	12.8	MPH	P49	
Average Summer Wind Speed	10.5	MPH	P50	
Crack Area Windward Diversity	7.3%		P51	

	Cooling		Heating		Description
Occupied	72.0	055	70.0	Q55	average temperature for all areas
UnOccupied	78.0	O56	58.0	Q56	

Appendix for ECM 11: Weatherization

II. Manufacturer Specification Sheets

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 11

This page is intentionally blank.

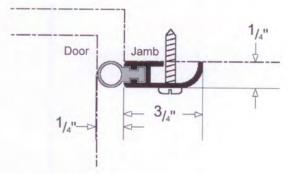
CONTENTS

The Weatherization Materials Information package includes the following data sheets:

- Weather Stripping Materials
 - Visco Weatherseal Products
 - DS050 Door Weather Stripping
 - OBS296 Offset Head Nylon Brush Door Gasket
 - FS325 Wool Pile Brush Astragal with Fin
 - FS300 Wool Pile Brush Sweep with Fin
 - TS100 Door Triple Sweep
 - TS150 Door Triple Sweep
 - BS196 Brush Door Sweep
 - Schlegel Systems
 - QDS375/ QFS375 Q-LON Surface Mount Weatherseal
 - QDST675 Q-LON Surface Mount Weatherseal
 - PF102 POLYFLEX Surface Mount Weatherseal
 - PF114 POLYFLEX Surface Mount Weatherseal
 - PF512 POLYFLEX Surface Mount Weatherseal
 - National Garage Door
 - JUMBO SEAL 2" Vinyl
 - Weatherseal Retainer 2" Flat Retainer
 - Vinyl Bottom Seal Insert Single T Style
- Sealants
 - DOW FROTH-PAK Foam Insulation
 - Todol Products EZ Flo Gun Foam
 - DuPont AIRTITE Siliconized Acrylic Caulk
 - Venture Tape 1585CW-2 Sheathing Tape
- Systems / Sealants for Fire-Rated Rooms
 - o A/D FIREBARRIER
 - A/D FIREBARRIER SprayAcrylic
 - A/D FIREBARRIER Acrylic Sealant
 - A/D FIREBARRIER Mineral Wool
- Insulating Materials
 - DOW THERMAX Sheathing
 - o National Fiber Cel-Pak Class 1 Cellulose Insulation

DS080 - Light Duty (Rounded) Door Weatherstripping

Construction: PVC rigid vinyl. Mitered corners ensure a secure fit

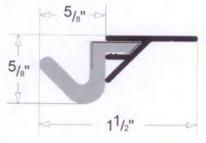

with slotted mounting holes for easy adjustment.

Insert: ¹/₄" flexible, bubble type neoprene or vinyl insert. **Finish:** Brown or white finish.

Finish: Brown or white finish

Set: 1-3' piece and 2-7' pieces. Custom lengths also available.

DS050 - Door Weatherstripping


Construction Q-Lon: Extruded aluminum. Mitered corners ensure a secure fit with slotted mounting holes for easy adjustment.

Insert: Soft cell foam insert. Foam has thermoplastic cover and will not deteriorate. Finish: Aluminum, brown or white finish.

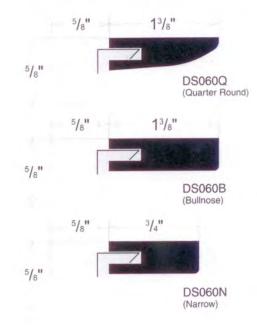
Set: 1-3' piece and 2-7' pieces. Custom lengths also available.

DS050-AL									
MODEL	DESCRIPTION	FINISH							
DS100	Door Weatherstripping	AL	Aluminum						
		BR	Brown						
		WH	White						

*Q-Lon is replaceable without removing holder from the door. *Approved for Sound Abatement Program.

Phone: (401) 831-1665 Toll Free: 1-800-628-9680 Fax: (401) 751-2720 Web: www.viscoproduct.com e-mail: info@visco.com

VISCO Weather Seal Products 7 Victory Avenue, Johnston, RI 02919



DS060 - Door Weatherstripping

Construction: Primed pine wood strip or PVC, available as 1³/₈" or ³/₄" Quarter Round, or Bullnose or narrow. **Insert:** Q-Lon soft cell foam insert. Foam has thermoplastic cover and will not deteriorate.

Finish: Brown or White foam. Wood is primed, PVC is white. **Lengths:** 1-3' piece and 2-7' pieces. Specify wood or PVC.

3/4"

(1"

Jamb

1/4"

OBS-296 - Offset Head Nylon Brush Door Gasket

Construction: Extruded aluminum. Insert: ⁵/₈" or 1" nylon brush strip. Finish: Aluminum or Brown anodized finish.

OBS-296-58-AL

MODEL	DESCRIPTION	674 B	RUSH SIZE	FINISH		
OBS-296	Brush Weatherstripping	58	5/8 inch	AL	Aluminum	
		1	1 inch	BR	Brown	

BS88 - Pressure Sensitive Door Gasketing*

Finishes: Dark Bronze, White.

Lengths: 17', 21', 25', and 500' coils.

Self-adhesive: For application between 50°F and 100°F with end use temperature range from -30°F to 150°F

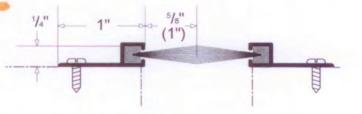
 Begins compressing at ¼" and can be compressed to seal ¼" toleranced openings; will not lose its form.

Door

- · Self-extinguishing and non-toxic.
- Impervious to dust and mildew, will not deteriorate under normal exposure. Unaffected by sunlight, ozone, and ultraviolet rays.

*Approved for Sound Abatement Program.

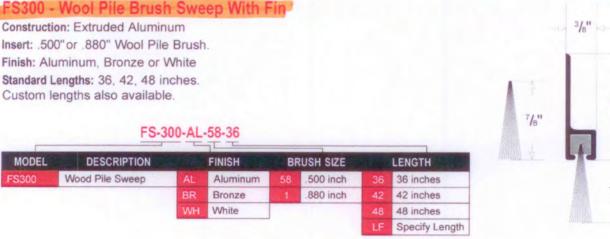
Phone: (401) 831-1665 Toll Free: 1-800-628-9680 Fax: (401) 751-2720 Web: www.viscoproduct.com VISCO Weather Seal Products 7 Victory Avenue, Johnston, RI 02919


door WEATHERSTRIPPING

Custom lengths also available.

325 - Wool Pile Brush Astragal With Fir

Construction: Extruded Aluminum Insert: .500" or .880" Wool Pile Brush. Finish: Aluminum, Bronze or White Standard Lengths: 7ft. or 8ft. pieces, 2 piece set.


FS-325-AL-58-7

MODEL	DESCRIPTION		FINISH	BF	RUSH SIZE		LENGTH
FS325	Wood Pile Brush	AL	Aluminum	58	.500 inch	7	2-7ft. pieces
		BR	Bronze	1	.880 inch	8	2-8ft. pieces
		WH	White				

door

BOTTOMS & SWEEPS

1/2"

TB-550

MODEL

FS300

- · 5" Flat Threshold (Tile Back)
- · 1/2" Rise
- Available in lengths up to 12ft.

Phone: (401) 831-1665 Toll Free: 1-800-628-9680 Fax: (401) 751-2720 Web: www.viscoproducts.com e-mail: info@visco.com VISCO Weather Seal Products 7 Victory Avenue, Johnston, RI 02919

TS100 Door Triple Sweep

Construction: Extruded Aluminum Insert: ³/₄" Vinyl Insert Finish: Aluminum or Brown Finish Lengths: 36", 42", or 48", or by the linear foot

DESCRIPTION

Door Sweep

TS100-AL-36

TS150-AL-36

FINISH

Aluminum

Brown

FINISH

Aluminum

Brown

LENGTH

36 Inches

42 Inches 48 Inches 72 Inches Specify Length

LENGTH

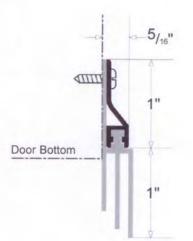
36 Inches

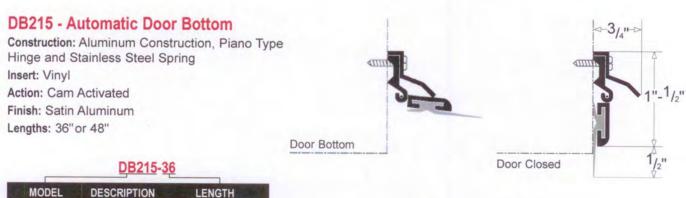
42 Inches

48 Inches 72 Inches Specify Length

LE

TS150 Door Triple Sweep


MODEL


MODEL

Construction: Extruded Aluminum Insert: 1" Vinyl Insert Finish: Aluminum or Brown Finish Lengths: 36", 42", or 48", or by the linear foot

DESCRIPTION

Door Sweep

 MODEL
 DESCRIPTION
 LENGTH

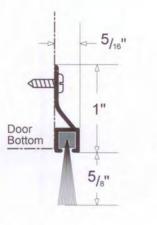
 DB215
 Automatic
 36
 36 Inches

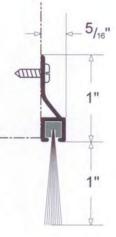
 Door Bottom
 48
 48 Inches

*Approved for Sound Abatement Program.

Phone: (401) 831-1665 Toll Free: 1-800-628-9680 Fax: (401) 751-2720 Web: www.viscoproduct.com e-mail: info@visco.com

VISCO Weather Seal Products 7 Victory Avenue, Johnston, RI 02919

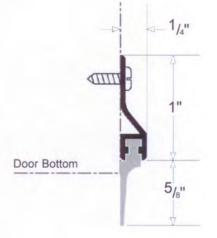

door BOTTOMS & SWEEPS


BS-196 - Brush Door Sweep

Construction: Extruded Aluminum Insert: ⁵/₆" or 1" Nylon Brush Strip Finish: Aluminum or Brown Anodized Finish Lengths: Sold by the linear foot

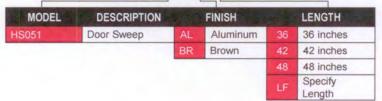
BS196-58-AL

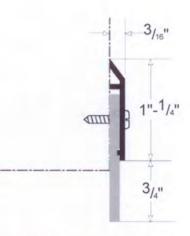
MODEL	DESCRIPTION	BRUSH SIZE		FINISH		
BS-196	Brush Door Sweep	58	5/8 inch	AL	Aluminum	
		1	1 inch	BR	Brown	


SS045 - Standard Door Sweep

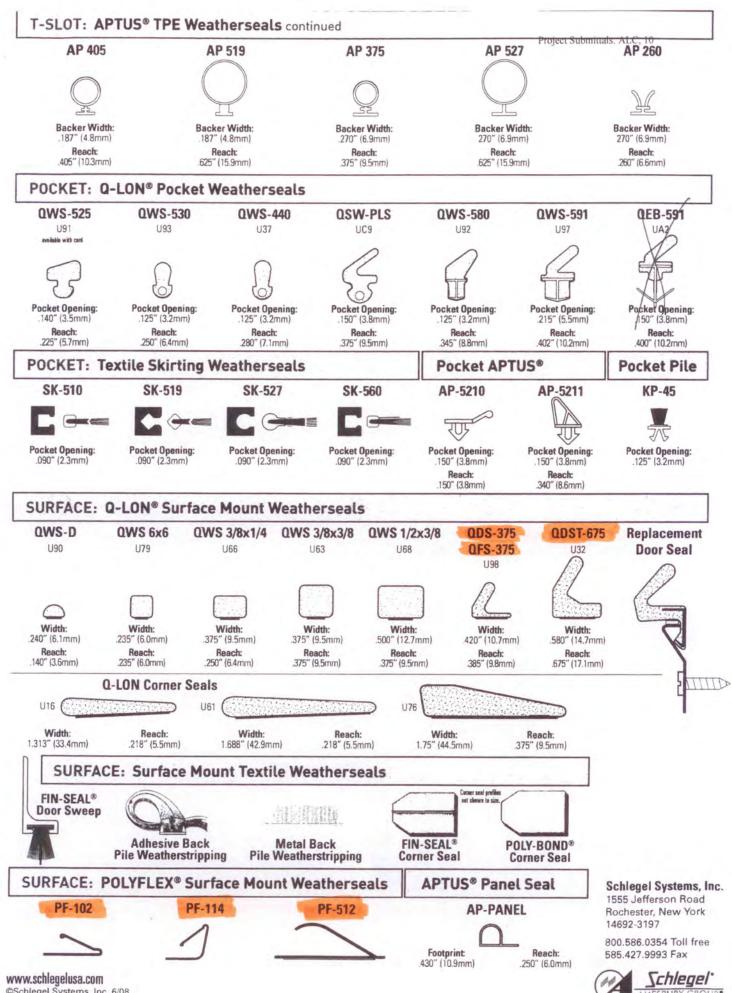
Construction: Extruded Aluminum Insert: ⁵/₈" Vinyl Insert Finish: Aluminum, Brown or White Finish Lengths: 36", 42", or 48", or by the linear foot

White


48 inches Specify Length



HS051 - Heavy Duty Door Sweep


Construction: Extruded Aluminum Insert: ³/₄" Neoprene Insert Finish: Aluminum or Brown Finish Lengths: 36", 42", or 48", or by the linear foot

*Approved for Sound Abatement Program.

©Schlegel Systems, Inc. 6/08

MESBURY GROUP.

WEATHERSTRIP

Toll-free order line: 1-800-NAT-DOOR (800-628-3667

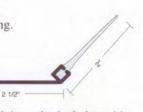
Style 25 - "JUMBO SEAL" - 1 1/2" Vinyl or Brush

- · Heavy aluminum extrusion with VINYL
- · Sold as full cartons only.
- Combine full carton & styles of jumbo seal for group pricing.

10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing.

STOCK #	MODEL	DESCRIPTION	PACK
143880	Style 25	10ft "JUMBO SEAL" w/1 1/2in Viny	1 1
143881	Style 25	12ft "JUMBO SEAL" w/1 1/2in Viny	1 1
143882	Style 25	14ft "JUMBO SEAL" w/1 1/2in Viny	1 1
143883	Style 25	16ft "JUMBO SEAL" w/1 1/2in Viny	1 1

- · Heavy aluminum extrusion with BRUSH
- · Sold as full cartons only.
- · Combine full carton & styles of jumbo seal for group pricing.


NATIONAL

10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing

STOCK #	MODEL	DESCRIPTION	PACK
143910	Style 25	10ft "JUMBO SEAL" w/1 1/2in Brush	1
143911	Style 25	12ft "JUMBO SEAL" w/1 1/2in Brush	1
143912	Style 25	14ft "JUMBO SEAL" w/1 1/2in Brush	1
143913	Style 25	16ft "JUMBO SEAL" w/1 1/2in Brush	1

Style 25 - "JUMBO SEAL" - 2" Vinyl or Brush

- · Heavy aluminum extrusion with VINYL
- Sold as full cartons only.
- Combine full carton & styles of jumbo seal for group pricing.

- Heavy aluminum extrusion with BRUSH
- · Sold as full cartons only.
- · Combine full carton & styles of jumbo seal for group pricing.

10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing.

STOCK #	MODEL	DESCRIPTION	PACK
143890	Style 25	10ft "JUMBO SEAL" w/2in Vinyl	1
143891	Style 25	12ft "JUMBO SEAL" w/2in Vinyl	1
143892	Style 25	14ft "JUMBO SEAL" w/2in Vinyl	1
143893	Style 25	16ft "JUMBO SEAL" w/2in Vinyl	1 /

NATIONAL

NATIONAL

10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing.

21/2

STOCK #	MODEL	DESCRIPTION	PACK
143920	Style 25	10ft "JUMBO SEAL" w/2in Brush	1
143921	Style 25	12ft "JUMBO SEAL" w/2in Brush	1
143922	Style 25	14ft "JUMBO SEAL" w/2in Brush	1
143923	Style 25	16ft "JUMBO SEAL" w/2in Brush	1

2 1/2

Style 25 - "JUMBO SEAL" - 3" Vinyl or Brush

· Heavy aluminum extrusion with VINYL

DES

10ft 12ft

14ft

16ft

· Sold as full cartons only.

MODEL

Style 25

Style 25

Style 25

Style 25

· Combine full carton & styles of jumbo seal for group pricing.

	// /
	0/
 2 1/2"	

· Heavy aluminum extrusion with BRUSH · Sold as full cartons only.

· Combine full carton & styles of jumbo seal for group pricing.

10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing.	10) Pieces	per	Carton,	combine	Jumbo	Seal	sizes	and	styles	for	best	pricing.	
---	----	----------	-----	---------	---------	-------	------	-------	-----	--------	-----	------	----------	--

e Jumbo Seal sizes and styles for b	best pricing.	10 Pieces per Carton, combine Jumbo Seal sizes and styles for best pricing.					
SCRIPTION	STOCK #	MODEL	DESCRIPTION	PACK			
"JUMBO SEAL" w/3in Vinyl	1	143930	Style 25	10ft "JUMBO SEAL" w/3in Brush	1		
"JUMBO SEAL" w/3in Vinyl	1	143931	Style 25	12ft "JUMBO SEAL" w/3in Brush	1		
"JUMBO SEAL" w/3in Vinyl	1	143932	Style 25	14ft "JUMBO SEAL" w/3in Brush	1		
t "JUMBO SEAL" w/3in Vinyl	1	143933	Style 25	16ft "JUMBO SEAL" w/3in Brush	1		

* Ask customer service for kit sizes *

Direct Dial: 817-834-7300

STOCK #

143900

143901

143902

143903

WEATHERSTRIP

Toll-free order line: 1-800-NAT-DOOR (800-628-3667)

Aluminum Weatherseal Retainer NATIONAL WSR Rails (weatherseal retainer) · Aluminum Weatherseal Retainer used as bottom retainers on ship lap or tongue & groove doors. • Use with our 3 1/2" Single T vinyl for 1" of compression. • Use with our 5 1/2" Single T vinyl for 2 1/4" of compression. • Use with our 7" Single T vinyl for 3" of compression. · Install with self drilling Tek Screws, nails or rivets. • 1 3/8" width for Residential Doors. Flat Style · 2" width for Commercial Doors. · Packed 4 pieces per bundle **Economy WSR Rail Low Profile** · Economy rail is a lighter weight rail for 2" tongue & groove doors. · Packed 10 pieces per bundle Low Profile Style 2 inch - Flat Retainer 2 inch - Low Profile Retainer STOCK # DESCRIPTION PACK STOCK # DESCRIPTION PACK 1 3/8 inch - Flat Retainer 148104 AWSR-200-082F 8ft 2in x 2in Flat - 4pc 1ctn 148204 AWSR-200-082L 8ft 2in x 2inLow - 10pc 1ctn STOCK # DESCRIPTION PACK AWSR-200-102F 10ft 2in x 2in Flat - 4pc 148208 AWSR-200-102L 10ft 2in x 2inLow - 10pc 1ctn 148108 1ctn AWSR-138-080F 8ft x 1 3/8in Flat - 4pc 148003 1ctn 148110 AWSR-200-122F 12ft 2in x 2in Flat - 4pc 1ctn 148210 AWSR-200-122L 12ft 2in x 2inLow - 10pc 1ctn AWSR-138-090F 9ft x 1 3/8in Flat - 4pc AWSR-200-142F 14ft 2in x 2in Flat - 4pc 148005 1ctn 148112 1ctn 148212 AWSR-200-142L 14ft 2in x 2inLow - 10pc 1ctn 148013 AWSR-138-016F 16ft x 1 3/8in Flat - 4pc 1ctn 148114 AWSR-200-162F 16ft 2in x 2in Flat - 4pt 148214 AWSR-200-162L 16ft 2in x 2inLow - 10pc 1ctn 1ctn AWSR-138-018F 18ft x 1 3/8in Flat - 4pc 148015 1ctn AWSR-200-182F 18ft 2in x 2in Flat 148216 AWSR-200-182L 18ft 2in x 2inLow - 10pc 1ctn

Plastic Weatherseal Retainer

PWSR Rails (plastic weatherseal retainer)

- · Plastic Weatherstrip Retainer used as bottom rail on 2" doors.
- Style F has a flat bottom for wood or steel doors, packed 25 pieces per carton.
- · Style T is for Tongue & Grooved doors, packed 10 pieces per carton.
- · Use with our 3 1/2" Singe T vinyl for 1" of compression.
- Use with our 5 1/2" Wide provides 2 1/4" compression.
- Use with our 7" Single T vinyl for 3" of compression.
- · Install with self drilling Tek Screws, or rivets.
- · Available from stock in White.
- · Black and Grey are available by special order.

Sty	/le	F -	Flat	Re	taine	
UL.	10	1	1 nat	110	anie	

MODEL	DESCRI	PTION	PACK
PWSR-082F	8ft 2in	Flat Style Retainer - 25 pcs	1
PWSR-092F	9ft 2in	Flat Style Retainer - 25 pcs	1
PWSR-102F	10ft 2in	Flat Style Retainer - 25 pcs	1
PWSR-122F	12ft 2in	Flat Style Retainer - 25 pcs	1
PWSR-142F	14ft 2in	Flat Style Retainer - 25 pcs	1
PWSR-162F	16ft 2in	Flat Style Retainer - 25 pcs	1
			1
	PWSR-082F PWSR-092F PWSR-102F PWSR-122F PWSR-142F PWSR-162F	PWSR-082F 8ft 2in PWSR-092F 9ft 2in PWSR-102F 10ft 2in PWSR-122F 12ft 2in PWSR-142F 14ft 2in PWSR-162F 16ft 2in	PWSR-082F 8ft 2in Flat Style Retainer 25 pcs PWSR-092F 9ft 2in Flat Style Retainer 25 pcs PWSR-102F 10ft 2in Flat Style Retainer 25 pcs PWSR-102F 10ft 2in Flat Style Retainer 25 pcs PWSR-122F 12ft 2in Flat Style Retainer 25 pcs

Style I - Iongue & Groove Reta	ainer
--------------------------------	-------

STOCK #	MODEL	DESC	RIPTION	PACK
149044	PWSR-082T	8ft 2in	Tongue & Groove Style - 10 pcs	5 1
149046	PWSR-092T	9ft 2in	Tongue & Groove Style - 10 pcs	5 1
149048	PWSR-102T	10ft 2in	Tongue & Groove Style - 10 pcs	5 1
149050	PWSR-122T	12ft 2in	Tongue & Groove Style - 10 pcs	5 1
149052	PWSR-142T	14ft 2in	Tongue & Groove Style - 10 pcs	s 1
149054	PWSR-162T	16ft 2in	Tongue & Groove Style - 10 pcs	5 1
149056	PWSR-182T	18ft 2in	Tongue & Groove Style - 10 pcs	5 1

NATIONAL

STYLE "F"

W

WEATHERSTRIP

Toll-free order line: 1-800-NAT-DOOR (800-628-3667)

.180'

NATIONAL

1 1/4"

PACK

20ft

20ft

20ft

.180"

Beaded End

Style

Vinyl Bottom Seal Inserts


Vinyl Bottomseal Inserts

- · Provides better conformity to irregular floor situations.
- · Stays flexible below Zero²
- · Seals against snow, water, dirt and wind.
- · Made from 100% virgin vinyl, first quality materials only.
- · Mount to door using our WSR Rails or our Adjustable Bottom Rails. (see pages W16-W17)
- Available in White, Brown, Grey, Black, Tan and safety YELLOW!
- Available in 300 ft rolls, or in cut to length pieces

STOCK #	MOD	EL DESCRIPTION	PACK
141004	3in	Single "T" Vinyl Insert - 300ft/roll - Grey	1
141100	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - Black	1
141102	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - Brown	1
141104	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - Grey	1
141106	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - Tan	1
141108	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - White	1
141110	3 1/2in	Single "T" Vinyl Insert - 300ft/roll - Safety Yello	w 1
141124	3 1/2in	Double "T" Vinyl Insert - 300ft/roll - Grey	1
141144	3 1/2in	Beaded End Vinyl Insert - 300ft/roll - Grey	1

Vinyl Double-Wide Bottom Inserts

NATIONAL

STOCK #	MODEL	DESCRIPTION	PACK
141200	5 1/2in Wide >	200ft roll Single T Vinyl Bottorn Seal - Black	1
141202	5 1/2in Wide >	200ft roll Single T Vinyl Bottom Seal - Brown	1 1
141204	5 1/2in Wide >	200ft roll Single T Vinyl Bottom Seal - Grey	1
141210	5 1/2in Wide >	200ft roll Single T Vinyl Bottom Seal - Yellow	1
141470	5 1/2in Wide S	Single T Vinyl Cut to Length - Grey Only	20 ft

Twenty foot (20) Minimum order on cut to length pieces, and twenty foot increments

Vinyl Double-Wide Bottom Vinyl Inserts

· National's weatherseal provides double the compression of conventional bottom seal weatherstripping.

1st Quality Only"

DESCRIPTION

3 1/2in Single "T" Vinyl - GREY - Cut to Length

3 1/2in Double "T" Vinyl - GREY - Cut to Length

3 1/2in Beaded End Vinyl - GREY - Cut to Length

3 1/2in Single "T" Vinyl - Safety YELLOW - Cut to Length 20ft

- 5 1/2" Wide provides 2 1/4" compression.
- 7" Wide provides 3" compression. ٠
- · Provides better conformity to irregular floor situations.
- · Seals against snow, water, dirt and wind.
- Made from 100% virgin vinyl, first quality materials only.
- Mount to door using our WSR Rails or our Adjustable Bottom Rails. (see page W16-W17)
- · Available in rolls, or in cut to length pieces
- · Other Colors & Styles not shown available by special order. (Safety Yellow, Brown, White, Tan, and Black in Single T, Double T or Beaded End)

STOCK #	MODEL DESCRIPTION	PACK
141300	7in Wide x 200 ft roll Single T Vinyl Bottom Seal - Black	1
141302	7in Wide x 200 ft roll Single T Vinyl Bottom Seal - Brown	1 1
141304	7in Wide x 200 ft roll Single T Vinyl Bottom Seal - Grey	1
141310	7in Wide x 200 ft roll Single T Vinyl Bottom Seal - Yellow	1
141480	7in Wide Single T Vinyl Cut to Length - Grey Only	20 ft

Twenty foot (20) Minimum order on cut to length pieces, and twenty foot increments

OUR PREMIUM QUALITY MATERIAL GIVES A BETTER SEAL

Double T

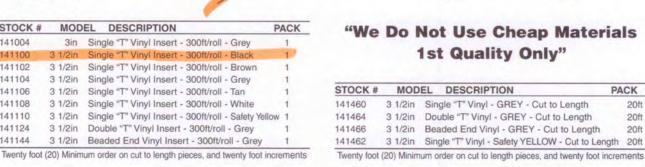
Style

.300'

.300'

MODEL

.300"


Single T

Style

.090"

.300

050

PRODUCT INFORMATION . COMMERCIAL/RESIDENTIAL . UNITED STATES

FROTH-PAK" FOAM INSULATION

1. PRODUCT NAME FROTH-PAK" Foam Insulation

2. MANUFACTURER

The Dow Chemical Company Dow Building Solutions 200 Larkin Midland, MI 48674 1-866-583-BLUE (2583) Fax 1-989-832-1465

www.dowbuildingsolutions.com

3. PRODUCT

DESCRIPTION

BASIC USE

FROTH-PAK Foam Insulation is a two-component, quick-cure polyurethane foam that fills cavities, penetrations, cracks and expansion joints. Unlike one-component foam, FROTH-PAK' Foam Insulation is a chemically cured foam, significantly reducing curing time. FROTH-PAK[™] Foam Insulation

dispenses, expands and becomes tack-free in seconds. The product will skin over in 30-40 seconds and will be completely cured in minutes.*

The Class-A rating (flame spread of 25 or less) of FROTH-PAK

Foam Insulation allows its use in a wide range of interior and exterior industrial, commercial, institutional and residential settings. Check with local codes prior to use. If used in an exterior setting, a coating must be applied for ultraviolet (UV) protection.

SIZES

FROTH-PAK" Foam Insulation is typically sold as a complete 42 lb (FROTH-PAK" 200) portable kit that includes pressurized "A" and "B" cylinders, plus dispensing gun/ hose assembly and accessories. FROTH-PAK[™] Foam Insulation is also available in refillable. returnable cylinders for commercial applications requiring a large amount of foam. See Table 1 for yield and size information.

4. TECHNICAL DATA

APPLICABLE STANDARDS

- ASTM International · C203 - Standard Test Methods for Breaking Load and Flexural
- Properties of Block-Type Thermal Insulation C273 – Standard Test Method
- for Shear Properties of Sandwich Core Materials
- C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
- D1621 Standard Test Method for Compressive Properties of **Rigid Cellular Plastics**
- D1622 Standard Test Method for Apparent Density of Rigid Cellular Plastics
- D1623 Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics
- D2842 Standard Test Method for Water Absorption of Rigid Cellular Plastics
- E96 Standard Test Methods for Water Vapor Transmission of Materials
- · E283 Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows. Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen
- E2178 Standard Test Method for Air Permeance of Building Materials

PHYSICAL PROPERTIES

FROTH-PAK[™] Foam Insulation exhibits the typical properties and characteristics indicated in Table 2 when tested as represented.

FIRE PROTECTION

Cured FROTH-PAK'" foam is combustible and will burn if exposed to open flame or sparks from highenergy sources. Do not expose to temperatures above 240°F.

CODE COMPLIANCES

FROTH-PAK[™] Foam Insulation complies with the following codes:

- Underwriters Laboratories, Inc. (UL) Classified, see Classification Certificate R7813
- National Fire Protection Association - per NFPA 286 testing, can be left exposed in non-fire-resistant rated roof/wall junctures, maximum 6" high and 2" deep (unlimited width)

Contact your Dow sales representative or local authorities for state and local building code requirements and related acceptances.

5. INSTALLATION

Complete operating instructions are provided with each FROTH-PAK" Foam Insulation purchase, Read all information and cautions before application. Note: Avoid overfilling restricted spaces. Chemicals exert force during reaction, and expansion of foam may result in substrate deformation.

TABLE 1: SIZES AND THEORETICAL YIELDS FOR FROTH-PAK FOAM INSULATION

THEORETICAL YIELD(1), BOARD FT	
BOARD FT	
200	
620	
2,060	
6.860	
15.430	
43.890	

(1) The theoretical yield has become an industry standard for identifying certain sizes of two-component kits. Theoretical yield calculations are performed in perfect laboratory conditions, without taking into account the loss of blowing. agent or the variations in application methods and types

*Testiomark at The Eaw Chimical Gompany ("Daw") or an athleted London y of Driv "Actual card ford well doping on temperature, four flockness, the specific much re-ing the second se

SAFETY AND CONDITIONS OF USE

- Read the instructions and . Material Safety Data Sheets carefully before use
- FROTH-PAK ** spray polyurethane foam contains isocyanate, hydrofluorocarbon blowing agent and polyol. Do not breathe vapor or mist. Use only in wellventilated areas or with proper respiratory protection. Supplied air or an approved air-purifying respirator equipped with an organic vapor sorbent and a P100 particulate filter may be required to maintain exposure levels below

ACGIH, OSHA, WEEL or other applicable limits. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure. air-supplying respirator (air line or self-contained breathing apparatus).

- Isocvanate is irritating to the eyes, skin and respiratory system, and may cause sensitization by inhalation or skin contact.
- FROTH-PAK[™] foam will adhere to most surfaces and skin. Do not get foam on skin. Wear protective clothing (including long sleeves).

TABLE 2: TYPICAL PHYSICAL PROPERTIES OF FROTH-PAK M FOAM INSULATION

PROPERTY AND TEST METHOD	VALUE
Flame Spread/Smoke Developed(192), ASTM E84/UL 723	25/350
Nominal Density, ASTM D1622, lb/ft3	1.75
Thermal Resistance ⁽³⁾ per inch, ASTM C518, ft ² •h•°F/Btu, R-value, min.	
Initial Acced 90 down at 14095	6,6
Aged 90 days at 140°F Air Leakage.	5,6
ASTM E283, cfm/ft ² @ 1.57 psf	
ASTM E2178, L/s/m² @ 75 Pa	0
Water Vapor Permeance, ASTM E96	0
perm @ 1" thick	3.9
perm @ 2" thick	2.0
Water Absorption, ASTM D2842, % by volume	2.17
Dimensional Stability, ASTM D2126, % volume change	
100°F/100% RH @ 1wk	4.6
100°F/100% RH @ 2wks	5.0
158°F/100% RH @ 1wk	6.5
158°F/100% RH @ 2wks	5.1
-40°F/amb RH @ 1wk	0.9
-40°F/amb RH @ 2wks	0.9
158°F/amb RH @ 1wk	3.1
158°F/amb RH @ 2wks	2.3
Compressive Strength, ASTM D1621, lb/ind, parallel	21.1
Flexural Strength, ASTM C203, Ib/in ² , parallel	22.7
Tensile Strength, ASTM D1623, Ib/in ² , parallel	26.7
Shear Strength, ASTM C273, Ib/in², parallel	16.7
Maximum Service Temperature, °F	240
 Tested at 2" thickness, full coverage. This numerical flame spread rating is not intended to reflect bazards presented by this or neurality. 	

spread rating is not intended to reflect hazards presented by this or any other material under actual fire conditions. (3) R means resistance to heat flow. The higher the R-value, the greater the insulating power.

www.dowbuildingsolutions.com

Technical Information 1-866-583-BLUE (2583) Sales Information 1-800-232-2436

THE DOW CHEMICAL COMPANY 200 Larkin Midland, MI 48674

NOTICE No Headom from any patent dwined by Dow or other's is to be inferred. Because use conditions and applicable laws may citter trans one location to enotine and may change with time. Dustomer is responsible for outermining whather products and the information in the document are appropriate for Castomer's user, and for ensuring that Customer's workplace and dispotal practices are in conclusion with applicable lows and other or regions. Dow assumes no bolgation or labeling for the analysis and applicable to the and the information in the document and products and there is no problem to be applicable lows and other or regions. Dow assumes no bolgation or labeling for the analysis of the "one" of the "Company" mean the Daw figal entry selling the products to Customer unless otherwise expression note. NO EXPRESS WARRANTES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTES SPECIFICALLY PROVIDED BY DOW. Are IMPLIED WARRANTES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR 6 PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Dow Polyurethane Foam Insulation and Sealants

Jow Poryurchane Foam Insulation and Sealants. AUTION: When cured, these products are combusticle and will burn it exposes to open flame or spress from right-energy sources. [2d not exclose to temperatures above 240%. For more information, consult VSOS, call Cow at 1666-583-BLUE (2563) or contact your local building inspector. In an emergency, cart 1-090-636-4400.

FROTH-PAK® spray colyuremente foam contains, socyanate, hydroffuotocarbon blowing agant and polyol, Read the instructions and Manérial Sarety Data Sheets carefully before use. Wear potentive oloning including long steves) aloves, gogges or safety glasses, and poper respiratory potention, Supplied an all approved an-puntying respirator equipped with an organic vapil screent and e PTOC particulate fater may be required to mainten exposure levels, below ACGH+, OSHA, WEE, or other applicable trans. Provide adequate vehilation. Cantents under pressure.

Building and/or construction practices unrelated to building materials could greatly afect moreour and the potential for mole tormation. No material supplier including Dow sam give aboutance that mold will nor sevelop in liny Security system

-0m No. 179-044188-0311H8M

gloves, and goggles or safety glasses. Cured foam must be mechanically removed or allowed to wear off in time.

The contents are under pressure. . FROTH-PAK" foam should not be used around heaters, furnaces, fireplaces, recessed lighting fixtures or other applications where the foam may come in contact with heat-conducting surfaces. Cured FROTH-PAK' foam is combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240°F

Visit www.dowbuildingsolutions.com or contact a local Dow representative for more specific instructions.

6. AVAILABILITY

FROTH-PAK" Foam Insulation is distributed through an extensive network. For more information, call 1-800-232-2436.

7. WARRANTY

Not applicable.

8. MAINTENANCE

Not applicable.

9. TECHNICAL SERVICES

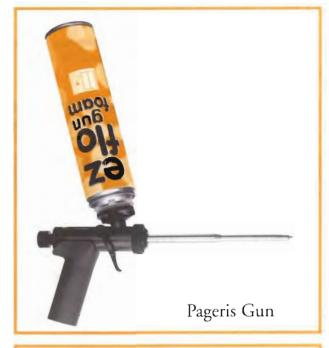
Dow can provide technical information to help address questions when using FROTH-PAK " Foam Insulation. Technical personnel are available to assist with any insulation project. For technical assistance, call 1-866-583-BLUE (2583).

10. FILING SYSTEMS

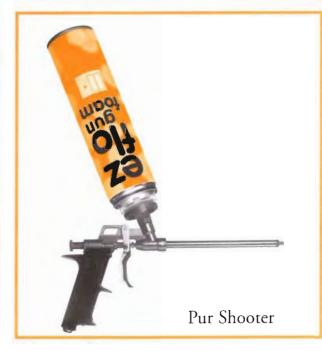
- www.dowbuildingsolutions.com
- www.sweets.com

ez flo gun foam

- Product Benefits
 High Volume
 R-Factor of 5 per inch
 Closed Cell Foam
 1/2" Bead runs 900 lin. ft
- Low Expansion

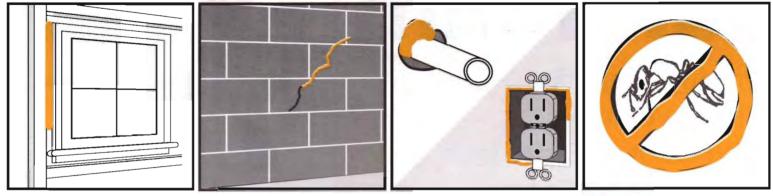

Gun Benefits

- Complete Control
- No Mess
- Labor Saving
- Quality Engineered
- Limited Warranty


<u>Uses</u>

- Around doors & windows
- Stops air flow
- Around pipe chases
- Seals out insects
- Keeps water out

Todol Products, Inc. http://www.todol.com email: info@todol.com



EZ Flo is a closed cell self curing foam which expands, bonds and seals. Stopping the passage of air, gases, water and dust. This helps to increase energy efficiency by stopping air exchange around windows, doors, wall intrusions and at sill plates. Its lightweight, closed cell structure makes it useful for deadening sound, flotation and thermal insulation. Ez Flo can expand to fill holes around pipes and ducts to reduce noise, seal out insects, and fill rodent holes. It is also useful for sealing work areas prior to asbestos stripping to prevent the transport of fibers.

Increases energy efficiency •Fills holes around pipes and ducts •Reduces noise •Controls radon •Stops foundation leaks •Seals out insects •Confines asbestos fibers •Strengthens tub bases •Seals stresskin panels •Upgrades weatherization •Seals electrical conduits •Repairs boat flotation •Seals refrigeration panels •Waterproofs •Caulks HVAC intrusions.

How to Use:

1. Shake the can of foam.

2. Thread the can into the adapter on the top of the gun - DO NOT OVER TIGHTEN.

3. Pull the trigger for about 5 seconds to purge

all air and moisture out of the gun.

4. Wipe or mist water into the joint which is to be foamed.

5. Select the bead size by interacting between the trigger and the flow adjustment screw.

6. The can should be in a vertical position over the gun when foaming.

7. Remove uncured foam from the end of the dispensing tube after each use. Tighten the flow adjustment screw for storage.

8. To replace an empty can, unscrew the empty can and promptly screw a replacement can into the adapter. If no replacement is available, leave the empty can in place until a replacement is at hand.

ALWAYS KEEP A CAN OF FOAM ON THE GUN; FAILURE TO DO THIS WILL ALLOW FOAM TO CURE AND RESULT IN PERMANENT DAMAGE TO THE GUN.

Best Results:

Use in hot weather

1. Shake the can for 30 seconds.

- 2. Lay out practice beads.
- 3. Mist the area with water.

Use in cold weather

- 1. Warm the can to room temperature- $60^{\circ}F$ to $80^{\circ}F$
- 2. Lay out practice beads.
- 3. Mist the area with water.

Changing Cans of EZ Flo:

1. With the canister on its base and the gun nozzle pointing into a suitable container, squeeze the trigger until mainly gas is discharged.

2. Unscrew the can from the gun and wash away any foam residue from around the ball valve housing with a small amount of suitable solvent. 3. Fit a new canister as described in "How to Use". Purge out air.

4. Do not remove an empty can from the gun until you have a new can to put on the gun.

Safety Recommendations:

Due to possible production of highly flammable vapor/air mixtures, provide sufficient ventilation. Do not smoke around vapors. In case of eye contact; rinse with plenty of water and seek medical advice. In case of skin contact, wash off with plenty of water and soap. Wear suitable protective gloves and goggles during work. In case of accident, or if you feel unwell, seek immediate medical advice (if possible, show this label).

Caution

Container is pressurized. Protect from sunlight and temperatures above 500°C, Do not pierce or burn even after use. Do not spray against flames or onto incandescent objects.

Harmful when inhaled. Irritates eyes, respiratory organs and skin. Can result in sensitization when inhaled. Can produce highly flammable vapor/air mixtures during use.

Contains: Polyol prepolymer CAS 59675-67-1,4,4' Monomeric diphenylmethane disocyanate (MDI) CAS 101-68-8. Chlorodiflouroethane 75-68-3. MDI can irritate eyes respiratory organs and skin. Can cause sensitization when inhaled.

Helpful Hints:

1. Always keep a can on the gun. Never leave gun without a can on it, this will clog the gun.

- 2. Mist the area with water before foaming.
- 3. Can temperature must be over 60°F 80°F
- 4. Shake can well.
- 5. Never use solvent cleaner on the gun.
- 6. For larger voids, foam a 2" layer, mist with
- water, keep alternating layer with mist. 7. Always foam with can vertical.
- 8. Tighten set screw when finished foaming.

Limited Warranty:

The manufacturer will replace at no charge to purchaser any product proven to be defective. The warranty is limited to replacement of material only, and no liability is assumed for use of this product by the purchaser, or for any consequential damages arising from its use in any form whatsoever.

TYPICAL PROPERTIES OF CURED FOAM Color Yellowish Expanded volume; free rise @ 68° relative humidity9 gals./can or 1800 cu. inches Density I.2 Lbs /cu ft Cell structure excessively closed, approx. 80% Compression load deflection (10% compression)8.5 Lbs./in² Minimum can temperature40°F (5°C) Minimum surface temperature32°F (0°C) Temperature stability of cuted foam -40°F to +176°F (-40°C to +80°C) Tack-free @ 68°F (20°C)15 minutes Cuttable @ 68°F (20°C)30 minutes Flammability test ASTM E 84Flame spread index: 25Smoke density. 210 Class 1: fire rating construction Thermal resistance: R factor ASTM C 518 5.0/in.

Todol Products, Inc.

20 Charles Street P.O. Box 398 Natick, MA 01760 Phone: 508-651-3818 Fax: 508-651-0729

Visit our web site: http://www.todol.com Contact us via email: email: info@todol.com

AIRTITE® Siliconized Acrylic Caulk - DuPont

Our Company Science Sustainability Investor Center Media Center Career Center

Search DuPont

QU POND.

The miracles of science-

DuPont[™] Caulk

DuPont[™] Caulk Home

Pick Your Sealing Project

Kitchen & Bath

Windows, Doors & Siding Sealant

DuPont™ Paintable Premier Silicone

DuPont™ Window & Door Premier Silicone

DuPont™ Window & Door Choice Silicone

DuPont[™] Window, Doors, & Siding Silicone w/ Kevlar®

DuPont[™] Painters Caulk w/ Speed Dry[™] Technology

DuPont[™] AIRTITE® Siliconized Acrylic Caulk

Aluminum & Metal

Driveway & Roofing

Concrete & Masonry

Paintable Caulk

About our Products

Using Our Products

Where to Buy

Customer Care

Contact Us Print This Page

DuPont[™] AIRTITE[®] Siliconized Acrylic Caulk with Weather-Tight Seal technology

DuPont [™] AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology is ideal for sealing gaps around windows, doors, trim, and a variety of other interior and exterior surfaces. With this new technology, DuPont [™] AIRTITE® Siliconized Acrylic Caulk forms a weather-tight seal that has been tested by accepted standards for adhesion, low temperature flexibility, extension/recovery, and weathering. Reduce air leaks in your home and increase energy efficiency by caulking or sealing with an acrylic sealant.

DuPont[™] AIRTITE® Siliconized Acrylic Caulk can help eliminate air infiltration into a home when used around doors and windows. The Department of Energy - ENERGY STAR® Home Sealing guidelines and the NAHB Green Home Building Guidelines recommend the use of caulk to increase the energy efficiency of a home. Using DuPont[™] Caulk may also help contribute towards U.S. Green Building Council's LEED® (Leadership in Energy and Environmental Design) points.

DuPont[™] AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology comes in both a convenient squeeze tube and cartridge, which requires a caulk gun for application.

For interior and exterior acrylic sealant, choose the name that has brought you quality products for more than 200 years - DuPont.

Product Features:

- Exceeds ASTM C-834, Grade -18° C
- 40-year guarantee
- Interior / Exterior
- Paintable
- Water-resistant seal
- Airtight seal
- VOC less than 1.5%
- Cured bead is mildew resistant

Available colors and packaging:

 10.1 oz. cartridges & 5.5 oz. squeeze tubes available in: White and Clear

Is Your Home Energy Efficient?

Air-seal your home with DuPont ™ AIRTITE® Siliconized Acrylic Caulk to increase energy efficiency and comfort. Download the ENERGY STAR® Do-It-Yourself Guide to get started.

» Download Now

DuPont[™] AIRTITE® Siliconized Acrylic Caulk

DuPont[™] AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology is now available at Lowe's Home Improvement Stores nationwide and online.

» Buy Now!

DuPont[™] Residential Sealant

Testing Standards:

- ASTM C-834, Type OP, Grade -18'C, White
- ASTM C-834, Type C, Grade 0°C, Clear

Adheres to:

- Concrete
- Wood
- Metal
- Marble
- Glass
- Porcelain
- Ceramic tile
- Masonry

FAQ | Site Map | Legal Notices & Terms of Use | PRIVACY

Copyright © 2012 DuPont or its affiliates. All rights reserved. The DuPont Oval Logo, DuPont[™], The miracles of science[™] and all products denoted with ® or [™] are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.

SHEATHING TAPE

VentureTape[®] 1585CW-2 is a is a polypropylene sheathing tape coated with an aggressive acrylic pressure sensitive adhesive (PSA) designed for use as a closure system and vapor seal on all interior and exterior sheathing materials. VentureTape 1585CW-2 exceeds most building code requirements and can be used for new construction as well as repair on all vapor barrier materials. Available in red, white, and clear; VentureTape® 1585CW-2 is the highest performing, highest value product on the market today.

Product Construction

Biaxially oriented polypropylene (BOPP)

Acrylic adhesive

Features & Benefits

- High performance sheathing tape installs and performs well over a wide temperature range
- Excellent vapor barrier tape on polyethylene film
- Performs well as a seam tape on extruded foam products such as Styrofoam[®] and Foamular[®]
- Applies to all major housewraps including Tyvek[®] and Typar[®]
- Great for use as a sealing tape on DensGlass Gold[®] and other sheathing brands

Test	Typical Value	Typical Value (Metric)	Test Method
Product Thickness	3.0 mils	0.08 mm	PSTC-133
Peel Adhesion [∆]			
to stainless steel	45 oz/in	12.5 N/25 mm	PSTC-101
to polyethylene	16 oz/in	4.5 N/25 mm	PSTC-101
to Tyvek [®]	25 oz/in	6.9 N/25 mm	PSTC-101
Shear Adhesion	>24 hrs @ 2.2 psi	>24 hrs @ 15.2 kPa	PSTC-107
Tensile Strength	20 lb/in	90.4 N/25 mm	PSTC-131
Elongation	130 %	130 %	PSTC-131
WVTR	0.061 perms		ASTM E96
Service Temperature	-40 to 185 °F	-40 to 85 °C	

△ - 20 minute dwell

Typical values are not intended to be used for specification development. Technical data is believed to be true and accurate; Venture Tape recommends that the purchaser test for fitness of use in all applications.

Product Configurations

- 1 7/8" x 72 yards & 2 1/2" x 72 yards standard
- Custom rolls available on request

Contact Venture Tape today for a complete list of products or a free sample

Toll Free North America 800-343-1076 From United Kingdom 0-800-962-957 From Australia 1-800-122-797 www.venturetape.com

GTA - NHT, Inc. Venture Tape

Venture Tape 30 Commerce Rd., Rockland, MA 02370 Tel 781-331-5900; Fax 781-871-0065 800-343-1076 (U.S.A.), 800-544-1024 (Canada) Toll Free Fax 877-264-5490 www.venturetape.com

FIREBARRIER SPRAYACRYLIC

1. PRODUCT NAME

A/D FIREBARRIER SprayAcrylic

2. PRODUCT DESCRIPTION

A/D FIREBARRIER SprayAcrylic is a single component, water-based elastomeric that cures to a durable, flexible, fire resistant seal.

Basic Use: A/D FIREBARRIER SprayAcrylic is designed for use as a firestop sealant in joint firestop configurations including head-ofwall, curtain wall, perimeter and floor to wall construction joints.

Composition and Materials:

A/D FIREBARRIER SprayAcrylic is water-based. It is designed for spray and trowel application to vertical and horizontal surfaces. It forms durable, flexible, watertight bonds with most materials. Physical properties will remain stable over time. Product contains mold growth inhibiters.

A/D FIREBARRIER SprayAcrylic contains water and is best if protected from freezing. If frozen, thaw completely before use. Store, transport and install at temperatures above 40°F (5°C).

Packaging: A/D FIREBARRIER SprayAcrylic is available in 5 US gallon (18.9 L) pails. Coverage per pail is approximately 67 ft² (6.3 m²) at 1/8-in. (3 mm) wet thickness.

Color: Red

Application Limitations:

• Do not install when ambient temperature or temperature of substrate is below 40°F (5°C).

- Protect from freezing and water until sealant is fully cured.
- Do not apply to surfaces with special protective or cosmetic coatings without first testing adhesion and prior consultation with manufacturer.
- Not intended for immersion or continuous exposure to water.
- Do not install on hot surfaces above 200°F (90°C).
- A/D FIREBARRIER SprayAcrylic has been tested in numerous firestop joint firestop systems. For optimum economy and performance, the product should be applied to a thickness equal to or slightly greater than the

Table 1 – PHYSICAL PROPERTIES*			
Color	Red		
рН	7.0 - 9.0		
VOC (grams/liter): EPA Method 310	65		
Flame Spread (ASTM E84)	15		
Smoke Development (ASTM E84)	0		
STC Rating ASTM E90	Restored to 59 in a U411 wall		
Antifungal	Contains antifungal additive		
Cure Time	3 - 5 days		
Skin over Time	Overnight		
Movement Capability: (UL 2079; class I, II, III)	<u>+</u> 25 %, maximum		
Shore "A" Hardness (ASTM C-661)	15 - 20		
Application Temperature	40 - 110°F (5 - 43°C)		
Freeze Sensitive	Yes		
Paintable	Yes		
*Values given above are not intended for specification preparation.			

required minimum test design thickness. Excessive depth to width ratios may cause sealant failure – **do not apply excessive thickness.** As a guideline, we recommend that the minimum test system thicknesses not be exceeded by more than 25%.

3. TECHNICAL DATA

Standards: A/D FIREBARRIER SprayAcrylic has been tested and in accordance with the following: ANSI/UL1479, ANSI/UL2079, ASTM E814 and CAN4/ULC-S115M.

For details of rated firestop systems see UL's Fire Resistance Directory, Volume 2. Systems certified for use in Canada are available under the cUL mark.

Surface Burning Characteristics: (ASTM E84) Flame Spread: 15 Smoke Developed: 0

4. INSTALLATION

No dilution or mixing is required for use. Clean all openings to be firestopped by removal of foreign matter and contaminants such as oil, dust, grease, frost, water, surface dirt, old sealants, glazing compounds, protective coatings, etc.

Priming: Generally, a primer will not be required. It is recommended that a test sample of sealant be applied on the surface to test adhesion.

Masking: Surfaces adjacent to openings to be firestopped can be masked to assure a neat appearance. The masking tape should not be allowed to touch the clean surface to which the sealant is to adhere. Remove masking tape immediately.

Forming/Backing: Install forming / backing material as specified by the tested firestop system. Unless otherwise specified, A/D FIREBAR-RIER Mineral Wool is the recommended backup material.

Application: A/D FIREBARRIER SprayAcrylic may be applied by spray or trowel to vertical and horizontal surfaces.

Refer to tested firestop system for minimum wet film thickness that is required - usually 1/8 (3.2 mm). Use a wet film gauge to measure wet film thickness. Apply A/D FIREBARRIER SprayAcrylic so as to seal the mineral wool backer with the required thickness and overlap adjacent surfaces a minimum of 1/2 in. (13 mm) or as otherwise specified in tested firestop system. Excess sealant should be wiped from glass, metal and plastic surfaces while uncured. Clean up with water. Follow equipment manufacturers' instructions for clean up and use. Protect adjacent surfaces from oversprav and unintended contact - Cured Sealant

Table 2 – Quick Reference Guide – Spray Application of SprayAcrylic			
Hoses	50 ft of 1/4 in. (I.D.) Blue Max		
Whip line	6 ft - ¼" (I.D.) whip line with swivel		
Tips	419 - 423 heavy-duty self cleaning reversible type 621 - 625 heavy-duty self cleaning reversible type		
Spray machine	Airless sprayer capable of 3300psi pressure and min. delivery of 0.95 gpm without surging		
Filters	60-80 mesh in gun & 60-80 in manifold		
Mixing	Heavy-duty drill with paddle for 30 seconds		
Application Rate	1/8 in. (3 mm) wet		
Finish	Follows profile of backer material		
Trowel	May be toweled		
Clean-up	Water		

May Be Very Difficult To Remove Without Altering Or Damaging The Surface To Which The Sealant Has Been Applied.

Precautions: May cause irritation. May be harmful if swallowed. Avoid contact with eyes. Wash hands thoroughly after handling. Use only as directed. Keep out of reach of children. To safely use this product, read and abide by Material Safety Data Sheet (MSDS).

Shelf Life: A/D FIREBARRIER SprayAcrylic has a shelf life of 1 year from the date of manufacture when stored in original and unopened container below 110°F (43°C) and above 40°F (5°C).

5. MAINTENANCE

No maintenance should be required. If product becomes damaged, replace with new A/D FIREBARRIER SprayAcrylic. All surfaces should be clean and free of any material that would prevent adhesion.

6. AVAILABILITY AND COST

Availability: A/D sales offices and technical representatives are located throughout North America. (See below).

7. TECHNICAL SERVICES

Contact nearest A/D office or representative

FIRE PROTECTION SYSTEMS

Head Office: 420 Tapscott Road, Scarborough, Ontario, M1B 1Y4 Tel: (800) 263-4087 or (416) 292-2361 Fax: (416) 298-5887 www.adfire.com

part of the Carboline, Company

FIREBARRIER ACRYLIC SEALANT

1. PRODUCT NAME

A/D FIREBARRIER Acrylic Sealant

2. PRODUCT DESCRIPTION

A/D FIREBARRIER Acrylic Sealant is a single component, water-based acrylic sealant intended for use as a firestop system component.

Basic Use: A/D FIREBARRIER Acrylic Sealant is designed for economical use in joint and service penetration firestop configurations. It forms a durable, flexible, watertight bond with most construction materials. In most cases, no primer is required. May be applied by caulking gun or trowel. Physical properties will remain stable over time.

Composition and Materials:

A/D FIREBARRIER Acrylic Sealant is designed to tool easily. It is water based and must be protected from freezing and from water until fully cured. Store and install at temperatures above 40°F (5°C).

Color: Red

Packaging: See table 2. Refer to the A/D FIREBARRIER estimating guide for complete volume and coverage information.

Application Limitations:

- Do not install when ambient temperature or temperature of substrate is below 40°F (5°C).
- Protect from freezing and water until sealant is fully cured.
- Do not install to surfaces with special protective or cosmetic coatings without prior consultation with manufacturer and first testing adhesion.
- Do not install where abrasion or physical abuse is anticipated.
- For best economy and performance the product should be applied to a thickness equal to or slightly greater than the minimum test design thickness.
- Excessive depth to width ratios may cause sealant failure – do not apply excessive thickness. As a guideline, we recommend that the minimum test system thicknesses not be exceeded by more than 25%.

Table 1 – PHYSICAL PROPERTIES*				
Color	Red			
pH	7.0 - 9.0			
VOC (grams/liter): EPA Method 310	35			
Flame Spread (ASTM E84)	15			
Smoke Developed (ASTM E84)	0			
STC Rating ASTM E90	Restored to 56 in a U411 wall			
Antifungal	Contains antifungal additive			
Cure Time	3 - 5 days			
Skin over Time	Overnight			
Movement Capability: (UL 2079; class I, II, III)	<u>+</u> 33 %, maximum			
Shore "A" Hardness (ASTM C-661)	15 - 20			
Application Temperature	40 - 110°F (5 - 43°C)			
Freeze Sensitive	Yes			
Paintable	Yes			
*Values given above are not intended for specification preparation.				

Standards: A/D FIREBARRIER Acrylic Sealant has been tested in accordance with the following: ANSI/UL1479, ANSI/UL 2079, ASTM E814 and CAN/ULC-S115M.

3. TECHNICAL DATA

A/D FIREBARRIER Acrylic Sealant is listed by ULI. For details of rated firestop systems see ULI's Fire Resistance Directory, Volume 2. Systems certified for use in Canada are available under the cUL mark.

4. INSTALLATION

Clean all openings to be firestopped by removal of foreign matter and contaminants such as oil, dust, grease, frost, water, surface dirt, old sealants, glazing compounds, protective coatings etc. Cleaning of all surfaces should be done on the same day in which the sealant is applied.

Priming: A/D FIREBARRIER Acrylic Sealant does not require priming. view of the In unpredictability of surface characteristics, it is recommended that a test sample of sealant be applied on the surface to test adhesion.

Masking: Areas adjacent to openings to be firestopped can be

masked to assure a neat appearance. The masking tape

should not be allowed to touch the clean surface to which the sealant is to adhere. Remove masking tape immediately.

Install backup materials as specified. Excess sealant should be wiped from glass, metal and plastic surfaces while uncured. Clean up is with water.

CURED SEALANT IS USUALLY VERY DIFFICULT TO REMOVE WITHOUT ALTERING OR DAM-AGING THE SURFACE TO WHICH THE SEALANT HAS BEEN APPLIED.

Precaution: May cause irritation. May be harmful if swallowed. Avoid getting in eyes. Wash hands thoroughly after handling. Use only as directed.

Keep out of reach of children.

To safely use this product, read and abide by Material Safety Data Sheet (MSDS).

Shelf Life: When stored at or below 110°F (43°C) and above 40°F (5°C), A/D FIREBARRIER Acrylic Sealant has a shelf life of one year from date of manufacture.

Note: Protect from freezing.

	Table 2					
Type of Packaging	Size	Volume	Coverage at ¼" deep x 1" wide			
Cortridação	10.1 fl. oz.	18.2 in ³	6.1 lineal ft.			
	(300 mL)	(300 cm ³)	(1.86 lineal m)			
Cartridges	28.7 fl. oz.	51.8 in ³	17.3 lineal ft.			
	(850 mL)	(850 cm ³)	(5.27 lineal m)			
Foil packs	20 fl. oz.	36 in ³	12.2 lineal ft.			
	(600 mL)	(600 cm ³)	(3.72 lineal m)			
· · ·						
Pails	5 gal	1155 in ³	384.4 lineal ft.			
	(18.9 L)	(18900 cm ³)	(117.18 lineal m)			

5. AVAILABILITY AND COST

Availability: A/D sales offices and technical representatives are located throughout North America. (See below)

6. MAINTENANCE

No maintenance should be required. If sealant becomes damaged, replace damaged portion. Clean surfaces in damaged area and repair with fresh A/D FIREBARRIER Acrylic Sealant. Damage by other trades should be patched at the expense of trade causing damage.

7. TECHNICAL SERVICES Contact nearest A/D office.

FIRE PROTECTION SYSTEMS

Head Office: 420 Tapscott Road, Scarborough, Ontario, M1B 1Y4 Tel: (800) 263-4087 or (416) 292-2361 Fax: (416) 298-5887 www.adfire.com

1. PRODUCT NAME

A/D FIREBARRIER Mineral Wool

2. PRODUCT DESCRIPTION

Pre-formed, semi-rigid, noncombustible mineral wool insulation. The mineral wool is precut into 48 in. (1220 mm) lengths and is available in various depths and widths for immediate installation.

Basic Use: A/D FIREBARRIER Mineral Wool is intended for use as a firestop system component and forming material in tested firestop systems and designs. It is friction fitted into openings, joints, gaps, spaces and voids in fire rated assemblies. It is usually used in conjunction with firestop sealant products such as A/D FIREBARRIER Silicone, Silicone SL, Seal, Seal NS Acrylic Sealant and Intumescent Sealant.

Composition and Materials:

A/D FIREBARRIER Mineral Wool is a noncombustible semi-rigid combination of basaltic mineral wool and proprietary binders.

Packaging: A/D FIREBARRIER Mineral Wool is available in 25-lb (11 kg) nominal weight polyethylene bags. Precut to required width and depth, the 48 in. (1220 mm) strips allow for ease of handling and installation. Refer to Estimating Guide for size availability.

Color: Brown

Standards: A/D FIREBARRIER Mineral Wool has been tested in accordance with:

- CAN4-S114, "Standard Method of Test For Determination of Non-combustibility In Building Materials"
- ULC-S115-95, Standard Method of Fire Tests of Firestop Systems"
- ANSI / UL 1479 and ASTM E814, "Standard Method of Fire Tests of Through-Penetration Fire Stops"

Table 1 - Physical Properties				
Property Result				
Density	Nominal 4 lb./ft ³ (64 kg/m ³)			
Moisture Adsorption	< 1%; inorganic, will not mildew			
Service Temperatures	Continuous to 1200F (649C)			
Linear Shrinkage	0% @1050ºF (551ºC); <1% @1200ºF(649ºC)			
Recovery after 10% compression	100%			
Asbestos	None			
Surface Burning, CAN4- S102, ASTM E84 & UL723	Flame Spread – 5; Smoke Developed – 0			
Non-combustibility, CAN4-S114	Listed as noncombustible by ULC			
Non-Corrosive, NRC 1.36, ASTM C692, C795 & C871	Will not cause or contribute to corrosion			

 UL 2079, "Standard Method of Tests For Fire Resistance of Building Joint Systems."

3. TECHNICAL DATA

Refer to Table 1 - Physical properties.

For details of rated firestop systems, see ULI's Fire Resistance Directory, Volume 2, ULC's List of Equipment and Materials, Firestop Systems and Components, ITS's Directory of Listed Products and Factory Mutual's Approval Guide.

A/D FIREBARRIER Mineral Wool is nominal 4 lb/ft³ (64 kg/m³) and complies with the requirements of our UL tested firestop systems where generic mineral wool is referenced.

4. INSTALLATION

Install A/D FIREBARRIER Mineral Wool to the minimum 25% or 33% compression required by the tested firestop system - see Table 2. Compression must always be perpendicular to the grain. Butt adjacent sections of A/D FIREBARRIER Mineral Wool tightly against each other. Leave no voids. A/D FIREBARRIER Mineral Wool is the recommended backup material for A/D FIREBARRIER Silicone, Silicone SL, Seal, Seal NS, Acrylic Sealant and Intumescent Sealant. Determine the depth of firestop sealant required, and recess the A/D FIREBARRIER Mineral Wool the appropriate depth.

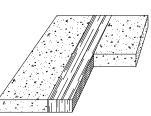
Precautions: To safely use this product, read and abide by the Material Safety Data Sheet (MSDS). Avoid inhalation of dust during use. Avoid skin and eye contact. Mineral Wool fibre, like other nuisance particulates, may cause itching and possible irritation of eyes and/or upper respiratory tract.

5. AVAILABILITY AND COST

Availability: A/D sales offices and technical representatives are located throughout North America.

6. MAINTENANCE

No maintenance should be needed. If the mineral wool becomes damaged, replace damaged section.


7. TECHNICAL SERVICES

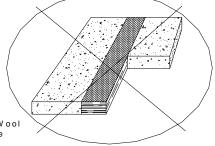

Contact nearest A/D office.

	Table 2 - Thickness and Compression Data					
Nominal Batt Thickness,		Nominal Batt Thickness, in. (mm)		Maximum Width of Opening for 33% compression, in. (mm)		
in.	mm	in.	mm	in.	mm	
1	25	3/4	19	5/8	17	
1.5	38	1-1/8	29	1	25	
2	50	1-1/2	38	1-5/16	34	
3	75	2-1/4	57	2	51	
4	100	3	75	2-5/8	68	
5 (4 + 1)	125 (100 + 25)	3-3/4	95	3-5/16	85	
5.5 (4 +1.5)	140 (100 + 38)	4-1/8	105	3-5/8	94	
6 (4 + 2)	150 (100 + 50)	4-1/2	114	4	100	
7 (4 + 3)	175 (100 + 75)	5-1/4	133	4-5/8	119	
8 (4 + 4)	200 (100 + 100)	6	150	5-5/16	136	

CORRECT

Always install A/D FIREBARRIER Mineral Wool so that it is compressed perpendicular to the grain.

THERMAX[™] SHEATHING

1. PRODUCT NAME THERMAX[™] Sheathing

2. MANUFACTURER

The Dow Chemical Company Dow Building Solutions 200 Larkin Midland, MI 48674 1-866-583-BLUE (2583) Fax 1-989-832-1465

www.dowbuildingsolutions.com

3. PRODUCT DESCRIPTION

THERMAX[™] Sheathing is a nonstructural, rigid board insulation consisting of a glass-fiber-infused polyisocyanurate foam core laminated between 1.0 mil smooth, reflective aluminum facers on both sides. The glass-fiber reinforcement contributes to improved fire performance and dimensional stability. THERMAX[™] Sheathing can be installed exposed to the interior without a thermal barrier.

THERMAX[™] Sheathing offers high, long-term R-value. Used in conjunction with the appropriate joint closure system for the application, THERMAX[™] Sheathing with its low perm rating helps to reduce moisture condensation within and behind the insulation.

BASIC USE

THERMAX[™] Sheathing is specially designed to have a Class A fire rating and can be used in a range of concealed and exposed applications, above and below grade, and can be used in exterior walls. Because of its improved fire performance, THERMAX™ Sheathing is especially appropriate for hourly rated assemblies. THERMAX[™] Sheathing is approved for use, per Section 2603.5 of the International Building Code. in Exterior Walls of Types I,II,III and IV construction. THERMAX™ Sheathing is designed for use as continuous insulation in both interior and exterior applications to assist in meeting and exceeding both the most current IECC and the ASHRAE 90.1 energy standards. Maximum

length is 30 ft. (9.1 m) and maximum thickness is 4.25" (108 mm) with R-value of 27.0.

4. TECHNICAL DATA

APPLICABLE STANDARDS

THERMAX[™] Sheathing meets ASTM C1289 – Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board, Type I, Class 2. Applicable standards include:

- C203 Standard Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
- C209 Standard Test Methods for Cellulosic Fiber Insulating Board
- C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
- D1621 Standard Test Method for Compressive Properties of Rigid Cellular Plastics
- D2126 Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
- E96 Standard Test Method for Water Vapor Transmission of Materials
- D1623 Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics

TYPICAL PHYSICAL PROPERTIES

THERMAX[™] Sheathing exhibits the typical physical properties and characteristics indicated in Table 2 when tested as represented.

ENVIRONMENTAL DATA

THERMAX[™] Sheathing is manufactured with a zero ozone depleting potential. The use of THERMAX[™] Sheathing helps reduce the carbon footprint of commercial buildings.

FIRE PROTECTION

THERMAX[™] Sheathing products should be used only in strict accordance with product application instructions. THERMAX products are combustible and when used in a building containing combustible materials, may contribute to the spread of fire. For more information, consult MSDS and/or call Dow at 1-866-583-BLUE (2583). In an emergency, call 1-989-636-4400.

CODE COMPLIANCES

THERMAX[™] Sheathing complies with the following codes:

- International Residential Code (IRC) Section 314
- International Building Code (IBC) Section 2603
- ICC-ES NER-681
- FM 4880 Wall-Ceiling Construction Metal-Faced – Class 1 Fire Rated to Max. 30' Exposure High, 4.25" Thick, 4' Wide, When Installed as Described in the Current Edition of FMRC Approval Guide
- THERMAX[™] products are classified by Underwriters Laboratories Inc. (UL)
- UL 1256 Fire Test of Roof Deck Constructions, Roof Deck Construction No. 120 and No. 123
- UL 723 (ASTM E84) Surface Burning Characteristics of Building Materials
- The following designs are 1, 2, 3 or 4 hour wall rated assemblies as listed in the UL Fire Resistance Directory: U026, U326, U330, U354, U355, U424, U460, U902, U904, U905, U906, U907, V454, V482
- Fire Performance Evaluation of an Exterior Masonry Wall System Incorporating THERMAX[™] Insulation Tested in Accordance With NFPA 285, 2006 Edition (UBC 26.9, intermediate scale – multistory testing)
- FMVSS No. 302 Flammability of Interior Materials – Passenger Cars, Multipurpose Passenger Vehicles, Trucks and Buses (Docket No. 3-3; Notice 4)
- Miami-Dade NOA 08-0320.01
 Interior Insulation on CMU Block

Contact your Dow sales representative or local authorities for state and local building code requirements and related acceptances.

PRODUCT INFORMATION . COMMERCIAL . UNITED STATES

5. INSTALLATION

Boards of THERMAX[™] Sheathing are lightweight and can be sawed or cut with a knife. They install quickly to walls (girts, steel stud, tilt-up, block, wood) and ceilings - inside and outside of purlins, trusses or bar joints. Butt joints must be installed over structural members. "Best practice" recommendations for high-humidity environments include continuously sealing the surface of the insulation at all joints with a Dow joint closure system.

Contact a local Dow representative or access the literature library at www.dowbuildingsolutions.com for more specific instructions.

6. AVAILABILITY

THERMAX[™] Sheathing is manufactured in several locations and is distributed through an extensive network. For more information, call 1-800-232-2436.

TABLE 1: SIZES, R-VALUES AND EDGE TREATMENTS FOR THERMAX[™] SHEATHING

NOMINAL BOARD THICKNESS ⁽¹⁾ , IN.	R-VALUE(2)(3)	BOARD SIZE, FT	EDGE TREATMENT	
.50	3.3	4 x 8, 4 x 9, 4 x 10	Square Edge	
.75	5.0	4 x 8, 4 x 9, 4 x 10	Square Edge	
1.0	6.5	4 x 8, 4 x 9, 4 x 10	Square Edge	
1.25	8.1	4 x 8, 4 x 9, 4 x 10	Square Edge	
1.5	9.8	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap	
1.55	10.1	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap	
1.75	11.4	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap	
2.0	13.0	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap	
2.5	15.8	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap	
3.0	19.0	4 x 8, 4 x 9, 4 x 10	10 Square Edge, Shiplap	
3.5	22.1	4 x 8, 4 x 9, 4 x 10	Square Edge	
4.0	25.2	4 x 8, 4 x 9, 4 x 10	Square Edge	

 Not all product sizes are available in all regions.
 R means resistance to heat flow. The higher the R-value, the greater the insulating power. Stabilized R-values @ 75"F mean temperature determined in accordance with ASTM C518. R-values expressed in ft2+h+°F/Btu. (3) An additional 2.77 R-value can be achieved with a 3/4" dead airspace when properly installed.

TABLE 2: TYPICAL PHYSICAL PROPERTIES OF THERMAX™ SHEATHING

PROPERTY AND TEST METHOD	VALUE
Compressive Strength ⁽¹⁾ , ASTM D1621, psi, min.	25
Flexural Strength, ASTM C203, psi, min.	55
Dimensional Stability, ASTM D2126, % linear change, max.	0.1
Water Absorption, ASTM C209, % by volume, max.	0.05
Water Vapor Permeance, ASTM E96, perm, max.	<0.03
Maximum Use Temperature, °F	250

(1) Vertical compressive strength is measured at 10 percent deformation or at yield, whichever occurs first.

www.dowbuildingsolutions.com

1-866-583-BLUE (2583) Sales Information 1-800-232-2436

Technical Information

IN THE U.S. THE DOW CHEMICAL COMPANY 200 Larkin Midland, MI 48674

NOTICE: No freedom from any patient owned by Daw or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time. Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government encattment. Some assumes no obligation or liability for the information in this document. NO EXPRESS WARRANTIES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTIES SPECIFICALLY PROVIDED BY DOW. ALL IMPLIED WARRANTIES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

CAUTION: This product is combustible and shall only be used as specified by the local building code with respect to flame spread classification and to the use of a suitable thermal barner. For more information, consult MSDS, call Dow at 1-866-563-BLUE (2583) or contact your local building inspector. In an emergency, call 1-989-636-4400.

WARNING: Rigid foam insulation does not constitute a working walkable surface or qualify as a fall protection product.

Building and/or construction practices unrelated to building materials could greatly affect moisture and the potential for mold formation. No material supplier including Dow can give assurance that mold will not develop in any specific system

Printed in U.S.A.

1011 Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

7. WARRANTY

Fifteen-year limited thermal warranty is available. Contact your Dow representative for details.

8. MAINTENANCE

Not applicable.

9. TECHNICAL SERVICES

Dow can provide technical information to help address questions when using THERMAX™ Sheathing. Technical personnel are available to assist with any insulation project. For technical assistance, call 1-866-586-BLUE (2583).

10. FILING SYSTEMS

- www.dowbuildingsolutions.com
- www.sweets.com
- www.thermaxbydow.com

Form No. 179-04015X-0810MCK

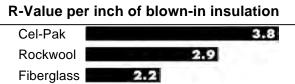
Professional Cellulose for Cellulose Professionals

Cel-Pak Class 1 Cellulose Insulation

- SPECIFICATIONS -

National Fiber's Cel-Pak is a high quality, cellulose insulation for dense pack wall and ceiling applications. It is also installed as loose fill in flat attic areas in new construction and retrofit.

Cel-Pak is a premium, all-borate cellulose insulation. It is made almost primarily from over-issue news, which is the highest quality newsprint available. Our paper provides the best quality and fiber length for superior insulation. The quality of this newsprint and the purity and effectiveness of our special, all-borate chemical formulation, carefully blended in our state-of-the-art equipment, provide the optimum density for unsurpassed coverage and performance.


Cel-Pak's long, flexible fibers ensure void-free filling of the space to be insulated by sealing around wiring, plumbing, and other obstacles. This reduces air infiltration and results in a less drafty, more comfortable home.

ADVANTAGES OF CEL-PAK

- Low settled density provides superior coverage,
- Highly efficient thermal barrier (measured in Rvalue per inch),

*R-value means resistance to heat flow. The higher the R-value, the greater the insulating capacity

- Proven energy savings (conserves energy by reducing fuel consumption)
- Permanent fire resistance, with superior flame retardant qualities
- Significant sound barrier and moisture control (enhanced by dense fiber structure and naturally hygroscopic properties of the cellulose fiber)
- Contains no formaldehyde, asbestos or glass fibers
- Very clean (minimal dust)
- Highest recycled content of all common insulating materials, helping to preserve the environment

There are other factors to consider. The amount of insulation you need depends mainly on the climate you live in. In the Northeast, for example, R-38 is recommended for attics. Your energy savings also depend on the type and size of your home, your family size, and your comfort preferences.

To obtain the level of thermal insulation (R-Value) indicated, this insulation must be installed at the coverage rates shown in the chart below. Initial installed thicknesses were determined using a Krendl

2000 machine with shredder. Settings are not adjustable.

Net Coverage - Attics - 25 lbs Settled Density 1.40 lbs/cu.ft.					
	Initial Installed	Minimum Settled	Bags Per 1000	Net Coverage	Minimum
R-Value @75°F	Thickness	Thickness	sq.ft.	sq.ft./Bag	Weight
	(in.)	(in.)	No joists	No joists	lb/sq.ft.
13	4.3	3.8	11.7	85.8	0.29
19	5.9	5.3	19.8	50.5	0.50
22	6.8	6.1	24.0	41.6	0.60
30	9.1	8.1	35.4	28.3	0.88
38	11.4	10.2	46.8	21.4	1.17
49	14.5	13.1	62.6	16.0	1.56
60	17.7	16.0	78.4	12.8	1.96
	Net Coverage	- Sidewalls - 25 lbs Se	ettled Density 3.1 lbs/o	cu.ft.	
13	2 x 4	3.5	36.2	27.6	0.90
20	2 x 6	5.5	56.9	17.6	1.42

Average net weight 25 lbs

READ THIS BEFORE YOU BUY

What you should know about R-Values. The above chart shows the R-Value of this insulation. R means the resistance to heat flow. The higher the R-Value, the greater the insulating power. Compare insulation R-Values of cellulose with other insulating materials before you buy.

To get the indicated R-Value, it is essential that this insulation be installed properly. If you do it yourself, get instructions and follow them carefully. Instructions do not come with this package.

R & D Services Inc. Classified Cel-Pak Cellulose Insulation Reference File: <u>RDS-LF9256</u>

This product meets the amended CPSC standard for flame resistance and corrosiveness of cellulose insulation.

Cel-Pak is periodically retested by R & D Services to assure compliance with Federal Specifications. In addition, we maintain a fully equipped onsite laboratory for monitoring product quality on a daily basis.

CPSP Standard HH-I-515E; 16CFR 1209

Meets ASTM C739 Class 1/A Building Material

Classified in accordance with the following ASTM C 739 characteristics

Flammability Characteristics

Critical Radiant Flux Greater than or Equal to 0.12 W/cm² Smoldering Combustion Less Than or Equal to 15.0%

Environmental Characteristics

Corrosiveness Acceptable Fungi resistance Acceptable

Physical Characteristics Density (Settled) 1.4

Thermal Resistance

1.4 lb/ft³ 3.8 R/in. (at 4 in.)

Moisture Vapor SorptionAcceptableOdor EmissionAcceptable

Appendix for ECM 11: Weatherization

III. Building Envelope Report

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Appendix for ECM 11

This page is intentionally left blank.

2. FIRE HEADQUARTERS

ASSESSMENT FINDINGS

B|E Retrofit recommends a strategy in Fire Stations that isolates the office / living spaces from the garage as best and as consistent with the use of the building as possible, improves weaknesses in the envelope of the office / living spaces (as with any other style of building) and does not spend dollars on the envelope of the garage. We believe that this strategy aligns best with the realities of the use of a fire station.

- See pictures on the following pages for visual support of the text below.
 - Doors
 - Entry Doors the weather stripping on select entry doors does not create an effective seal around the perimeter of the doors. This is allowing infiltration / exfiltration at the door systems.
 - Windows
 - Double Hung the upper sash of the double hung windows is operable and is "sagging" when the windows are not closed properly which creates a gap at the top of the upper sash as well as a gap at the meeting rail (when the upper sash "sags" the meeting rail and closure system of the upper and lower sash does not align properly). The existing weather stripping at the bottom of the lower sash is not effectively stopping infiltration/ exfiltration. Sealant was never installed at the joint between the window stop and the compression jamb, so air can leak through the window rough opening, through this joint and into the building.

WEATHERIZATION RECOMMENDATIONS

- Installation Factsheets, provided for the measures below at the bold round bullets, provide the rationale behind a recommended measure, the installation process and the materials used to complete each measure recommended for the building.
- For specifications that vary from the Installation Factsheets or where measures do not have Installation Factsheets notes are included at the square bullets.
- > Highlighted floor plans provide the locations for installation.

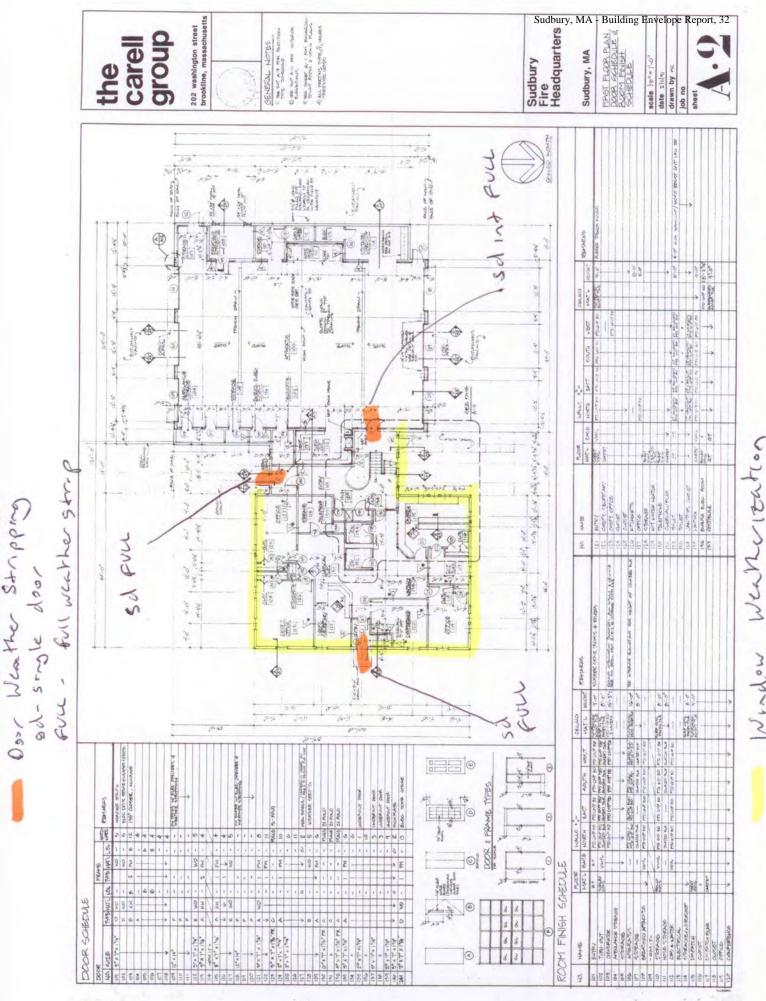
Air Leakage Control Measures

- Door Weather Stripping
- Double Hung Window Weatherization (Compression Jamb)
 - Select components of the specifications outlined in the Double Hung Window Weatherization (Compression Jamb) Installation Factsheet are recommended. Fixing shut the upper sash, caulking the upper sash for an air-tight seal, installing weather stripping at the bottom of the lower sash only and caulking the inoperable casing joints are the components from the Installation Factsheet that are recommended for the building.

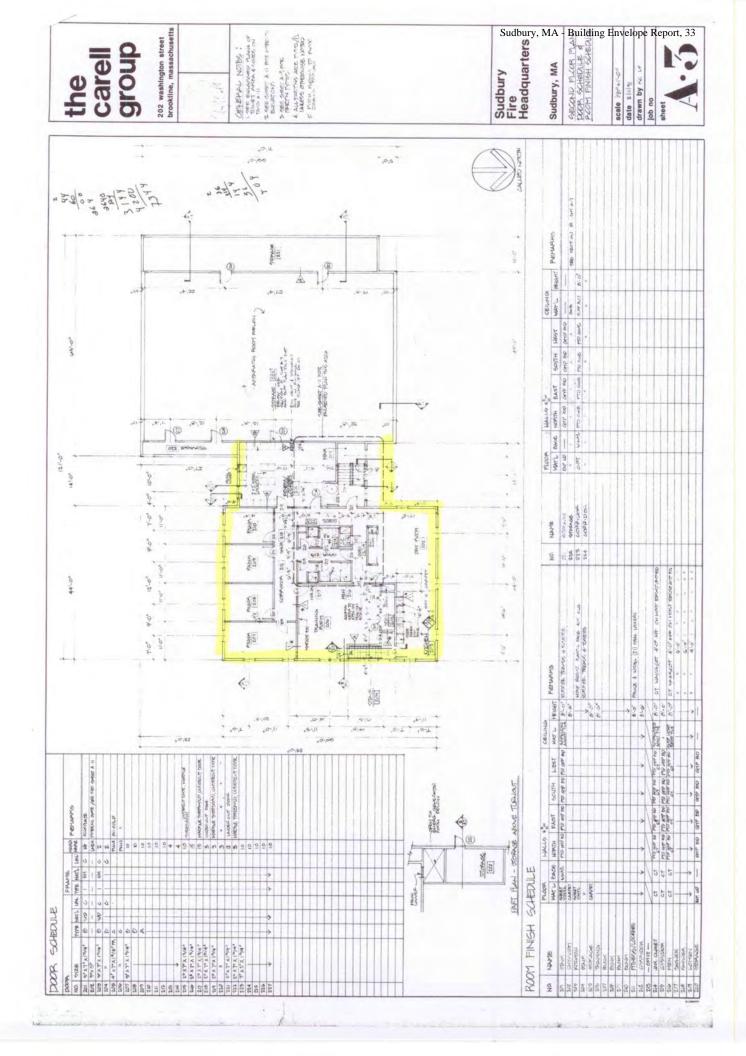
2. FIRE HEADQUARTERS

Doors – daylight shining through the separation between the existing weather stripping and the door identifies an air leakage pathway.

Windows – air leakage shown by smoke tracer testing at the perimeter of the upper sash of the compression jamb double hung window.


Windows – air leakage shown by smoke tracer testing at the bottom of the lower sash of the double hung window.

Windows – cob webs and dust accumulation at the bottom of the lower sash is an indicator of unwanted air leakage.



Windows – arrow points to the vertical joint between the compression jamb and the window stop where sealant was never installed.

Window

2.10

2. FIRE STATION 3

ASSESSMENT FINDINGS

B|E Retrofit recommends a strategy in Fire Stations that isolates the office / living spaces from the garage as best and as consistent with the use of the building as possible, improves weaknesses in the envelope of the office / living spaces (as with any other style of building) and does not spend dollars on the envelope of the garage. We believe that this strategy aligns best with the realities of the use of a fire station.

- Compartmentalization
 - Entry Doors the doors that isolate the garage from the office space and the break room are not weather stripped effectively. The office space has different interior environmental needs than the garage and the spaces should be separated. The existing weather stripping is not properly isolating these spaces.

WEATHERIZATION RECOMMENDATIONS

- Installation Factsheets, provided for the measures below at the bold round bullets, provide the rationale behind a recommended measure, the installation process and the materials used to complete each measure recommended for the building.
- For specifications that vary from the Installation Factsheets or where measures do not have Installation Factsheets notes are included at the square bullets.
- > Highlighted floor plans are not provided for this building.

Air Leakage Control Measures

• Door Weather Stripping

ASSESSMENT FINDINGS

See pictures on the following pages for visual support of the text below.

- Attics/Roofs
 - Roof-Wall Intersection the roof-wall intersection is hidden by a drywall "boxed-in" soffit at the perimeter of the majority of the building. This "box" hides services and the sprinkler system. There are vent plugs in each of these drywall boxes to allow air to flow into these cavities from the heated spaces of the building. If this system was developed to avoid frozen pipes at the perimeter of the building, there are likely substantial weaknesses at the roof-wall intersection. A measure related to this potential weakness is not included in the report at this point; the potential measure would include disruption of the drywall surface and repair.
- Doors
 - Entry Doors the weather stripping on the entry doors is performing effectively at the majority
 of the door systems. There is one double door with no existing weather stripping and air
 leakage is clear at the bottom of a number of door systems throughout the building. The single
 door systems in the classrooms are allowing infiltration at the perimeter of the door system due
 to missing sealant at the casing joints.
- Windows
 - All Window Systems sealant is missing at the casing joints of the window systems throughout the building. There is a gap between the window stop and the window frame that allows air to leak around the window system and the rough opening in the wall, through the stop-frame gap and into the building. There is a second gap between the window stop and the wall structure at the classroom window systems that is allowing infiltration/exfiltration.

WEATHERIZATION RECOMMENDATIONS

Installation Factsheets, provided for the measures below at the bold round bullets, provide the rationale behind a recommended measure, the installation process and the materials used to complete each measure recommended for the building.

- For specifications that vary from the Installation Factsheets or where measures do not have Installation Factsheets notes are included at the square bullets.
- > Highlighted floor plans provide the locations for installation.

Air Leakage Control Measures

- Door Weather Stripping
 - Full door weather stripping is not recommended at most door systems in the building. Weather stripping components to be installed at each door system are specified in the highlighted floor plans.
- Door and Window Caulking

Doors – air leakage shown by smoke tracer testing at double door system.

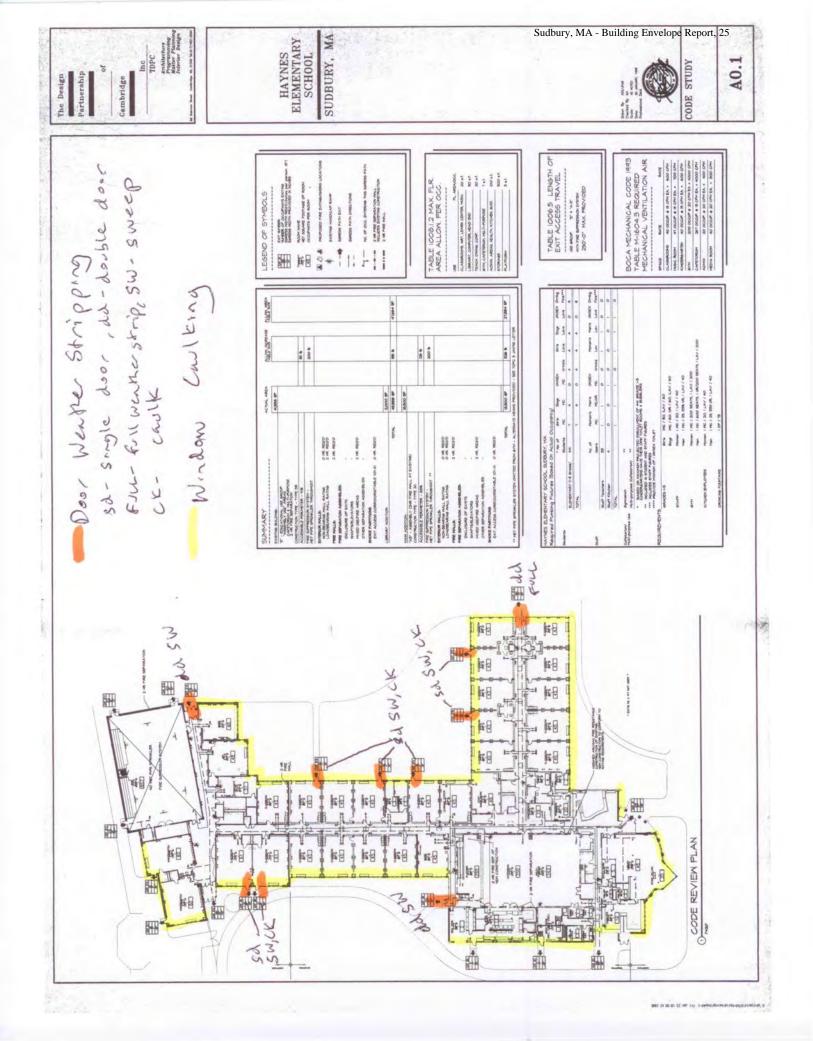
Doors – air leakage shown at single door system at the base of the door.

Doors – air leakage shown by smoke tracer testing at the perimeter casing of the door system.

Doors – gaps at the perimeter casing where sealant was not installed. Accumulation of cob webs is an indicator of excessive air leakage.

Doors – arrows point to locations of missing sealant and air leakage pathways at the perimeter casing of the door system.

Windows – air leakage shown by smoke tracer testing at window stop-frame joint.


Windows – air leakage shown by smoke tracer testing at window casing-wall joint.

Windows – sealant missing at gap between the window frame and the stop.

Doors – arrows point to locations of missing sealant and air leakage pathways at the perimeter casing of the window system.

ECM 22: Pipe Insulation

ECM Overview

Ameresco proposes to insulate hot water piping at the Fire Station North and Fire Station South where insulation is absent or insufficient. The areas that lack insulation include the boiler header and hot water supply piping. Replacing insufficient insulation and insulating bare pipes will improve the overall efficiency of each system and alleviate over heating due to heat loss from exposed piping. Cost savings from the reduction of natural gas usage will result from the implementation of this measure.

ECM Detail

Existing System

The hot water distribution systems at Fire Station North and Fire Station South have insufficient insulation. Much of the main hot water piping lacks proper insulation on the boilers as well as the supply piping branches. The lack of piping insulation allows unnecessary heat loss in the unoccupied boiler rooms.

Proposed System

Figure 22.1: Existing bare pipe at Fire Station North and Fire Station South will be insulated. Pictured above is the boiler at Fire Station North.

Ameresco proposes to install a total of 140 linear feet of insulation throughout the Town. The proposed insulation will be a fibrous glass type with a factory applied fire retardant vapor barrier jacket. The insulation will have a K-factor of at least 0.23 at 75°F mean temperature. Typical manufacturers include Owens-Corning, Certain-Teed, Manville or Knauf.

Please refer to the following table for approximate pipe lengths to receive new pipe insulation.

Building	Item (OD, in.)	Insulation Thickness (in.)	Length (ft.)
Fire Dept South	³ / ₄ "-1"	1	65
Fire Dept North	3/4"-1"	1	75
Total			140

Final Investment Grade Audit

ECM 22

Ameresco has not included a cost for any asbestos abatement under this measure. Based on site visits, asbestos is not expected in the areas where insulation will be added. Scope of work excludes repair of piping, valves, etc.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new insulation will significantly reduce distribution heat losses and improve heating system efficiency.

Appendix for ECM 22: Pipe Insulation

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Su	mmary	
Measure ID:	22	
Measure Name:	Pipe Insulation	
Measure Location:		
Engineers:		

Site Name:		Fire_S	Fire_N	Summary
Item	Units	Savings	Savings	
Electricity				
Energy On-Peak	kWh			0
Energy Off-Peak	kWh			0
Energy Total	kWh	0	0	0
Demand On-Peak, Monthly	kW			0.0
Demand On-Peak, Annual	kW			0.0
Demand Off-Peak, Monthly	kW			0.0
Demand Off-Peak, Annual	kW			0.0
Fossil Fuel				0
Natural Gas (NG)	Therms	181	207	389
Liquid Propane Gas (LPG)	Gallons			0
Steam	Mlbs			0
Fuel Oil, #2	Gallons			0
Fuel Oil, #4	Gallons			0
Fuel Oil, #6	Gallons			0
Miscellaneous	Misc			0
Water				0
Water Savings	kGallons			0
Sewer				0
Sewer Savings	kGallons			0

		Existing Piping Details							Existing Insulation Details		Proposed Insulation Details		Details								
		Fluid Type (Water or	Fluid Temperatu	Heating	Fluid Velocity		Inside Pipe Diameter	Outside Pipe Diameter	Piping	Pipe Conductivit y (Btu/hr-ft	Temperatu	~	Insulation Thickness		Insulation Conductivit y (Btu/hr-ft-		Insulation		Existing Heat Loss	Proposed Heat Loss	Savings
Location	(inches)	Steam)	re (°F)	Hours	(ft/s)	Length (ft)	(inches)	(inches)	Emissivity	°F)	(° F)	° F)	(inches)	Emissivity	° F)	(inches)	Emissivity	°F)	(MBtu)	(MBtu)	(MBtu)
[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]	[M]	[N]	[0]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]
Boiler Main Distribution	0.75	Water	180.0	6,229	5.0	50.0	0.82	1.05	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	22,887	9,930	12,957
Boiler Room	1	Water	180.0	6,229	5.0	15.0	1.05	1.32	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	8,599	3,410	5,189
Totals						65.0													31,485	13,340	18,145

Cell Ref.	Comment
A	Location of Pipe
B - K	Piping properties
L - M	Cold fluid properties, typically air
N - P	Existing insulation details
Q - S	Proposed insulation details
Т	= (Existing Transmission + Radiation Heat Loss) x [col E] ÷ [P65] ÷ 1,000
U	= (Proposed Transmission + Radiation Heat Loss) x [col E] ÷ [P65] ÷ 1,000
V	= [col T] - [col U]

Item	Value	Units	Cell Ref	Remarks
Heating System Efficiency	78.0%		[P65]	From Baseline

		Existing Piping Details						Existing Insulation Details		Proposed Insulation Details		Details									
		Fluid Type	Fluid		Fluid		Inside Pipe	Outside Pipe		Pipe Conductivit	Cold Fluid Temperatu	Cold Fluid Conductivit y - Air	Insulation		Insulation Conductivit	Insulation		Insulation Conductivit	Existing	Proposed	
		(Water or	Temperatu	Heating	Velocity			Diameter	Piping	y (Btu/hr-ft	re - Air	(Btu/hr-ft2-	Thickness	Insulation	y (Btu/hr-ft	Thickness	Insulation			Heat Loss	Savings
Location	(inches)	Steam)	re (°F)	Hours	(ft/s)	Length (ft)	(inches)	(inches)	Emissivity	°F)	(° F)	° F)	(inches)	Emissivity	° F)	(inches)	Emissivity	°F)	(MBtu)	(MBtu)	(MBtu)
[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]	[M]	[N]	[0]	[P]	[Q]	[R]	[S]	[T]	[U]	[V]
Boiler Main Distribution	0.75	Water	180.0	6,229	5.0	60.0	0.82	1.05	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	27,464	11,916	15,548
Boiler Room	1	Water	180.0	6,229	5.0	15.0	1.05	1.32	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	8,599	3,410	5,189
Totals						75.0													36,063	15,326	20,737

Cell Ref.	Comment
A	Location of Pipe
B - K	Piping properties
L - M	Cold fluid properties, typically air
N - P	Existing insulation details
Q - S	Proposed insulation details
Т	= (Existing Transmission + Radiation Heat Loss) x [col E] ÷ [P65] ÷ 1,000
U	= (Proposed Transmission + Radiation Heat Loss) x [col E] ÷ [P65] ÷ 1,000
V	= [col T] - [col U]

Item	Value	Units	Cell Ref	Remarks
Heating System Efficiency	78.0%		[P65]	From Baseline

Appendix for ECM 22: Pipe Insulation

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page intentionally left blank.

Submittal Sheet

Fiberglas® Pipe Insulation

 SSL II[®] All-Service Jacket (ASJ), Self-Sealing Lap
 SSL[®] I ASJ

🗆 No-Wrap

Description

Owens Corning Fiberglas[®] pipe insulations are molded of heavy density resin bonded inorganic glass fibers. These one-piece, 36" (914mm) long, hinged sections are opened, placed over the pipe, closed and secured by means specific to the type as described below.

Fiberglas SSL II® Pipe Insulation is jacketed with a smooth, reinforced, wrinkleresistant all-service (ASJ) vapor retarder jacket. Factory applied DOUBLESURE† double pressure sensitive adhesive closure provides positive mechanical and vapor sealing of the longitudinal jacket seam. Pressure sensitive butt strip seals complete the positive closure. Available in the most popular sizes.

In larger sizes *Fiberglas* Pipe Insulation is furnished with SSL[®] I, a single adhesive lap seal.

Fiberglas "No-Wrap" Pipe Insulation is also available without a jacket. It is intended for field installation of jacketing appropriate to the vapor control, damage or corrosion resistance requirements of the application.

Uses

Insulation of hot, cold, concealed and exposed piping operating at temperatures from 0°F (-18°C) to 850°F (454°C) in commercial buildings, industrial facilities and process or power plants.

Features/Benefits

SSL II Positive Closure System

Effective long-term vapor sealing of both longitudinal and butt joints. With doubleadhesive lap seal, plus two-part butt strip seal, positive closure is fast, neat and foolproof. No need for staples and mastic, promoting unexcelled jobsite productivity.

Jacket and Lap Shipped Adhered

Short pieces of insulation can be cut without jacket loss; it won't come apart in handling. No "dog-ears" in or out of the carton. Dust and

moisture can't reach the seal. Butt strips come in sealed bags inside the carton, staying clean until the moment of use.

Excellent Thermal Performance

Fiberglas Pipe Insulation's low thermal conductivity contributes to lower operating costs of heating and cooling equipment.

Meets Model Code Fire Ratings

Flame spread rating of 25 or less, and smoke developed rating of 50 or less, usually means that *Fiberglas* Pipe Insulation will be granted immediate building code approval.

Availability

Fiberglas Pipe Insulations are available in thicknesses and for pipe sizes as follows:

	lation kness, (mm)		Non L II nsulation	. s	es, NPS, in. (DN, mm) SL I* nsulation*		o-Wrap** nsulation**
1/2	(13)	1/2-6	(15-150)			1/2-6	(15-150)
1	(25)	1/2-15	(15-375)	16-33	(400-825)	1/2-33	(15-825)
11/2	(38)	1/2-14	(15-350)	15-33	(375-825)	1/2-33	(15-825)
2	(51)	1/2-12	(15-300)	14-33	(350-825)	1/2-33	(15-825)
$2^{1/_{2}}$	(64)	2-11	(50-275)	12-26	(300-650)	1/2-32	(15-800)
3	(76)	3-10	(75-250)	11-26, 30	(275-650, 750)	1/2-31	(15-900)
31/2	(89)	41/2-9	(115-225)	10-18, 20-22, 24	(250-450, 500-550, 600)	1/2-30	(15-750)
4	(102)	41/2-8	(115-200)	9-21, 24, 25	(225-525, 600, 625)	1/2-29	(15-725)
41/2	(114)	6-7	(150-175)	8-10, 12, 14, 16, 18, 20, 24	(200-250, 300, 350, 400, 450, 500, 600)	1/2-28	(15-700)
5	(127)	6	(150)	7-14, 16-24	(175-350, 400-600)	1/2-27	(15-675)
51/2	(140)					6-26	(150-650)
6	(152)					6-25	(150-625)

* SSL I all made-to-order except 14" x 2" (350mm x 51mm) and 16" x 1", 11/2" and 2" (400mm x 25mm, 38mm and 51mm). ** Consult Packaging Data Supplement (PP1.P5) available upon request for standard and made-to-order sizes.

Specification Compliance

- ASTM C 547, Mineral Fiber Pre-Formed Pipe Insulation, Type I to 850°F (454°C)
- ASTM C 1136, Flexible Low Permeance Vapor Retarders for Thermal Insulation: All Types
- ASTM C 795, Thermal Insulation for Use Over Austenitic Stainless Steel*
- Mil. Spec. MIL-I-22344D, Insulation, Pipe, Thermal, Fibrous Glass
- Nuclear Regulatory Commission Guide 1.36, Non-Metallic Thermal Insulation*
- U.S. Coast Guard Approval No. 164.009, Noncombustible Materials (no-wrap)
- New York City MEA No. 344-83
- CAN/CGSB-51.9 Type 1, Class 2
- NFPA 90A

* Preproduction qualification testing complete and on file. Chemical analysis of each production lot required for total conformance.

Fiberglas[®] Pipe Insulation

Physical Property Data

Property	Test Method	Value			
Operating temperature range	ASTM C 411	0 to 850°F* (-18°C to 454°C)*			
Jacket temperature limitation	ASTM C 1136	-20°F to 150°F (-29°C to 66°C)			
Jacket permeance	ASTM E 96, Proc.A	0.02 perm			
Puncture resistance	ASTM D 781	50 units			
Composite surface burning characteristics	UL 723,** ASTM E 84** or CAN/ULC-S102-M**	Flame spread25**Smoke developed50			

*Limited to single layer applications above 650°F (343°C), but not greater than 6" (152mm) thickness. **The surface burning characteristics of these products have been determined in accordance with UL 723, ASTM E 84 or CAN/ ULC-S102-M. These standards should be used to measure and describe the properties of materials, products or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. Values are reported to the nearest 5 rating.

Thermal Performance, ASTM C 680

Insula NPS x Thk.		300 (14		Operating Ten 500 (2		F (°C) 700 (32	71)
in.	mm)	HL	ST	HL	ST	HL	ST
$2 \text{ x}^{1/2}$	(50 x 13)	77 (74)	128 (53)				
4 x 1	(100 x 25)	78 (75)	109 (43)				
8 x 1	(200 x 25)	140 (135)	112 (44)				
12 x 1	(300 x 25)	199 (191)	113 (45)				
$2 \ge 1^{1/2}$	(50 x 38)			88 (85)	116 (47)		
$4 \ge 1^{1/2}$	(100 x 38)			142 (137)	123 (51)		
8 x 1 ¹ /2	(200 x 38)			242 (233)	128 (53)		
$12 \ge 1^{1/2}$	(300 x 38)			330 (317)	129 (54)		
2 x 2	(50 x 51)					139 (134)	127 (53)
$4 \ge 2^{1/2}$	(100 x 64)					188 (181)	125 (52)
$8 \ge 2^{1/2}$	(200 x 64)					295 (284)	129 (54)
12 x 3	(300 x 76)					359 (345)	125 (52)

Heat Loss (HL), Btu/hr•ft (W/m); Surface Temperature (ST), °F (°C).

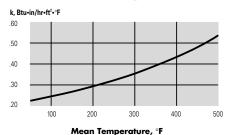
Design Conditions: Horizontal piping, 80°F (27°C) average ambient temperature, 0 mph wind speed, ASJ jacket.

Thickness to Prevent Surface Condensation

Owens Corning ASJ Jacket for up to 16" NPS (400mm DN)⁽¹⁾, in. (mm)

	Ambient Temperature, Relativ		System Operating Temperatures								
°F	(°C)	Humidity ⁽²⁾	35°F (2°C)	45°F (7°C)	55°F (13°C)						
110	(43)	50%-70% 80% 90%	$\begin{array}{ccc} 1 & (25) \\ 1^{1\!/_2} & (38) \\ 3^{1\!/_2} & (89) \end{array}$	$ \begin{array}{cccc} 1 & (25) \\ 1^{1/_2} & (38) \\ 3 & (76) \end{array} $	$ \begin{array}{cccc} 1 & (25) \\ 1 & (25) \\ 2^{1/_2} & (64) \end{array} $						
100	(38)	50%-70% 80% 90%	$ \begin{array}{cccc} 1 & (25) \\ 1^{1/_2} & (38) \\ 3 & (76) \end{array} $	$ \begin{array}{cccc} 1 & (25) \\ 1^{1/_2} & (38) \\ 3 & (76) \end{array} $	$ \begin{array}{cccc} 1 & (25) \\ 1 & (25) \\ 2^{1/2} & (64) \end{array} $						
90	(32)	50%-70% 80% 90%	$ \begin{array}{cccc} 1 & (25) \\ 1^{1/_2} & (38) \\ 3 & (76) \end{array} $	$ \begin{array}{cccc} 1 & (25) \\ 1 & (25) \\ 2^{1/2} & (64) \end{array} $	$ \begin{array}{ccc} 1 & (25) \\ 1 & (25) \\ 2 & (51) \end{array} $						
80	(27)	50%-80% 90%	$ \begin{array}{cccc} 1 & (25) \\ 2^{1/_2} & (64) \end{array} $	$ \begin{array}{cccc} 1 & (25) \\ 2 & (51) \end{array} $	$\begin{array}{ccc} 1 & (25) \\ 1^{1}\!/_{2} & (38) \end{array}$						
70	(21)	50%-80% 90%	$ \begin{array}{ccc} 1 & (25) \\ 1^{1/_2} & (38) \end{array} $	$\begin{array}{ccc} 1 & (25) \\ 1^{1\!/_2} & (38) \end{array}$	$ \begin{array}{ccc} 1 & (25) \\ 1 & (25) \end{array} $						

(1) For NPS (DN) greater than 16" (400mm), please contact your local Owens Corning Representative. If humidity exceeds 90%, some condensation is to be expected; therefore, a coating of a mastic or PVC jacket overwrap is recommended as repeated or continual wetting of the ASJ jacket will degrade its vapor retarder performance.


OWENS CORNING WORLD HEADQUARTERS

ONE OWENS CORNING PARKWAY TOLEDO, OHIO, USA 43659

1-800-GET-PINK www.owenscorning.com

Fiberglas,[®] SSL II[®] and SSL[®] are registered trademarks of Owens Corning

Thermal Conductivity

Apparent thermal conductivity curve determined in accordance with ASTM Practice C 1045 with data obtained by ASTM Test Method C 335. Values are nominal, subject to normal testing and manufacturing tolerances.

Mean Temp. °F	k Btu∙in/hr•ft²•°F	Mean Temp. °C	λ W/m∙°C
50	0.22	10	0.032
75	0.23	25	0.034
100	0.24	50	0.037
150	0.27	100	0.043
200	0.29	125	0.047
250	0.32	150	0.051
300	0.35	175	0.056
350	0.39	200	0.062
400	0.43	225	0.068
450	0.48	250	0.075
500	0.54	275	0.082

Application Recommendations

The hinged sections of Fiberglas Pipe Insulation are opened, placed over the pipe, carefully aligned, and sealed or jacketed as required by the form of the insulation and the application.

Fiberglas SSL II Pipe Insulation is shipped with the jacket and longitudinal lap closed, the two adhesives separated by a release strip. The insulation is opened by pulling the release strip from between the two adhesive strips. The insulation is placed on the pipe, carefully aligned, and the two adhesives rubbed firmly together to close and seal. The two part butt strip seal completes the positive closure. Application may be at ambient temperatures from 25°F (-4°C) to 110°F (43°C).

Fiberglas "No-Wrap" Pipe Insulation is designed for field-jacketing with pipe covering secured by wires or bands, vapor sealed where required.

Outdoor applications must be protected from weather. If painting is required, use only water base latex paint.

ECM 25: Efficient Shower Heads

ECM Overview

Ameresco proposes to reduce domestic water consumption at the Fairbank Community Center and Fire Department Headquarters by replacing standard flow showerhead fixtures with low flow showerhead fixtures. The low-flow water fixtures will enhance facility operations by reducing water usage.

ECM Detail

Existing System

Ameresco identified a number of standard efficiency shower heads at the Fire Department Headquarters and the Fairbank Community Center. There are two (2)

Figure 25.1: Standard flow showerhead fixtures like the one shown above at the Fire Department Headquarters will be replaced with low consumption models in this measure.

standard efficiency shower heads with flow rates of 2.5 GPM located in the second level restrooms at the Fire Department Headquarters. The building is occupied 24/7 and these showers are used by fire department staff at various times of the day. There are twelve (12) standard efficiency shower heads with flow rates of 2.5 GPM located in the girls and boys locker room at the Fairbank Community Center in the pool building wing. These showers are used primarily by visitors using the pool.

Table 25.1 illustrates the quantities of fixtures found throughout the audited facilities.

Building	Shower heads
Fire Department Headquarters	2
Fairbank Community Center	12
Totals	14

Table 25.1

Proposed System

Ameresco proposes to replace the existing high flow rate shower heads with new low flow rate shower heads at the Fairbank Community Center and Fire Department Headquarters. The existing 2.5 GPM shower heads will be replaced with high efficiency shower heads with a flow rate of 1.5 GPM.

Final Investment Grade Audit

ECM 25

The scope of work for the plumbing installation will include the removal and disposal of the existing fixtures and adding the new fixtures. Scope of work excludes repair, painting, and patching of piping, floors and walls.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The low-flow water fixtures will enhance facility operations by reducing water usage.

Appendix for ECM 25: Efficient Shower Heads

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings S	Summary	
Measure ID:	25	
Measure Name:	Efficient Showerheads	
Measure Location:		
Engineers:		

Site Name:		Fairbank	FDHQ	Summary
Item	Units	Savings	Savings	
Electricity				
Energy On-Peak	kWh			0
Energy Off-Peak	kWh			0
Energy Total	kWh	0	0	0
Demand On-Peak, Monthly	kW			0.0
Demand On-Peak, Annual	kW			0.0
Demand Off-Peak, Monthly	kW			0.0
Demand Off-Peak, Annual	kW			0.0
Fossil Fuel				0
Natural Gas (NG)	Therms	661	59	720
Liquid Propane Gas (LPG)	Gallons			0
Steam	Mlbs			0
Fuel Oil, #2	Gallons			0
Fuel Oil, #4	Gallons			0
Fuel Oil, #6	Gallons			0
Miscellaneous	Misc			0
Water				0
Water Savings	kGallons	186	14	200
Sewer				0
Sewer Savings	kGallons	186	14	200

MAPC - Sudbury

Efficient Showerheads

Item	Value	Units	Cell Ref	Description	Fairbank	FDHQ
Daily Occupants	110	persons	B5	-	100	10
Area of occupied facilities	50,396	square feet	B6		40,341	10,055
Occupancy factor	90.0%	square reer	B7	estimate	90.0%	90.0%
Occupied days annually		days/yr	B7 B8	estimate	345	365
		occupant-days/yr	В9	= B5 x B7 x B8	31,050	3,285
Occupant days	54,555	occupant-days/yr	69	= 63 x 67 x 68	51,050	5,285
Water Closet Consumption						
Toilet usage rate	1.00	flushes/day/occ.	B12	estimate	1.00	1.00
Existing toilet flow rate	1.64	gal/flush	B12 B13	per site visit & manufacturer's specification	1.60	1.60
Existing annual toilet flow		kgallon	B13 B14	$= B9 \times B12 \times B13 / 1000$	50	5
Proposed toilet flow rate	1.60	gal/flush	B14 B15	per manufacturer's specification	1.60	1.60
Proposed annual toilet flow		kgallon	B15 B16	$= B9 \times B12 \times B15 / 1000$	50	5
r toposed annuar tonet now	55	kgalloli	B10	- B7 X B12 X B13 / 1000	50	5
Urinal Consumption						
Does the Building Contain Urinals?			B19	per site visit	Yes	Yes
Urinal usage rate	1.00	flushes/occ-days	B1) B20	estimate	1.00	2.00
Urinal usage factor		estimate	B20 B21	estimate	45.0%	45.0%
*	43.0%		B21 B22		43.0%	
Existing urinal flow rate	27	gal/flush kaollon	B22 B23	per site visit & manufacturer's specification = B9 x B20 x B21 x B22 / 1000	22	1.60
Existing annual urinal flow		kgallon				
Proposed urinal flow rate	1.00	gal/flush	B24	per manufacturer's specification	1.60	1.60
Proposed annual urinal flow	27	kgallon	B25	= B9 x B20 x B21 x B24 / 1000	22	5
Lonotom/Six1- C						
Lavatory/Sink Consumption			540		0.00	0.20
Lavatory sink usage factor		min/occ-days	B28	estimate	0.30	0.30
Existing Sink flow rate	2.31	gal/min	B29	per site visit & manufacturer's specification	2.50	2.50
Existing annual Sink flow	26	kgallon	B30	= B9 x B28 x B29 / 1000	23	2
Proposed Sink flow rate	1.00	gal/min	B31	per manufacturer's specification	1.00	1.00
Proposed annual Sink flow	10	kgallon	B32	= B9 x B28 x B31 / 1000	9	1
Shower Consumption						
Shower Usage Factor	6.00	min/occ - day	B35	estimate	6.00	4.29
Existing shower head flow rate	2.50	gal/min	B36	per site visit & manufacturer's specification	2.50	2.50
Existing Shower Usage	501	kgallon	B37	= B35 x B36 x B9 / 1000	466	35
Proposed Shower flow rate	1.50	gal/min	B38	per manufacturer's specification	1.50	1.50
Proposed Shower flow rate	301	kgallon	B39	= B35 x B38 x B9 / 1000	279	21
Kitchen Consumption						
Does the Building Contain Kitchen?			B42	per site visit	Yes	Yes
% Persons eat breakfast	25.0%	persons/resident-day	B43	estimate	25.0%	25.0%
% Persons eat lunch	80.0%	persons/occupant-day	B44	estimate	80.0%	80.0%
% Persons eat dinner		persons/resident-day	B45	estimate	0.0%	0.0%
Breakfast Consumption	0.65	gal/breakfast	B46	estimate	0.65	0.20
Lunch Consumption	0.95	gal/lunch	B47	estimate	0.95	0.60
Dinner Consumption	1.00	gal/dinner	B48	estimate	1.00	1.00
Total Meal Consumption		kgallon	B49	= ((B46 x B43) + (B48 x B45) + (B47 x B44) x B9) / 1000	29	2
r						_
Miscellanous						
Drinking Water	0.06	gal/occupant day	B52	estimate	0.06	0.06
Cleaning	0.00	gal/occupied sq. ft./day	B53	estimate	0.00	0.00
Campus area		acres	B53 B54		0.01	0.01
Garden Care		gal/acre/day	B55	estimate	0.15	0.15
Total Irrigation		gal/acre/day kgallon	B55 B56	= (B54 x B55 x B8) / 1000	0.15	0.15
*		gallon	B50 B57		0	0
Vehicle Washing		*		estimate		
Laboratory Safety Equipment Testing		gallon	B58	estimate	0	0
Annual Cooling Load to Tower		MMBtu	B59	from EMS calculation	0	0
Cooling Tower Makeup		kgallon	B60	= B59 x 1,000,000 x 97% / 970.3 / 8.33 / 1000	0	0
Boiler Makeup		kgallon	B61	estimate	1,580	0
Total Miscellanoues uses	1,758	kgallon	B62	= ((B52 x B9) + (B53 x B6 x B8) + B57 + B58) / 1000 + B56 + B60 + B61	1,721	37
Laundry		I				
Load/person		loads/resident-day	B65	estimate	0.00	0.25
% Occupant's laundry done on site		Usage Factor	B66	estimate	0.0%	10.0%
Gal/Load	0.00	gal/load	B67	estimate	0.00	1.00
Annual Use	27	kgallon	B68	= B9 x B7 x B8 x B65 x B66 x B67 / 1000	0	27
Leaks						
% Total Water Use	0.3%		B71	estimate	0.3%	0.3%
Total Loss	7	kgallon	B72	= B71 x	7	0
% of Loss Repaired during retrofits	10.0%		B73	estimate	10.0%	10.0%
Retrofit Water Consumption	7	kgallon	B74	= B72 x (1 - B73)	6	0
-			•			
Facility Totals						
Itom	Voluo		Coll Dof	Description		

racinty rotais						
Item	Value	Units	Cell Ref	Description		
Existing Water Usage						
Water Closet Consumption	55	kgallon	B80	= B14	50	5
Urinal Consumption	27	kgallon	B81	= B23	22	5
Lavatory/Sink Consumption	26	kgallon	B82	= B30	23	2
Shower Consumption	501	kgallon	B83	= B37	466	35

MAPC - Sudbury

Item	Value	Units	Cell Ref	Description	Fairbank	FDHQ
Kitchen Consumption	30	kgallon	B84	= B49	29	2
Miscellanous	1,758	kgallon	B85	= B62	1,721	37
Laundry	27	kgallon	B86	= B68	0	27
Leaks	7	kgallon	B87	= B72	7	0
Total	2,431	kgallon	B88	= B80 + B81 + B82 + B83 + B84 + B85 + B86 + B87	2,318	114
Proposed Water Usage						
Water Closet Consumption	55	kgallon	B91	= B16	50	5
Urinal Consumption	27	kgallon	B92	= B25	22	5
Lavatory/Sink Consumption	10	kgallon	B93	= B32	9	1
Shower Consumption	301	kgallon	B94	= B39	279	21
Kitchen Consumption	30	kgallon	B95	= B49	29	2
Miscellanous	1,758	kgallon	B96	= B62	1,721	37
Laundry	27	kgallon	B97	= B68	0	27
Leaks	7	kgallon	B98	= B74	6	0
Total	2,215	kgallon	B99	= B91 + B92 + B93 + B94 + B95 + B96 + B97 + B98	2,117	98
Water Savings						
Water Closet Consumption	0	kgallon	B102	= B80 - B91	0	0
Urinal Consumption	0	kgallon	B103	= B81 - B92	0	0
Lavatory/Sink Consumption	15	kgallon	B104	= B82 - B93	14	1
Shower Consumption	200	kgallon	B105	= B83 - B94	186	14
Kitchen Consumption	0	kgallon	B106	= B84 - B95	0	0
Miscellanous	0	kgallon	B107	= B85 - B96	0	0
Laundry	0	kgallon	B108	= B86 - B97	0	0
Leaks	1	kgallon	B109	= B87 - B98	1	0
Total	217	kgallon	B110	= B102 + B103 + B104 + B105 + B106 + B107 + B108 + B109	201	16
Thermal Savings						
Thermal Savings (MBTU)	83,458	MBTU	B113	= (B104 x 1 x 8.33 x (B126 - B125)) + (B105 x 1 x 8.33 x (B127 - B125))	77,594	5,864
Heater Efficiency			B114	estimate	95.0%	82.0%
Actual Savings (MBTU)	00.000	MBTU	B115	= B113 / B114	81.678	7.151

Appendix for ECM 25: Efficient Shower Heads

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page intentionally left blank.

Earth[®] Showerhead 1.5 GPM (5.7 LPM)

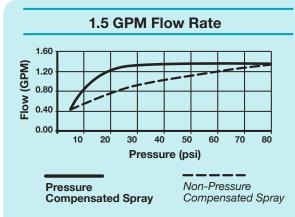
- Three spray settings: 9-jet spray, shower and combo
- Pressure compensated water flow

WATER 🍐

3 spray settings:9-jet needle, shower and combination

Easy turn dial

N2915CH* Earth[®] Showerhead


1.5 GPM (5.7 LPM)

Niagara's Earth[®] showerheads are a step beyond "low- flow." These high-efficiency showerheads ensure 40% less water use than other low-flow showerheads currently on the market. The patented pressure compensating technology guarantees a feeling of great force while using less water!

- 1.5 gallon per minute flow rate (5.7 litre per minute)
- Niagara's patented non-removable pressure compensator provides a constant output of water regardless of pressure
- Three spray settings: 9-jet power spray, shower and combination
- Non-aerated spray means less temperature loss with maximum energy savings
- Easy installation without tools
- Corrosion-resistant, high-impact ABS thermoplastic body is maintenance-free
- 10-year warranty

Certifications: Meets or exceeds: ASME A112.18.1 / CSA B125.1 WaterSense certified - Max. Flow Rate: 1.5 GPM (5.7 LPM) Min. Flow Rate at 45PSI: 1.13 GPM (4.3 LPM)

Case Qty: 50

Savings

Savings	Water (gallons)	Electric (kWh)	Gas (therms)	Dollars
Electric Water Heater	7,300	949	n/a	\$143
Gas Water Heat	7,300	n/a	52	\$91

*Savings based on FEMP/DOE data and assuming a water rate of \$4/1,000 gallons.

*Also Available in:

White Item# N2915

Corporate HQ 4200 Diplomacy Road Fort Worth, TX 76155 USA Toll Free: 800.831.8383 Phone: 973.829.0800 Fax: 817.390.0801 For more information please visit: www.NiagaraConservation.com

ECM 29: Replace Transformers

ECM Overview

Ameresco proposes to replace a total of twenty four (24) existing step-down transformers with new energy-efficient transformers at Curtis Middle School and Loring Elementary School. All of the transformers are dry-type indoor transformers that step-down 480 volt power to 208Y/120 volt power. Ameresco proposes to replace these transformers with new premium efficiency units that will reduce the electric losses and lower the cooling load of some of the equipment rooms.

ECM Detail

Existing System

Figure 29.1: Existing standard efficiency transformers like the one pictured above at the Curtis Middle School will be replaced in this measure.

Most transformers in use today in the Town are estimated to be loaded at about 5% - 15% of their total capacity which is typical of other buildings. These loadings are based on spot measurements taken during the audit. These transformers are designed to be able to transform the electricity up to design ratings and are most efficient at or around the design rating. Operating at low levels for normal transformers is inefficient. The standard low voltage step-down transformer is widely considered a commodity and as such the only perceived differentiator is price – lowest purchase cost typically wins. Commercial transformer specifications rarely require a minimum efficiency. As one would expect, building a less efficient transformer is cheaper than building a more efficient one, so a typical low-first-cost transformer will have a low up-front cost but high operating cost, with the lifetime cost of the operating losses exceeding the purchase cost many times over.

The standard transformer is built to deliver its nameplate kVA rating under linear load only and is UL listed on this basis. As it has the lower purchase price on the market, it represents the majority of transformer purchases across the country. Along with the high operating cost goes substantial lost capacity and distortion of the voltage to connected equipment.

Proposed System

The Powersmiths E-SAVER model C3 transformers proposed for this measure are designed to increase efficiency of the electricity transformation. Understanding that efficiency and power quality are complimentary goals, Powersmiths designed its transformers with both in mind. Furthermore, they have been independently validated at Oak Ridge National Lab, a US DOE test facility, to run at 98% efficiency under

Final Investment Grade Audit

ECM 29

single-phase nonlinear load profile, a dramatic improvement over traditional transformers. The chart below shows the efficiency and percent loaded an example transformer would have pre- and post-retrofit.

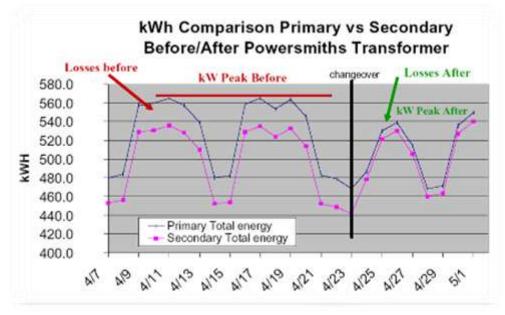


Figure 29.2: Transformer Efficiency Comparison

Twenty-four (24) existing step-down transformers were found throughout the Town of Sudbury that qualify for replacement. All of the transformers identified are dry-type indoor transformers that step-down 480-volt power to 208/120-volt power. Tie-ins to the existing primary and secondary power feeds will be required. Some may require work to meet code which has been included in the cost just in case. Ameresco recommends installing Powersmiths' E-SAVER Model C3 transformers under this ECM. Implementation of this ECM will result in electrical energy and demand savings. The following table lists all transformers recommended for replacement. These transformers measured very low loading.

Building	kVA	Quantity	Occupied % Load	Unoccupied % Load
Curtis Middle School	30	3	10.0	5.0
Curtis Middle School	45	5	10.0	5.0
Curtis Middle School	75	6	10.0	5.0
Curtis Middle School	112.5	1	10.0	5.0
Curtis Middle School	150	2	10.0	5.0
Loring Middle School	30	1	10.0	5.0
Loring Middle School	45	2	10.0	5.0
Loring Middle School	75	4	10.0	5.0
Total		24		

Ameresco assumes the installation of this ECM will occur during normal business hours. Ameresco will coordinate with the Town to schedule shutdowns of the affected areas. Transformers that would require after hours installation if done during the normal school year will be scheduled during a school break period.

Final Investment Grade Audit

Page 2

Installation of the measure will require isolation of each of the affected transformers and the associated distribution panels that are fed by the transformer while the transformer is removed and the new transformer installed. The existing wiring is expected to be reused. Repair of any damaged wiring discovered after removal of the transformers is not included. During the replacement power will be cut to the loads served by the transformers. Some electrical equipment may require a manual reset or testing after power is resumed. Ameresco has not included any allowance for any such resets or testing. Ameresco assumes existing breakers and/or switches will re-energize after the shutdown. No allowance is included for replacements.

Typical installation sequence of the transformers would be as follows:

- Lockout/tagout panel feeding step-down transformer
- Disconnect primary and secondary feeds into transformer •
- Remove and dispose of existing transformer, recycling where possible •
- Install new transformer on same pad or floor footprint •
- Reconnect primary and secondary feeds into transformer Work excludes repair to existing wiring, breakers, disconnects, fuses, etc., corrections of any existing code violations, and resetting of fire alarm systems, computer systems, and clock systems after shutdown. If existing electrical components are found not to meet code, Ameresco will provide additional pricing for bringing these components up to code standards.

Equipment, Design and Construction Documentation

Equipment will be identified in submittals provided for approval prior to procurement. Documents will be submitted to the facilities department for their review and comment. Upon approval, these will constitute the construction documents. Upon completion of the construction phase, the documents will be revised as needed to reflect "As-Built" conditions and submitted in multiple for record.

Impact on Facility Operations and Performance

The new transformers will operate in the same manner as the units they replace. There will be no difference in the power supplied from the transformers. The only difference will be the amount of power lost through the transformation process.

Figure 29.3: New energy efficient transformers will be installed in place of existing standard efficiency transformers

ECM 29

This page is intentionally left blank.

Page 4

Appendix for ECM 29: Replace Transformers

I. Energy Savings Calculations

Final Investment Grade Audit

This page intentionally left blank.

MAPC - Sudbury		
Energy and Demand Savings Su	mmary	
Measure ID:	29	
Measure Name:	Replace Transformers	
Measure Location:		
Engineers:		

			. .	G
Site Name:		Curtis	Loring	Summary
Item	Units	Savings	Savings	
Electricity				
Energy On-Peak	kWh	32,220	11,429	43,650
Energy Off-Peak	kWh	61,351	24,217	85,569
Energy Total	kWh	93,572	35,647	129,218
Demand On-Peak, Monthly	kW	13.5	4.7	18.3
Demand On-Peak, Annual	kW	162.5	56.8	219.3
Demand Off-Peak, Monthly	kW			0.0
Demand Off-Peak, Annual	kW			0.0
Fossil Fuel				0
Natural Gas (NG)	Therms			0
Liquid Propane Gas (LPG)	Gallons			0
Steam	Mlbs			0
Fuel Oil, #2	Gallons			0
Fuel Oil, #4	Gallons			0
Fuel Oil, #6	Gallons			0
Miscellaneous	Misc			0
Water				0
Water Savings	kGallons			0
Sewer				0
Sewer Savings	kGallons			0

MAPC - Sudbury Curtis Middle School Replace Transformers

							Existing Tra	nsformer De	tails								Proposed 7	Fransformer E	Details		Savings		
Location	Unit Size (kVA)	Occ. Hours % Load	UnOcc. Hours % Load	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	Load Power Factor	Existing Occ. Efficiency	Existing UnOcc. Efficiency	Existing Occ. kW Losses	Existing UnOcc. kW Losses	Existing Annual Peak Losses (kWh)	Existing Annual Off- Peak Losses (kWh)	Proposed Occ. Efficiency	Proposed UnOcc. Efficiency	Proposed Occ. kW Losses	Proposed UnOcc. kW Losses	Proposed Annual Peak Losses (kWh)	Proposed Annual Off- Peak Losses (kWh)	Monthly Demand Savings (kW)	Annual Peak Electric Energy Savings (kWh)	Annual Off Peak Electric Energy Savings (kWh)
Α	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	Р	0	R	S	Т	U	V	W	X
								-							-	Ň		~	-				
Boiler Room	30.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.4%	77.7%	0.47	0.37	1,134	2,297	96.7%	94.2%	0.09	0.08	214	495	0.38	920	1,802
Boiler Room	45.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.8%	78.4%	0.68	0.53	1,641	3,307	97.2%	95.0%	0.11	0.10	273	636	0.57	1,368	2,670
Main Electric Room	150.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	87.3%	82.4%	1.85	1.36	4,405	8,498	97.9%	96.1%	0.28	0.26	690	1,627	1.57	3,715	6,871
Main Electric Room	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
Main Electric Room	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
Main Electric Room	45.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.8%	78.4%	0.68	0.53	1,641	3,307	97.2%	95.0%	0.11	0.10	273	636	0.57	1,368	2,670
Auditorium Closet	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
3rd Floor across from 301	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
3rd Floor across from 301	45.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.8%	78.4%	0.68	0.53	1,641	3,307	97.2%	95.0%	0.11	0.10	273	636	0.57	1,368	2,670
2nd Floor across from 201	150.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	87.3%	82.4%	1.85	1.36	4,405	8,498	97.9%	96.1%	0.28	0.26	690	1,627	1.57	3,715	6,871
2nd Floor across from 201	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
2nd Floor across from 201	30.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.4%	77.7%	0.47	0.37	1,134	2,297	96.7%	94.2%	0.09	0.08	214	495	0.38	920	1,802
2nd Floor across from 201	30.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.4%	77.7%	0.47	0.37	1,134	2,297	96.7%	94.2%	0.09	0.08	214	495	0.38	920	1,802
Custodian Closet across from 201	112.5	10.0%	5.0%	2,065	435	0	6,260	85.0%	87.2%	82.1%	1.41	1.04	3,363	6,517	97.9%	96.2%	0.20	0.19	504	1,186	1.21	2,859	5,331
Locker Room Hall	45.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.8%	78.4%	0.68	0.53	1,641	3,307	97.2%	95.0%	0.11	0.10	273	636	0.57	1,368	2,670
Locker Room Hall	45.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	84.8%	78.4%	0.68	0.53	1,641	3,307	97.2%	95.0%	0.11	0.10	273	636	0.57	1,368	2,670
17. Closet by Main Elec Room	75.0	10.0%	5.0%	2,065	435	0	6,260	85.0%	86.3%	80.7%	1.01	0.76	2,427	4,783	97.7%	95.9%	0.15	0.14	371	863	0.86	2,055	3,920
Totals	1.177.5	10.0%	5.0%								16.02	12.08	38,341	75.633			2.48	2.28	6,120	14,282	13.54	32,220	61,351

Cell Ref.	Comment
A	Location of Transformer
В	Transformer Nameplate Rating - kVA
C - D	Estimated existing transformer loading as a percent of nameplate rating
E - H	Facility operating hours from EMS calculation
I	Estimated load powerfactor seen at the transformer - output
1	= [col B] x [col D] x 1,000 ÷ ([col B] x [col D] x 1,000 + (standard no load losses) + [col D]^2 x (standard full load losses minus standard no load losses))
K	= [col B] x [col E] x 1,000 ÷ ([col B] x [col E] x 1,000 + (standard no load losses) + [col E]^2 x (standard full load losses minus standard no load losses))
L	$= ([\operatorname{col} B] \times [\operatorname{col} D] \times [\operatorname{col} K] + [\operatorname{col} K] \times [\operatorname{col} D] \times [\operatorname{col} D] \times [\operatorname{col} J])$
М	= ([col B] x [col E] x [col L] \div [col L] - [col B] x [col E] x [col J])
N	$= [\operatorname{col} M] \times [\operatorname{col} F] + [\operatorname{col} N] \times [\operatorname{col} G]$
0	$= [\operatorname{col} M] \times [\operatorname{col} H] + [\operatorname{col} N] \times [\operatorname{col} I]$
Р	= $[col B] x [col D] x 1,000 \div ([col B] x [col D] x 1,000 + (esaver no load losses) + [col D]^2 x (esaver full load losses minus esaver no load losses))$
Q	= [col B] x [col E] x 1,000 ÷ ([col B] x [col E] x 1,000 + (esaver no load losses) + [col E]^2 x (esaver full load losses minus esaver no load losses))
R	$= ([\operatorname{col} B] \times [\operatorname{col} D] \times [\operatorname{col} Q] + [\operatorname{col} Q] - [\operatorname{col} B] \times [\operatorname{col} D] \times [\operatorname{col} J])$
S	$= ([\operatorname{col} B] x [\operatorname{col} E] x [\operatorname{col} R] - [\operatorname{col} R] x [\operatorname{col} E] x [\operatorname{col} R])$
Т	$= [\operatorname{col} S] \times [\operatorname{col} F] + [\operatorname{col} T] \times [\operatorname{col} G]$
U	$= [\operatorname{col} S] \times [\operatorname{col} H] + [\operatorname{col} T] \times [\operatorname{col} I]$
v	= [col M] - [col S]
W	= [col N] - [col T]
Х	= [col O] -[col U]

ESAVER-C3L loss table									
kVA	No Load (W)	Full load (W)							
15	55	851							
30	90	1313							
45	116	1552							
75	157	2204							
112.5	217	2546							
150	298	3388							
225	423	4881							
300	526	6066							
500	795	8527							
750	1132	11423							

Standard AL 115C loss table							
kVA	No Load (W)	Full load (W)					
15	325	985					
30	490	1218					
45	680	1835					
75	856	2789					
112.5	1046	3559					
150	1327	4620					
225	2250	6740					
300	2860	7160					
500	3830	9830					
750	3980	16800					

MAPC - Sudbury Loring Elementary Replace Transformers

						I	Existing Tran	sformer Det	tails							Pr	oposed Tran	sformer Deta	ulls			Savings	
Location	Unit Size (kVA)	Occ. Hours % Load	UnOcc. Hours % Load		UnOcc On- Peak Hrs.		UnOcc Off- Peak Hrs.	Load Power Factor	Existing Occ. Efficiency	Existing UnOcc. Efficiency	Existing Occ. kW Losses	Existing UnOcc. kW Losses	Existing Annual Peak Losses (kWh)	Existing Annual Off Peak Losses (kWh)	Proposed Occ.	Proposed UnOcc. Efficiency	Occ. kW	Proposed UnOcc. kW Losses	Proposed Annual Peak Losses (kWh)	Proposed Annual Off- Peak Losses (kWh)	Monthly Demand Savings (kW)	Annual Peak Electric Energy Savings (kWh)	Annual On- Peak Electric Energy Savings (kWh)
Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X
Electric Room 215 Closet	75.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	86.8%	79.8%	0.97	0.81	2,355	5,050	97.7%	95.9%	0.15	0.14	371	863	0.82	1,984	4,187
Electric Room 215 Closet	75.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	86.8%	79.8%	0.97	0.81	2,355	5,050	97.7%	95.9%	0.15	0.14	371	863	0.82	1,984	4,187
Main Electric Room 150	45.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	85.3%	77.5%	0.66	0.56	1,603	3,483	97.2%	95.0%	0.11	0.10	273	636	0.55	1,330	2,846
Main Electric Room 150	30.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	85.5%	77.8%	0.43	0.36	1,047	2,272	96.7%	94.2%	0.09	0.08	214	495	0.35	834	1,777
Kitchen Back Hall	75.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	86.8%	79.8%	0.97	0.81	2,355	5,050	97.7%	95.9%	0.15	0.14	371	863	0.82	1,984	4,187
Room 175 Behind Stage	75.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	86.8%	79.8%	0.97	0.81	2,355	5,050	97.7%	95.9%	0.15	0.14	371	863	0.82	1,984	4,187
Room 124	45.0	10.0%	5.0%	2,026	474	0	6,260	85.0%	85.3%	77.5%	0.66	0.56	1,603	3,483	97.2%	95.0%	0.11	0.10	273	636	0.55	1,330	2,846
Totals	420.0	10.0%	5.0%								5.65	4.70	13,672	29,436			0.91	0.83	2,243	5,218	4.74	11,429	24,217

Cell Ref.	Comment
A	Location of Transformer
В	Transformer Nameplate Rating - kVA
C - D	Estimated existing transformer loading as a percent of nameplate rating
E - H	Facility operating hours from EMS calculation
I	Estimated load powerfactor seen at the transformer - output
J	= [col B] x [col D] x 1,000 ÷ ([col B] x [col D] x 1,000 + (standard no load losses) + [col D]^2 x (standard full load losses minus standard no load losses))
K	= [col B] x [col E] x 1,000 ÷ ([col B] x [col E] x 1,000 + (standard no load losses) + [col E]^2 x (standard full load losses minus standard no load losses))
L	$= ([\operatorname{col} B] x [\operatorname{col} D] x [\operatorname{col} J] \div [\operatorname{col} K] - [\operatorname{col} B] x [\operatorname{col} J] x [\operatorname{col} J])$
М	$= ([\operatorname{col} B] x [\operatorname{col} E] x [\operatorname{col} J] + [\operatorname{col} L] - [\operatorname{col} B] x [\operatorname{col} E] x [\operatorname{col} J])$
N	= $[\operatorname{col} \mathbf{M}] \times [\operatorname{col} \mathbf{F}] + [\operatorname{col} \mathbf{N}] \times [\operatorname{col} \mathbf{G}]$
0	= [col M] x [col H] + [col N] x [col I]
Р	= [col B] x [col D] x 1,000 ÷ ([col B] x [col D] x 1,000 + (esaver no load losses) + [col D]^2 x (esaver full load losses minus esaver no load losses))
Q	= [col B] x [col E] x 1,000 ÷ ([col B] x [col E] x 1,000 + (esaver no load losses) + [col E]^2 x (esaver full load losses minus esaver no load losses))
R	$= ((\operatorname{col} B) \times (\operatorname{col} D) \times (\operatorname{col} J) + (\operatorname{col} Q) - (\operatorname{col} B) \times (\operatorname{col} D) \times (\operatorname{col} J))$
S	$= ([\operatorname{col} B] x [\operatorname{col} E] x [\operatorname{col} J] + [\operatorname{col} R] - [\operatorname{col} B] x [\operatorname{col} E] x [\operatorname{col} J])$
Т	= [col S] x [col F] + [col T] x [col G]
U	$= [\operatorname{col} S] \times [\operatorname{col} H] + [\operatorname{col} T] \times [\operatorname{col} I]$
v	$= [\operatorname{col} \mathbf{N}] - [\operatorname{col} \mathbf{S}]$
W	$= [col \mathbf{N}] - [col \mathbf{T}]$
Х	$= [\operatorname{col} \mathbf{O}] - [\operatorname{col} \mathbf{U}]$

ESAVER-C3L loss table							
kVA	No Load (W)	Full load (W)					
15	55	851					
30	90	1313					
45	116	1552					
75	157	2204					
112.5	217	2546					
150	298	3388					
225	423	4881					
300	526	6066					
500	795	8527					
750	1132	11423					

Standard AL 115C loss table									
kVA	No Load (W)	Full load (W)							
15	325	985							
30	480	1218							
45	750	1835							
75	956	2789							
112.5	1448	3559							
150	1727	4620							
225	1950	6740							
300	2760	7160							
500	3830	9830							
750	3980	16800							

Appendix for ECM 29: Replace Transformers

II. Manufacturer Specification Sheets

Final Investment Grade Audit

This page intentionally left blank.

PowersmithS

E-Saver[™]Transformer

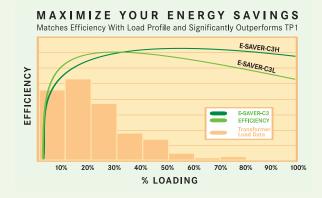
APPLICATIONS

The E-Saver transformer is available with multiple efficiency ratings to deliver the lowest lifecycle cost to a wide variety of applications. E-Saver's reduce transformer losses by as much as 74%, providing consistent predictable electricity savings for decades in commercial and institutional environments.

DESCRIPTION

Since their introduction in 2002, E-Saver transformers have set the benchmark for environmental protection, energy efficiency and reliability. Unlike standard and K-rated off-the-shelf transformers, E-Savers provide very high efficiency over broad load profiles including electronic loads. To ensure longer life and reduced environmental impact, E-Saver incorporates a Class 220 Nomex based insulation system with an organic epoxy impregnant.

QUIET OPERATION


Powersmiths transformers have embedded structural and acoustic treatments that combine to ensure quiet operation. Each transformer is noise tested as part of Powersmiths ISO 9001 production procedures.

INTEGRATED METERING OPTIONS

E-Saver transformers can be ordered with integrated SMART[™] meters to acquire energy, power and efficiency measurements. Integrating meters helps lower the cost of commissioning and performance validation, by eliminating the need to open transformer enclosures to acquire measurements. A variety of meters are available including web-accessible meters that can be connected to Powersmiths WOW sustainability management system or third party building management systems to support ongoing accountability of energy use over time.

INTEGRATED BREAKER OPTION

To conserve wall-space and reduce installation costs, E-Saver can be ordered with integrated input and/or output breakers.

ROTATABLE INFRARED VIEWING PORT OPTION

Powersmiths Rotatable IR (Infrared) Viewing Port enables safe, noninvasive thermographic imaging of live equipment, without exposing personnel to electrical hazards like Arc-Flash. It is available as a factory installed option on all Powersmiths transformers.

ENVIRONMENT AND QUALITY

A continuous improvement "lean green" strategy guides Powersmiths' product design and manufacturing. Initiatives such as increasing transformer efficiency, the Easy Skid, use of biodegradable product packaging and the reduction of harmful volatile organic compounds inproduction processes, are just a few examples of the extent to which Powersmiths takes its values seriously. Through these efforts Powersmiths has earned both ISO 14001 certification for its environmental management system and ISO 9001 for its quality management system.

TESTING AND WARRANTY

E-Saver is subjected to extensive performance validation including efficiency under real world operating conditions. E-Saver's long life and dependable performance is backed by Powersmiths' industry leading 25-year pro-rated warranty.

KEY FEATURES

- · Provides best available efficiency on the market
- k-rated for real world electronic loads
- Minimizes electricity waste
- Optimized for cool and quiet operation
- Significantly exceeds NEMA TP-1 (C-802) efficiency
- Provides the lowest life cycle cost for your energy rate

STANDARD CONFIGURATION

Powersmiths E-Saver is a high efficiency k-rated 60Hz dry-type distribution transformer available in 3-phase and single phase models with either aluminum or copper windings.

The E-Saver-C3L is optimized for light loading with copper (k7) or aluminum (k4). The E-Saver-C3H is optimized for heavy loading with copper (k13).

Standard temperature rise for the C3L model is 130C, for the C3H, C4, C5 it is 115C or lower. Under the static NEMA TP2 test, the C3L and C3H have up to 35% less losses than a TP1* (C802), but deliver over 50% less losses in real world conditions, as validated by extensive field testing.

The C4 and C5 models deliver additional incremental savings - up to 40% and 50% respectively compared to TP1 (C802), to satisfy the need for higher efficiencies and improved ROI (*) where higher energy rates prevail, including solar applications.

CERTIFICATIONS

E-Saver is certified to UL1561 and CSA-C22.2-47-M90 for distribution class transformers and meets applicable ANSI and IEEE standards; primary and secondary terminals and voltage taps are readily accessible by removing the front cover plate; 10kV BIL, 220C class insulation.

SELECT

Efficiency class: C3L, C3H, C4, C5 kVA: Rating of unit 15 -750 (special orders up to 5000 kVA) PV: Primary voltage 600, 480, 415, 400, 380, 208 (special order up to 15 kV) SV: Secondary voltage 208/120V, 480/277V, 600/347V (others available) Options as listed

SAMPLE PART NUMBER

ESAVER-C3L-75-480-208

ESAVER-C5-225-208-600-K9

Winding Configurations: Delta-wye, Y-Y, split-phase, other

* FEDERAL REGISTER - US DOE, Office of Energy Efficiency and Renewable Energy. 10 CFR Part 430, July 29, 2004. Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Distribution Transformers; Proposed Rule

TECHNICAL DATA

kVA	Impedance (%Z)	Weight (lbs)	Case Size (Inches)
15	3.0 - 6.0%	200 - 260	A (18W x 17D x 27H)
30	3.0 - 6.0%	320 - 430	B (26W x 18D x 30H)
45	3.0 - 6.0%	400 - 520	B (26W x 18D x 30H)
75	3.0 - 6.0%	570 - 710	C (32W x 22D x 40H)
112.5	3.0 - 6.0%	850 - 1000	C (32W x 22D x 40H)
150	3.0 - 6.0%	1100 - 1350	D (38W x 27D x 48H)
225	3.0 - 6.0%	1550 - 1900	D+ (38W x 32D x 52H)
300	3.0 - 6.0%	1850 - 2150	D+ (38W x 32D x 52H)
400	3.0 - 6.0%	2400 - 2600	E (52W x 32D x 61H)
500	3.0 - 6.0%	2500 - 3100	E+ (52W x 38D x 61H)
750	3.0 - 6.0%	3700 - 4400	F (64W x 45D x 67H)

The above data applies to configurations up to 600V, with NEMA 1 enclosure and standard temperature rise. Selection of some options may change enclosure size and weight. Consult factory for detailed product data sheet for these and other configurations. *Specific case used determined by factory unless specified. Special designs available to meet custom requirements.

Technical specification subject to change without notice.

Copyright 2011, Powersmiths International Corp. All rights reserved. E-Saver-C3™ and Powersmiths WOW are trademarks of Powersmiths International Corp.

POWERSMITHS

POWERSMITHS INTERNATIONAL CORP.

Phone: (905) 791-1493 Toll-free: (800) 747-9627 10 Devon Road, Brampton, Ontario L6T 5B5 Canada Fax: (905) 791-8870

Email: info@powersmiths.com

www.powersmiths.com

AVAILABLE OPTIONS

SMART1: Integrated metering port

SMART2: Integrated Power & Energy Meter

SMART3: Integrated Meter with Web access

CYBERHAWK-TX: Efficiency & Power Meter

ROTATABLE IR PORT: 2", 3", 4"

INTEGRATED BREAKERS

TEMPERATURE RISE: 115 or 80 deg. C

FREQUENCY: 50Hz

K-RATING: K4, K9, K13, K20

ELECTROSTATIC SHIELDING: Single, dual, triple

SPD: 7 mode 80kA, 120kA, 160kA

LUG KIT: Screw-type compression

THERMAL SENSORS: 170C, 200C

SENSITIVE ENVIRONMENT: Extra low noise

WINDINGS: Copper, Aluminum

ENCLOSURE TYPES: N3R sprinkler proof, outdoor padmount, hinged doors, totally enclosed (75kVA Max), stainless steel

SEISMIC CERTIFICATIONS: OSHPD, IBC 2006/2009

Section 4: Financial Results/ Recommendations

Table 4.1

Project Specifics

Ameresco initially completed a preliminary energy audit and provided the Town of Sudbury with an interactive cost and savings spreadsheet to assist in selecting a final project scope of work. Based on the Town's requested selection, Ameresco has further developed a subset of the ECMs as described in Section 3 of this Investment Grade Audit. These selected ECMs self-fund from project savings within legislative limits as summarized below:

Financing Term (after construction)	15 years
Estimated Tax-exempt Interest Rate	3.00%
Capital Cost	\$1,093,073
Estimated Rebates	\$118,928
Net Assumed Capital Cost	\$974,145
Guaranteed Cost Savings / Year 1	\$82,598
Assumed Utility Escalation Rate	3.00%
Net Excess Cumulative Cash Flow	\$97,350

The following table summarizes the ECMs referenced in Section 3 and included in the recommended project scope.

Section 4: Financial Results

Table 4.2: Measures to be Installed by Building

Town of Sudbury Energy Conservation Measures (ECMs)		Integrated and New Energy Management System										
Facility	1	3	4	5	6	7	9	11	22	25	29	
DPW Highway	X		X	X			X					
DPW Offices	Λ		Λ	X			Λ					
Flynn Building	X			X								
Town Hall	21			X								
Police Department												
Fairbank Community Center (Including Pool)				Х			X			X		
Public Library	X			X		X						
Fire Dept Headquarters	Χ			Χ			Χ	Χ		X		
Fire Dept South				Χ			Х		Χ			
Fire Dept North				X			X	X	Х			
Curtis Middle School	Χ				Χ						Χ	
Loring Elementary	Χ	Χ					Χ				Χ	
Noyes Elementary		Χ					Х					
Haynes Elementary	X	Х			X		X	X				
Nixon Elementary	X	Х					X					

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

Contract Cost

Ameresco has budgeted specific costs (and savings) for all measures which can be found at the end of this section. The Town desires an Open Book Pricing method, whereby the Town can review in detail the cost for the specified scope, including actual contractor and material quotes (Direct Pricing). The Contract Cost is comprised of the sum of the Direct Pricing, the Audit Fee plus the Indirect Pricing (Ameresco Services).

Direct Pricing

Prior to the implementation of the work, Ameresco will solicit pricing from subcontractors and/or equipment providers for each ECM and to the extent possible shall use the most competitive and qualified subcontractor or equipment provider to implement the work relating to such ECM. The determination of subcontractor qualification shall be in Ameresco's discretion and subject to Town's approval. All subcontracted services shall be considered part of the Direct Pricing. For the selected subset of ECMs, Ameresco has identified the following Direct Pricing budgets for the project:

Ecm #	ECM Name		rect Cost Budget
	Lighting Quatern Incompany on anto	¢	244 620
	Lighting System Improvements	\$	244,630
3	Integrated and New Energy Management System	\$	264,275
4	Programmable Thermostats	\$	6,214
5	PC Load Management	\$	2,344
6	Demand Control Ventilation	\$	35,243
7	Variable Frequency Drives	\$	21,005
9	Vending Machine Controls	\$	4,109
11	Weatherization	\$	12,262
22	Pipe Insulation	\$	4,057
25	Efficient Showerheads	\$	286
29	Replace Transformers	\$	145,794
		\$	740,219

Table 4.3: Direct Pricing Budgets

As stated above, Ameresco will solicit competitive pricing for each ECM and to the extent the total Direct Pricing comes in below anticipated levels, the benefit will be retained by the Town and can be used for additional work in the facilities. The Town will be presented the competitive bids for each ECM and will have ultimate approval over the selected contractor (and associated price) for the work.

Indirect Pricing

Design Oversight: Ameresco oversight of ECM design as well as Ameresco staff overseeing subcontracted design professionals*.

Project Management: Ameresco's management of the project, including management reviews of progress and attending project construction meetings periodically throughout the construction period.

Final Investment Grade Audit

Construction Management: Ameresco staff providing management of the project and subcontractors throughout the construction term.

Commissioning: Ameresco staff performing and overseeing commissioning activities required to ensure system is functional and meets the design intent.

Training: Ameresco's training of Town personnel at the time of commissioning, prior to turn over of the project to Town personnel.

Measurement and Verification (M&V): Measurement and verification activities performed at the commissioning phase, as described in the Section 7 Measurement and Verification Plan.

Performance and Payment Bonds: Performance and Payment Bonds on the gross project value of the project.

Construction Period Interest: Ameresco's carrying costs based upon progress payments during construction with a 10% project retainage paid upon completion of each ECM.

Travel: Ameresco travel costs associated with managing implementation of the project.

Warranty: Ameresco providing warranty related services as per the final energy services agreement.

Overhead and Profit: Ameresco's recovery of corporate overhead and recognition of profit

Indirect Pricing shall be calculated based upon the estimated Direct Pricing. Indirect Pricing shall equal the product of the Direct Pricing and a multiplier specific to individual ECMs as per the Table 4.4:

Ecm #	ECM Name	Ameresco Fee Percentage from MAPC Solicitation	Ameresco Fee
1	Lighting System Improvements	40.28%	\$ 98,537
3	Integrated and New Energy Management System	45.38%	\$ 119,928
4	Programmable Thermostats	45.38%	\$ 2,820
5	PC Load Management	40.58%	\$ 95
6	Demand Control Ventilation	45.38%	\$ 15,993
7	Variable Frequency Drives	40.58%	\$ 8,524
9	Vending Machine Controls	40.58%	\$ 1,667
11	Weatherization	42.08%	\$ 5,160
22	Pipe Insulation	48.38%	\$ 1,963
25	Efficient Showerheads	40.58%	\$ 116
29	Replace Transformers	48.38%	\$ 70,535
			\$ 326,195

Table 4.4: Indirect Pricing

Any cost not specifically included in the Indirect Pricing shall be included in the Direct Pricing, inclusive of all materials, labor, and other services or fees required to successfully implement the Scope of Services.

Final Investment Grade Audit
Town of Sudbury. Massachusetts

Page 4

In the event the Contract Cost is anticipated to exceed the "not to exceed" total stated above, the Town and Ameresco will modify the Scope of Services in order to remain within the stated maximum.

*Ameresco currently intends to subcontract all design work to local professionals, with our staff overseeing their efforts to ensure the result is consistent with the audit scope.

Audit Fee:

The fee for performing the Investment Grade Audit of the requested facilities is per the Investment Grade Audit Agreement. As contracted, this cost will not be paid under that agreement as it is incorporated into the cost of the Performance Contract. The total cost of the audit to be included in the Contract Cost is \$26,659.

Savings Coverage

It is important to note that revisions to the project scope during the design phase may have an effect on the savings levels and overall project economics. The Town and Ameresco need to remain cognizant of the ability to meet the guaranteed savings levels specified in the Contract and aware that changes in project scope may necessitate a modification to Ameresco's guarantee. In the event the proposed design adversely affects the ability to meet these obligations, Ameresco and the Town will need to mutually agree upon revisions to the project scope or contract. Ameresco shall provide reasonable efforts to rerun project economics based upon actual costs and savings levels during the design phase, including for the addition of other opportunities, to show the effect of scope/pricing changes on the overall economics.

Rebates / Incentives

Ameresco has estimated rebates available for this project into the net financed cost of the project. These estimates are based on our expectations for incentives available through regular utility programs, but we are unable to guarantee the exact final level of rebates the Town will recognize as a result of implementing this project. Any additional rebates will be for the benefit of the Town, and the Town shall be responsible for addressing any financial shortfalls as a result of fewer than expected rebates. Ameresco's pricing is based on payment of the gross project cost, not the cost net of rebates, based upon a percentage of completion.

Ecm #	ECM Name	Estimated Rebates		

1	Lighting System Improvements	\$	54,540	
3	Integrated and New Energy Management System	\$	21,900	
6	Demand Control Ventilation	\$	14,850	
7	Variable Frequency Drives	\$	6,900	
9	Vending Machine Controls	\$	1,355	
29	Replace Transformers	\$	19,383	
		\$	118,928	

Table 4.5: Rebate	s by Measure
-------------------	--------------

Structure of Financing Arrangement

We assume the Town will be issuing financing based on parameters referenced in the attached pro forma cash flow, but Ameresco can work with the Town to identify other financing arrangements.

Ameresco included an allowance for construction period interest in the repayment cost as our construction period payments are based upon a percentage of the gross project size completed each month. This allowance, approximately \$32,723, is based upon a capitalized interest calculation and may be more or less than that actually structured by the Town as part of its financing.

Interest Rate and Financing Term

For the assumed financing, Ameresco estimated the interest rates based upon an estimated bond financing rate. The ultimate rate may vary based on the Town's bond issuance or the ultimate financing structure, but Ameresco does not guarantee it will be less than or equal to the assumed 3.25% interest rate used in the pro forma cash flow.

The financing term is based on 15-years of repayment, which is after an assumed 12 months of construction.

Equipment Ownership and Security Interest Required

Title to the equipment installed by Ameresco will be transferred to the Town of Sudbury upon the Town's acceptance of the installation and payment in full.

Energy Savings Guarantee

As an integral part of its contract with the Town of Sudbury, Ameresco will guarantee energy savings over the full term of the contract. Ameresco's guarantee provides assurance to the Town that the cash inflows from the project, which include both energy and operational cost savings and any additional utility rebates, will exceed the Town's cash requirements for the project, the loan payments and any on-going payments for the provision of operations and maintenance services as delineated below. The Town of Sudbury will retain actual annual energy cost savings that exceed Ameresco's guarantee.

At any time during the contract term should there be a shortfall in energy cost savings Ameresco will make a payment to the Town of Sudbury in the full amount of the shortfall. Payments can be in the form of a check or a credit against future billings from Ameresco, at the Town's option.

Construction Financing

Ameresco assumes the financing proceeds will be funded into an escrow or similar account at the inception of the project. Monthly drawings are made against the escrow as the project is implemented, based upon a percentage of work completed for the preceding period.

Final Investment Grade Audit

Page 6

Project Labor

Ameresco has based its labor costs on current prevailing wage rates for all expected construction disciplines. Ameresco can solicit competitive pricing on various labor components and work with the Town to select the ultimate contractor used for installation. Ameresco was not given explicit direction to use union labor and therefore has at a minimum ensured all labor is comparable to current prevailing wage rates. Should the Town require union labor or other specific labor agreements other than prevailing wage, the cost to perform the work included in this project may go up at the Town's expense.

Section 4: Financial Results

Section 4: Financial Results

This page is intentionally left blank.

Final Investment Grade Audit

Page 8

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Section 4: Financial Results

Table 4.6: Cost and Savings by Measure

				Natural Gas	Water	Sewer	Energy		Total Project	Total Project	
Ecm #	ECM Name	Annual kW	Total kWh	(Therms)	(kGallons)	(kGallons)	Savings	O&M Savings	Savings	Costs	SPB
1	Lighting System Improvements	671	209,268	(1,597)	-	-	\$ 33,272	\$ 3,174	\$ 36,446	\$ 350,467	9.62
3	Integrated and New Energy Management System	-	9,227	11,938	-	-	\$ 14,769	\$-	\$ 14,769	\$ 392,039	26.54
4	Programmable Thermostats	-	637	1,400	-	-	\$ 1,782	\$-	\$ 1,782	\$ 9,174	5.15
5	PC Load Management	-	15,369	(244)	-	-	\$ 1,260	\$-	\$ 1,260	\$ 5,526	4.38
6	Demand Control Ventilation	-	33,827	414	-	-	\$ 3,455	\$-	\$ 3,455	\$ 52,327	15.15
7	Variable Frequency Drives	-	15,564	-	-	-	\$ 1,551	\$-	\$ 1,551	\$ 30,123	19.42
9	Vending Machine Controls	-	16,801	(282)	-	-	\$ 1,529	\$-	\$ 1,529	\$ 7,272	4.76
11	Weatherization	-	33	1,312	-	-	\$ 1,549	\$-	\$ 1,549	\$ 17,941	11.58
22	Pipe Insulation	-	-	389	-	-	\$ 526	\$-	\$ 526	\$ 6,251	11.88
25	Efficient Showerheads	-	-	708	200	200	\$ 1,543	\$-	\$ 1,543	\$ 582	0.38
29	Replace Transformers	219	129,218	-		-	\$ 15,782	\$-	\$ 15,782	\$ 221,372	14.03
		890	429,944	14,039	200	200	\$ 77,018	\$ 3,174	\$ 80,192	\$ 1,093,073	13.63

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

Table 4.7: Project Pro-Forma

Town of Sudbury - Pro-Forma

Initial Project Costs:	
Implementation costs	\$ 1,093,073
Total Initial Project Costs	\$ 1,093,073
Utility Rebates	\$ 118,928
Total Rebates	\$ 118,928
Net Project Costs after rebates	\$ 974.146

Term of Project {yrs}	15.0 y
Term of Financing (yrs)	15.0 y
Estimated Financing Rate	3.25
Payments per year (frequency)	1
Discount Rate	3.25
Average Energy escalation rate {annual}	3.00
Project Simple Payback	13

Pr	ro-forma											Ŷ	'ear						
		In	itial Values		1	2		3		4	l I	5		6	7	8	9		10
1	Annual energy costs without improvements	\$	1,093,162	\$1,	,125,957	\$ 1,159	736	\$ 1,194,	528	\$ 1,2	30,364	\$ 1,267,275	\$	1,305,293	\$ 1,344,452	\$ 1,384,785	\$ 1,42	6,329	\$ 1,469,119
	Annual energy costs with improvements	\$	1,016,144	\$1,	,046,629	\$ 1,078	,027	\$ 1,110,3	368	\$ 1,14	43,679	\$ 1,177,990	\$	1,213,329	\$ 1,249,729	\$ 1,287,221	\$ 1,32	5,838	\$ 1,365,613
3	Annual energy cost savings (1-2)	\$	77,018	\$	79,329	\$ 81	,709	\$ 84,	160	\$ 8	86,685	\$ 89,285	\$	91,964	\$ 94,723	\$ 97,564	\$ 10	0,491	\$ 103,506
4	O&M Savings	\$	3,174	\$	3,269	\$ 3	,367	\$ 3,4	468	\$	3,572	\$ 3,679	\$	3,790	\$ 3,903	\$ 4,020	\$	4,141	\$ 4,265
	Total Project Savings	\$	80,192	\$	82,598	\$ 85	,076	\$ 87,0	628	\$ 9	90,257	\$ 92,964	\$	95,753	\$ 98,626	\$ 101,585	\$ 10	4,632	\$ 107,771
6	Payments for financing equipment	T		\$	68,546	\$ 70	,797	\$ 73,	115	\$	75,503	\$ 77,963	\$	80,496	\$ 83,106	\$ 85,793	\$ 8	8,562	\$ 91,413
7	Payments for Ongoing Services	\$	-	\$	7,568	\$ 7	,795	\$ 8,0	029	\$	8,270	\$ 8,518	\$	8,773	\$ 9,036	\$ 9,307	\$	9,587	\$ 9,874
8	Net annual benefits	T		\$	6,484	\$ 6	,484	\$ 6,4	484	\$	6,484	\$ 6,484	\$	6,484	\$ 6,484	\$ 6,484	\$	6,484	\$ 6,484
9	Cumulative cash flow	\$	97,260	\$	6,484	\$ 12	,968	\$ 19,4	452	\$	25,936	\$ 32,420	\$	38,904	\$ 45,388	\$ 51,872	\$ 5	8,356	\$ 64,840
10	Net Present Value of cash flow	\$	76,024												 				
11	Interest Rate	T	3.25%									 			 	 			
12	Discount Rate	Ι	3.25%																

Line #		11	12		13	14	15		Totals
1	\$	1,513,192	\$ 1,558,588	\$	1,605,346	\$ 1,653,506	\$ 1,703,111	\$	20,941,583
2	\$	1,406,581	\$ 1,448,779	\$	1,492,242	\$ 1,537,009	\$ 1,583,120	\$	19,466,155
3	\$	106,611	\$ 109,810	\$	113,104	\$ 116,497	\$ 119,992	\$	1,475,429
4	\$	4,393	\$ 4,525	\$	4,661	\$ 4,801	\$ 4,945	\$	60,800
5	\$	111,004	\$ 114,335	\$	117,765	\$ 121,298	\$ 124,936	\$	1,536,228
6	\$	94,350	\$ 97,375	\$	100,491	\$ 103,700	\$ 107,005	\$	1,298,215
7	\$	10,171	\$ 10,476	\$	10,790	\$ 11,114	\$ 11,447	\$	140,753
8	\$	6,484	\$ 6,484	\$	6,484	\$ 6,484	\$ 6,484	\$	97,260
9	\$	71,324	\$ 77,808	\$	84,292	\$ 90,776	\$ 97,260		
10									
11	Γ			Γ					
12			 	Γ		 	 		
			 	[· · · ·	

Notes:

1 This Proforma Cash Flow reflects an estimated financing rate of 3.25%. The actual rate will increase or decrease based on market conditions and customer credit rating at the time of funding.

2 Savings are based on current utility rate structures and usage information provided for purposes of this project.

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

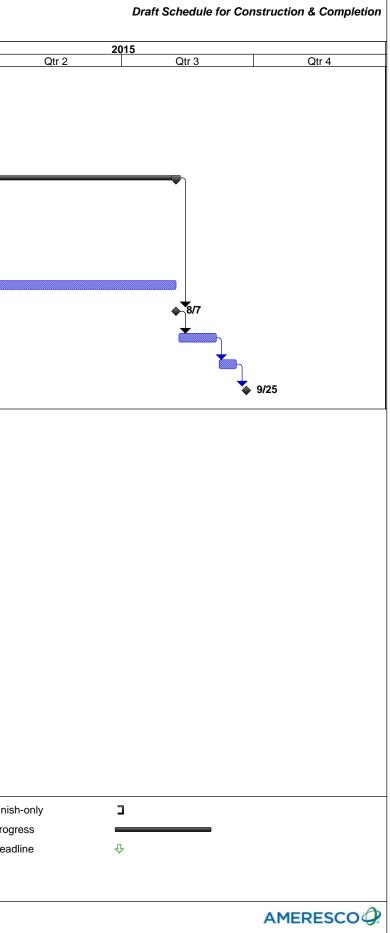
Town of Sudbury, Massachusetts May 6, 2014

Section 5: Preliminary Implementation Schedule

The following schedule represents the estimated project schedule from IGA submission to final construction completion. This preliminary schedule is subject to revision based on actual contract execution date and changes in project timing. Naturally, all scheduling will be coordinated with Town personnel to ensure that no work will interfere with normal Town operations.

This preliminary schedule represents a roll-up of major project activities from execution of the Agreement, through completion of improvements and the Town's acceptance, to commencement of performance period services. As construction of this project requires significant involvement of Town personnel for review and approval of project specifications, design work, and selection of subcontractors, the schedule is intended to be representative of the expected construction period but in no way is a guarantee that any specific activities or the aggregate project will be completed in accordance with the specified periods.

This page is intentionally left blank.


Final Investment Grade Audit

Page 2

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Section 5: Preliminary Project Schedule

	r Town of Sudbury, MA			P	PRELIMINARY PRO Energy Savi	DJECT SCHEDULE			
ID	Task Name	Duration	Start	Finish	2014 Qtr 2		Qtr 4	Qtr 1	
1	Town Acceptance of Audit and Contract	0 days	Tue 5/6/14	Tue 5/6/14		Qtr 3	Qtr 4	Qtr1	
2	Execute Energy Performance Contract	9 days	Tue 5/6/14	Fri 5/16/14					
3	Secure Project Financing	2 wks	Mon 5/19/14	Fri 5/30/14					
4	Project Kick-off Meeting	0 days	Fri 6/13/14	Fri 6/13/14	6/13				
5	Construction Phase (required permits and gov. approvals, install, test, start-up)	300 days	Mon 6/16/14	Fri 8/7/15	-				
6	Project design	3 mons	Mon 6/16/14	Fri 9/5/14		ſ			
7	Equipment Procurement	4 mons	Mon 6/16/14	Fri 10/3/14	*				
8	ECM Implementation	52 wks	Mon 8/11/14	Fri 8/7/15					
9	Completion of Construction Phase	0 days	Fri 8/7/15	Fri 8/7/15					
10	Post M&V and Commissioning	4 wks	Mon 8/10/15	Fri 9/4/15					
11	Training of Personnel	2 wks	Mon 9/7/15	Fri 9/18/15					
12	Project Completion and Commencement of Normal Operations	0 days	Fri 9/25/15	Fri 9/25/15					
Project: Date: M	Town of Sudbury, MA by 6, 2014	Ext	led Up Progress ernal Tasks ject Summary		 External Milestone Inactive Task Inactive Task 		Manual Task Duration-only Manual Summary Rollup		Fin Pro Dea
Project: Date: M	Town of Sudbury, MA	Ext Pro Spl	ernal Tasks ject Summary		 Inactive Task Inactive Task Inactive Milestone 		Duration-only Manual Summary Rollup Manual Summary		

Section 6: Preliminary Commissioning Plan

The commissioning of this project will utilize industry accepted standards to insure all ECMs' are completed and operating as designed and intended. Ameresco will utilize previously developed documents and strategies to insure the ECMs are installed according to the project specifications, that the installing contractor has provided all the necessary deliverables noted in the specifications, the equipment performs as expected, the facility staff have been properly trained, Operations & Maintenance documents have been provided, and the Measurement &Verification portion of the contract can successfully oversee the operation and maintenance of the equipment thus insuring the project meets the energy and operational expectations of Ameresco and the Town.

Commissioning is the systematic process of ensuring all mechanical equipment related to the project performs interactively according to the owner's requirements and the design narrative. Commissioning includes Design Review, Submittal Review, Pre-functional Testing, and Functional Testing. Commissioning additionally ensures that the owner has received all of the deliverables as specified and that the building staff, through supervised training, is prepared to take over the operations and maintenance of the systems and equipment.

The purpose of the commissioning plan is to provide direction for the commissioning process during construction. The plan will identify what equipment and systems will be commissioned. It will also identify parties involved in the commissioning process, their roles, and required deliverables. The commissioning plan will also identify the goals of commissioning and/or the project, if they have not been clearly defined elsewhere.

This preliminary plan will detail the following:

- A breakdown of each ECM and the level of pre-functional and functional testing including areas of responsibility and deliverables. This breakdown will be provided in an easy to read table.
- Acceptance and turn over procedures including the integration of commissioning activities.
- A brief description of commissioning documents.
- A training agenda and sample training goals for each ECM

This page is intentionally left blank.

Page 2

Town of Sudbury, Massachusetts May 6, 2014

ECM Performance Testing Matrix

Pre-functional and functional reports shall be modified during the design and construction phases based on actual system design and installation. Results of Pre-functional Testing, as necessary, and Functional Testing will be included in the O & M Manuals.

ECM	Equipment/systems to be performance tested	Observations, Tests and Inspections during Construction (Pre-Functional)	Pre-functional Responsibility	Observations, Tests and Inspections Prior to Acceptance (Functional)	Functional Responsibility	Testing Documentation
ECM 1: Lighting System Improvements	Lighting fixtures	Verify operation of all fixtures as completed Inspect equipment and compare to approved submittals	Electrical Contractor Ameresco	Verify operation of all newly installed fixtures and/or lamps.	Electrical Contractor Ameresco	Commissioning Data Sheets will be completed for a statistically significant sample.
ECM 3: Integrated and New Energy Management Systems	Schedules, setpoints, sequences, lockouts, alarms, interlocks, control strategies, trending	Provide start up sheets for all controllers and programmable thermostats. Inspect construction progress for conformance to project specifications.	Controls Contractor Ameresco	Ameresco will Functionally test (Ft) the new controls by utilizing the approved sequence of operations to create project specific test sheets. The Ft's will document each step of the sequence and the outcome in order to show conformance to the design intent. Controls testing will be combined with individual equipment testing as it relates to operation and control. Sample sheets to show the depth and detail of testing have been included in appendix A.	Controls Contractor and Ameresco	FPT Reports will be completed for each system.
ECM 4: Programmable Thermostats	Schedules, setpoints	Provide start up sheets for all thermostats. Inspect construction progress for conformance to project specifications	Controls Contractor Ameresco	Ameresco will Functionally test (Ft) the thermostats by utilizing the approved sequence of operations to create project specific test sheets. The Ft's will document each step of the sequence and the outcome in order to show conformance to the design intent. Thermostat testing will be combined with individual equipment testing as it relates to operation and control. Sample sheets to show the depth and detail of testing have been included in appendix A.	Controls Contractor and Ameresco	FPT Reports will be completed for each system.
ECM 5: PC Load Management	Software Test	Start up and implementation report from Contractor	Contractor	A Software Performance Test will be coordinated with the Town's IT department to show program capabilities as well as response to scheduled tasks.	Software contractor Ameresco Town IT dept.	Results of software testing will be provided documenting the software setpoints, performance, number of computers affected, pre-installation energy use and post-installation energy use.
ECM 6: Demand Control Ventilation	Outside Air Dampers and related sensors	Verify operation of all dampers as completed.	Controls Contractors	Functional testing will be conducted and include the operation of the equipment as well as tie ins to the controls. See sample FPT's in the Appendix.	Controls Contractor Ameresco	FPT Reports will be provided for each system component.
ECM 7: Variable Frequency Drives	New VFDs	VFD start-up sheets will be provided by the manufacturer. Inspect construction progress for conformance to project specifications.	Controls Contractor Ameresco	Perform FPT in accordance with sample FPT Reports in the Appendix.	Controls Contractor Ameresco	FPT Reports will be completed for each system.
ECM 9: Vending Machine Controls	Control units	Inspect construction progress for conformance to project specifications.	Ameresco	Visual inspection of controls to ensure that they are installed and functioning properly	Installation Contractor Ameresco	FPT Reports will be completed for each system.
ECM 11: Weatherization	New weather-stripping, foam sealant and insulation	Inspect construction progress for conformance to project specifications.	Ameresco	Visual inspection to ensure that all weather stripping and air sealing material is installed and functioning properly.	Installation Contractor Ameresco	FPT Reports will be completed for each system.
ECM 22: Pipe Insulation	Insulation	Inspect construction progress for conformance to project specifications.	Ameresco	Visual inspection of insulation type and thickness for conformance with design documents and work scope.	Installation Contractor Ameresco	FPT Reports will be completed for each system.
ECM 25: Efficient Showerheads	New showerheads	Verify flow and proper operation of device for all fixtures.	Plumbing Contractor	Fixture consumption rates will be verified on a statistically significant sample size of measurable installed units/fixtures. Details to be further refined during design phase of project.	Ameresco	FPT Reports will be completed for each system.
ECM 29: Replace Transformers	Transformers	Verify operation and loading of equipment as installation is completed	Electrical Contractor	Visual inspection of all newly installed transformers to verify they are in place and properly installed.	Electrical Contractor AMERESCO	FPT Reports will be completed for each system.

This page is intentionally left blank.

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

Section 6: Commissioning Plan

Acceptance Procedures and Documentation

Upon completion of the pre-functional testing, completion of the functional performance testing, and completion of the training as described below, Ameresco shall issue Certificates of Substantial Completion for each ECM that is providing a performance and financial benefit to the Town. The Certificates will have accompanying punch lists; all punch list items that could directly affect the potential to generate energy cost savings must be completed prior to functional performance testing. It is important to note that the warranty periods for equipment/systems that are in operation will begin upon execution of the Certificates of Substantial Completion, which is after completion of functional performance testing.

Upon successful completion of all functional performance tests and all construction period M&V testing, as prescribed in Section 7, the ECMs are deemed to have the potential to achieve the estimated energy cost and maintenance savings. Ameresco will also provide applicable training required to allow the Town to assume operational control and maintenance responsibilities for the ECMs, such training to be as described in the section on training, below. Ameresco will then formally request from the Town an inspection of the work completed. A Certificate of Substantial Completion will accompany the formal inspection request. The Certificate of Substantial Completion formally acknowledges that the work has been completed, or a portion thereof, and is being accepted. Some ECMs may not be able to be completed at that time due to circumstances beyond the control of Ameresco. In these instances, a percentage complete will be assigned to the ECM and a punch list of outstanding items will be included. These items typically will not have an impact on the savings or the potential to achieve savings since the functional performance test will have been completed prior to requesting the final inspection. All outstanding punch list items will be completed as soon as possible.

Commissioning will include two levels of testing for equipment and systems, Pre-functional Testing and Functional Performance Testing; Pre-functional testing checks the readiness of equipment to work within the system and includes contractor or manufacturer start up sheets. Functional testing tests the operation of the system, specifically the sequence of operations.

Pre-Functional Testing

The PFT is a validation of individual equipment for readiness to work in conjunction with the associated system. The contractors must successfully complete the pre-functional test for each component of a given system prior to formal functional performance testing of equipment and subsystems of the given system. Pre-functional Tests will augment and are combined with the manufacturer's start-up checklist. Completion of the Pre-functional Tests will allow the contractor to ensure that the overall installation reflects the requirements of the plans, specifications and manufacturer's installation manuals.

Functional Performance Testing

The FPT is the equipment or system performance evaluation under operating conditions for compliance with the project documents (installation drawings, one line diagrams, Sequences of Operation, and specifications including changes during construction). It verifies equipment or system component performances, e.g., temperature, humidity, pressure, flow, start/stop etc.

Functional testing is the dynamic testing of systems (rather than just components) under full operation. Systems are tested under various modes, such as during high/low heating loads, high/low steam loads, component failures, etc. The systems are run through all of the control system's sequences of operation and components are verified to be responding as the sequences state. Ameresco develops the FPT procedures in a sequential written form, coordinates, oversees and documents the actual testing, which is performed with assistance, typically from the controls contractor.

The Energy Management or Control system will be used to verify and document the functional performance of the commissioned systems. Since the EMS is critical to the FPT process, the EMS PFT (performed by the contractor point-to-point checkout and controller start up reports) must be complete and accepted before any FPT can begin. Much of the BMS FPT is accomplished during the testing process for the equipment and systems. For example, while testing the hot water heating pumps, the BMS is tested at the same time for many of its individual features such as set point control and scheduling.

Inspection reports

Inspection reports are brief reports completed by an inspecting Ameresco employee that document the extent of construction, verify conformance to approved submittals and construction documents, and identifies any deficiencies. The intent of the reports are to insure equipment is properly supplied to the construction site and installed properly, this will aid in a quick and successful Functional test and final sign off of ECM's.

Operations and Maintenance Manuals

O & M Manuals will be provided upon completion of all functional performance tests and upon completion of the as-built documentation. O&M's will be provided for each ECM and be related to that specific ECM. The manuals will be provided as hard copy binders as well as electronic copies on a CD. A sample O&M outline follows:

Section I – System Description

- A brief description of the system, its major components and function.
- Control strategies and sequences describing start-up, modes of operation, and shutdown.
- Energy conservation strategies important to the selection of the equipment.

Section II – Equipment Data Sheets

- Corrected shop drawings, including performance curves, efficiency ratings, features and options
- Approved submittal
- Copies of approved certifications and factory test reports (where applicable)
- Wiring and control schematics detailing the operation and control of each component for troubleshooting

Section III - Maintenance

• Manufacturer's Operation and Maintenance instructions

- Manufacturer's Spare Parts Lists
- Manufacturer recommended spare parts inventory list
- Manufacturer's recommended maintenance frequency
- Name, address, and telephone number of the manufacturer's local representative for each type of equipment for replacement parts and service.

Section IV- Test Reports

- Pre-functional Reports (Equipment start-up reports and commissioning data sheets)
- Functional Reports (System start-up reports and functional performance tests)
- Copies of welder certifications (where applicable)
- Non-destructive testing reports (where applicable)
- Hydrostatic/pneumatic pipe testing reports (where applicable)
- Water treatment analysis and report (where applicable)
- Testing and Balancing reports (where applicable)
- Other reports as applicable

Section V – Warranties/Guarantees

- A typewritten warranty, on company letterhead, for each system installed. The warranty shall state the system and components covered, the duration of the warranty period, and emergency contact phone numbers for service and repair.
- Warranties/guarantees from subcontractors or equipment suppliers.

Training Plan

Training and orientation on the systems installed will vary depending on the complexity of the specific equipment installed for each ECM. At a minimum each ECM O&M manual will be reviewed with the staff to review the installed measure, scope of work, effect on energy consumption, and warrantee information. Additionally a site inspection to review a typical installation will be conducted. Ameresco will be present at all training sessions to insure training is provided as required and is thorough; a brief training report will be issued for each session that will include a sign in sheet and instructor contact information. Training is anticipated to be provided at the following levels depending on ECM complexity:

 For systems and/or equipment that are essentially direct replacements of existing equipment, and where no additional specific skills will be required to perform operations and maintenance functions, training will be limited to a general overview of the equipment installed and a review of the O&M manuals. Training will be directed to operating personnel. Training should be provided at the completion of construction of each of the ECMs and will generally last less than a day.

Final Investment Grade Audit

Section 6: Commissioning Plan

"Page content is subject to Confidentiality Restrictions"

- 2. For systems/equipment that are new to the site and require more in-depth understanding as to their function and operation, training will include classroom time that will provide an overview of the implemented technology and design intent as well as O&M review. Training will be geared towards operations staff as well as direct supervisors. Following the classroom training, a site tour will be conducted to view the installation and operation of the equipment, a "hands on" session of training will be provided at this time. Training will be scheduled to coincide with the completion of construction and should be anticipated to last as long as a full day for each ECM.
- 3. For systems and/or equipment that are new to the site and more complex in nature, training will be directed to the operations staff, immediate supervisors, and site supervisors as necessary. In general, training will consist of classroom training followed by hands-on instruction in the field. Training will be provided through a complement of Ameresco personnel, design engineers, installation contractors, and manufacturer's representatives. Specifics on the training program, including schedule and training materials, will be further refined during the design process, but the training, in general, will consist of the following:
 - a. Explanation of the design concept
 - i. Design intent
 - ii. Energy efficiency considerations
 - iii. Seasonal modes of operation
 - iv. Emergency conditions and operation
 - v. Comfort conditions and indoor air quality
 - b. Systems operation
 - i. Operation of individual components, instruction from authorized factory technicians, if required
 - ii. Physical location of critical shut-off valves, fire, smoke, and balancing dampers, relief valves, safeties, and control panels
 - iii. System operational procedures for all modes in manual and automatic modes
 - c. Operation of the control systems
 - i. Sequences of Operation
 - ii. Use of Graphical User Interfaces
 - iii. Alarms and problem indicators
 - iv. Diagnostics and corrective actions
 - d. Service and Maintenance
 - i. Use of the O&M manuals
 - ii. Instruction and logging procedures for maintenance
 - iii. Instruction from authorized factory technicians, where applicable
 - iv. Troubleshooting and investigation of malfunctions
 - v. Recommended procedures for collecting, interpreting, and storing specific performance data

Training will be provided during construction, commissioning, and acceptance phases as dictated by the

complexity of the ECM. It is also anticipated that additional training will be provided after 6 and 12 months from acceptance of the ECMs to ensure that the equipment is being operated and maintained in accordance with manufacturer's recommendations and within contract requirements so that the potential to generate cost savings is not jeopardized. All training activities will be coordinated carefully with Town facilities personnel.

This page is intentionally left blank.

Town of Sudbury, MassachusettsPage 10May 6, 2014

Training Goal Matrix

This is a general outline of training for each ECM. Specific times and topics will be adjusted as final equipment selections are made.

ECM	Equipment/ Systems	Classroom Training	Hands on Instruction	Personnel Groups Trained
ECM 1: Lighting System Improvements	Lighting Fixtures	1 hour to go over lighting, lighting controls and operation of controls	Site review to identify typical locations for lighting retrofits and controls.	Facility Engineers Facility Technicians O&M Personnel
ECM 3: Integrated and New Energy Management System	New and Existing Energy Management Systems	16 hours of classroom training to review the steps to change schedules, set-points, generate trend logs, reset alarms, interpret alarms, and review the control sequences. Classroom training will be broken up into several training sessions	Site review to identify controlled equipment, sensor types and locations.	Facility Engineers Facility Technicians Supervisors O&M Personnel
ECM 4: Programmable Thermostats	New thermostats	Review of O&M	Site review to identify controlled equipment, thermostat types and locations.	Facility Engineers
ECM 5: PC Load Management	Computer Servers and software	No classroom training is included. Three years of maintenance through the manufacture is included which includes technical support.	Remote training during installation through software vendor.	IT personnel Facility Manager
ECM 6: Demand Controlled Ventilation	New and Existing Energy Management Systems	To be combined with EMS training	Site review to identify implementation locations and discuss energy savings potentials.	Facility Engineers Facility Technicians O&M Personnel
ECM 7: Variable Frequency Drives	VFDs	2 hours of training to evaluate the new VFD equipment and review of the control sequences.	Onsite overview of equipment, how to adjust controls and settings.	Facility Technicians O&M Personnel
ECM 9: Vending Machine Controls	Control Units	None	Site review to identify implementation locations, training to discuss unit operation and sensor operation and discuss energy savings potentials.	Facility Technicians O&M Personnel

"Page content is subject to Confidentiality Restrictions"

Section 6: Commissioning Plan

ECM	Equipment/ Systems	Classroom Training	Hands on Instruction	Personnel Groups Trained
ECM 11: Weatherization	Weather-stripping	None	Site review to identify implementation locations, training to discuss reinstalling weather-stripping during maintenance operations and discuss energy savings potentials.	Facility Technicians O&M Personnel8
ECM 22: Pipe Insulation	Pipe Insulation	None	Site review to identify implementation locations, training to discuss reinstalling insulation during maintenance operations and discuss energy savings potentials.	Facility Technicians O&M Personnel
ECM 25: Efficient Showerheads	Water Fixtures	None	Site review to identify implementation locations and discuss energy savings potentials and maintenance requirements for the new fixtures.	Facility Engineers Facility Technicians O&M Personnel
ECM 29: Replace Transformers	Transformers	Review of O&M	None	Facility Technicians O&M Personnel

Final Investment Grade Audit

Town of Sudbury, MassachusettsPage 12May 6, 2014

"Page content is subject to Confidentiality Restrictions"

Section 6: Commissioning Plan

Appendix: Sample Testing Documentation Forms

This page intentionally left blank.

Final Investment Grade Audit

Page 2

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

Section 6: Commissioning Plan

	ECM1: Lighting Measurement & Verification Worksheet AMERESCO Project Name: Project #:										
						/	AMER	ESCC			
	Project Name:			Project #:		G	reen • Clean	 Sustainable 			
	Use this workshee	t to document the r	neasure	d post-retrofit light fixture watts,	for each circu	it of light fixtu	res, to the near	rest whole wat	t.		
	Use a separate wo	orksheet for each ty	pe of lig	ht fixtures. Calculate the overall	average wat	t/fixture at the	bottom of eac	hsheet			
	Complete Signatu	res and Metering D	evice In	formation at bottom of workshee	t.						
			N	lew/Retrofitted Light Fixture	s (Post-Me	asurement)					
								-	Watt Per		
Item	Building	Location	Qty	Lamp/Ballast Type	Amps	Voltage	PF	Total Watts	Fixture		
1											
2											
3 4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
							Average	Watts/Fixture			
Own	er Representative (Print Name):		Signature:			Date:				
Ame	resco Project Mana	ger (Print Name):		Signature:			Date:				
Cont	ractor Performing	M&V (Print Name):		Signature:			Date:				
Mode	el & Serial Number	of Watt Meter:		Date of Calibration:			NIST Standar	d:			

This page intentionally left blank.

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

Town of Sudbury, MassachusettsPage 4May 6, 2014

Section 6: Commissioning Plan

Functional	Performance	Test
(FPT) Repo	rt	

Energy Management System

Project:	Date:

System:_____

Location:

Functional Performance Test: Performance Partner shall verify the operation of the automatic controls to comply with the contract documents. As a minimum, the following functions shall be tested:

Compliance Checklist:

1. Verify that the wiring is correct to each point. Compliance?

(Attach a comprehensive list of points with this completed form)

2. Verify that the software address is correct. Compliance?

(Attach a list of all software addresses and a brief description of the address (i.e., OADB = Outside Air Dry Bulb temperature in degrees Fahrenheit) with this completed form)

- If the device is/has an actuator, verify free movement through its full range.
 Compliance? ______
- 4. Verify stroke/range calibration for all controlled valves, dampers, actuators, fans, pumps, etc.

Simulate maximum and minimum transmitter signal values and verify minimum and maximum controller output values and verify the stroke and capacity range for each control device. (*Provide completed calibration forms for all sensors and controllers.*) Compliance?

- Verify that the software with the correct setpoints has been downloaded for each control loop.
 Compliance? ______
- 6. ECM Specific:
- Verify the three EMCS front-end computers are installed and operationally identical. Compliance?
- Verify all inoperable control devices, which were existing, have been replaced with new functional units as per scope. **Compliance?**

- Verify existing Honeywell, Trane, and Automated Logic points have been migrated to the new Johnson EMCS. Compliance?_____
- EMCS logic:

 Scheduled start / stop. Compliance? _______

 Optimum start. Compliance? _______ (Attach control algorithm used to determine optimum start time based on historical weather data and space response time)

 Enthalpy controlled economizer. Compliance? ______

 Supply air temperature reset. Compliance? ______

 Outside air lockout. Compliance? ______

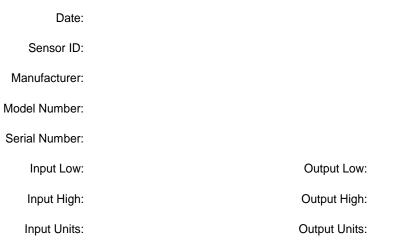
 Nighttime space temperature setup / setback. Compliance? ______ (space heating setback to 55°F, cooling set up to 85°F)

 Attach a log, generated for one month at one-hour intervals by the EMCS, with recorded values

for date, time, outside air temperature (dry bulb and wet bulb), AHU fan status (supply and return), discharge air temperature, return air temperature (dry bulb and wet bulb), mixed air temperature (dry bulb and wet bulb), supply temperature (dry bulb and wet bulb), supply temperature setpoint and outside air damper position for all AHUs.

7. Certification and Witness

Performance Partner


Client _____

Ameresco _____

Page 6

Sensor Calibration Sheet

Input Mode:

AS FOUND

lr	nput %	Actual Input in Deg. F	M/A Output	Computer Read	Controller Voltage Read

AS LEFT Input % Actual Input in Deg. F M/A Output Computer Read Controller Voltage Read Input % Input in Deg. F Input % Input % Input % Input % Input % Input in Deg. F Input % Input % Input % Input % Input % Input in Deg. F Input % Input %

Test Equipment Used

Manufacturer	Model Number	Serial Number	Cert Date	NIST Number

COMMENTS:

Functional Performance Test (FPT) Report	
VFD – Fan Application	
Project:	Date:
Air Handling Unit No.:	
System:	Location:

Functional Performance Test: Performance Partner shall verify the operation of the variable frequency drive for control of a variable air volume system for compliance with the contract documents. As a minimum, the following items shall be tested and /or recorded:

1. General Information

VFD manufacturer and model no.						
Supply Fan (SF) HP:	CFM:	RPM:	SP:			
Return Fan (RF) HP:	CFM:	RPM:	SP:			

2. Static Pressure Sensor/Transmitter

Verify location of the static pressure sensor in % of the distance from fan to terminal unit. (Normally, the sensor should be located 2/3 to 3/4 downstream of the fan to the terminal unit of the most restrictive branch)

Distance _____%

3. Pressure Reading Reliability

Duct diameter or equivalent diameter _____

Nearest duct fitting upstream _____

Nearest duct fitting downstream _____

(Ideally, the most reliable readings occur when the sensor is at least 10 duct diameters downstream and 5 duct diameters upstream from takeoffs or fittings)

Does the location comply? _____

4. Functional Performance Test

- Terminal Units Full Cooling (Boxes at Max)
 Adjust all space temperature setpoints at least 10°F below design setpoints. All zones should be in full cooling and terminal units should be open to the maximum position.
 - Measure or read the duct static pressure and record in column A of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- Terminal Units Intermediate Position (Boxes Partially Opened) Readjust thermostats to a few degrees below normal setpoints, to simulate an approaching thermostat satisfaction and take readings.
 - Measure or read the duct static pressure and record in column B of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- c. Terminal Units Satisfied (Boxes at Min) Readjust thermostats to actual room temperatures to simulate a satisfied condition. Boxes should close to the minimum position.
 - Measure or read the duct static pressure and record in column C of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- d. Verify Static Pressure Sensor/Transmitter

Using a magnehelic gauge, record actual static pressure at the location of the sensor and record static pressure indicated by the BMS

Actual Static Pressure _____

BMS Static Pressure _____

Is the variance less than 5%? _____ If no, investigate problem.

5. Test Data

Design Static Pressure (in.)_____

Design Frequency (Hz): SF _____ RF _____

Design RPM: SF _____ RF _____

SP Setpoint during test (in.) _____

Table 1.

Test Data	A Boxes at M	ax position	B Boxes Parti	ially Open	C Boxes at M	in position
	SF	RF	SF	RF	SF	RF

VFD Frequency or RPM			
Static Pressure during Test			

6. Analysis

a. Compare the full open frequency or RPM to the design values for the supply fan.
 Divide the design value by the reading in Column A. If the percentage is less than 95%, all boxes may not have driven to the full open position. Investigate possible problems.

Is the variance less than 5%? _____

- b. Is the static pressure recorded in Columns B & C within 10% of the setpoint?
 Is the variance less than 5%? ______
- c. The SP during the full open condition should be significantly less than the partially loaded conditions and close to the value calculated in Attachment A (within 0.15 inches). If not, investigate possible problems.

Compliance? _____

7. General Issues

- a. Verify that power quality requirements from the specifications have been completed.
- b. Record results and include in the Operation and Maintenance Manuals.
- c. Certification and Witness

Performance Partner

Client _____

Ameresco_____

Functional	Performance	Test
(FPT) Repo	rt	

VFD – Pump Application

Project:	Date:
Pump No.:	
System:	Location:

Functional Performance Test: Performance Partner shall verify the operation of the variable frequency drive for control of a variable pumping system for compliance with the contract documents. As a minimum, the following items shall be tested and/or recorded:

1. General Information

VFD manufacturer and model no.

Pump HP:_____ GPM: _____ Head (ft): _____

2. Differential Sensor/Transmitter

Verify location of the differential pressure sensor.

(Ideally, the sensor should be located at or near the last branch takeoff)

Location _____

3. Functional Performance Test

- a. Intermediate Flow Valves Partially Opened
 It is expected to find the system in this condition.
 - Read the speed, DP at the sensor, and gpm in the loop, if available, and record in condition 3, in Table 1.
- b. Design Flow Valves Full Open

(maximum cooling or heating)

- Set the space temperature setpoints 10°F below the current space temperature for cooling valves and 10°F above the space temperature for heating so that all valves modulate to the full open position.
- Read the speed, DP at the sensor, and gpm in the loop, if available, and record in condition
 2, in Table 1.
- c. Minimum Flow Valves Shut (minimum cooling or heating)
- Set the space temperature setpoints equal to the current space temperature so that all conditions are satisfied, driving all valves to the minimum or closed position.
- Read the speed, DP at the sensor, and gpm in the loop, if available, and record in condition
 4, in Table 1.

4. Test Data

Design Differential Pressure (psig)_____

Design Frequency (Hz): _____

Design RPM: _____

DP Setpoint during test (psig) _____

(The operating setpoint shall be determined using the procedure listed in attachment A)

Table 1.

		Spe	ed	DP at Sensor		Total		
Condition	Pump No.	(Hz or F	(Hz or RPM)		Hz or RPM) (psig)		ig)	Flow
		Unit	Avg	Unit	Avg	(GPM)		
1. At design flow by TAB report	Pump - 1							
	Pump - 2							
	Pump - 3							
2. At design flow (during	Pump - 1							
commissioning)	Pump - 2							
	Pump - 3							
3. At intermediate	Pump - 1							

flow (during commissioning)	Pump - 2			
	Pump - 3			
4. At minimum flow (during	Pump - 1			
commissioning)	Pump - 2			
	Pump - 3			

5. Analysis

a. During operation of each pump combination, the average DP readings for all conditions should remain within 10% of each other. If not, investigate problems.

Is the variance less than 5%? _____

b. At no flow, Condition 4, is the flow and DP zero or equal to the minimum by-pass flows?

Compliance? _____

c. Is the system balanced to the lowest DP? Compliance?

6. General Issues

- a. Verify that power quality requirements from the specifications have been completed.
 Compliance? ______
- b. Verify that there are no 3-way valves in the piping system that may negate the savings from the VFD by allowing flow to bypass the coils.
 Complete? ______
- c. Verify that the VFD control has been integrated into the BMS as specified. **Complete?**
- 7. Record results and include in the Operation and Maintenance Manuals.

8. Certification and Witness

Performance Partner	

Client

Ameresco

COMMISSIONING DATA SHEET AIR HANDLING UNIT

PROJECT NAME:	DATE:
LOCATION:	-
UNIT NO.:	_ COMPLETED BY:

Service/Location:

Manufacturer:

Model Number:

Serial Number:

* Complete/Attach Data Sheet for the Supply Fan

* Complete/Attach Data Sheet for the Return Fan

DATA	DESIGN	ACTUAL
Total Airflow Rate (cfm)		
Total System Static Pressure (in. of water)		
Discharge Static Pressure		
Filter Differential Static Pressure		
Coil(s) Differential Static Pressure		
Outside Air DB/WB		
Return Air DB/WB		
Mixed Air DB/WB		
Supply Air DB/WB		
Coil(s) Face Velocity (fpm)		
Ent/Lvg Chilled Water Temperature, if applicable		
Ent/Lvg Hot Water Temperature, if applicable		
Inlet Steam Pressure, if applicable		

CHECK	COMPLETE
Condensate Removal (Cond. piping is not obstructed)	
Lubrication	
Damper Operation	
Filters Installed	

Functional Performance	Test
(FPT) Report	

VFD – VAV Fan Application

Project:	Date:
Air Handling Unit No.:	
System:	Location:

Functional Performance Test: Performance Partner shall verify the operation of the variable frequency drive for control of a variable air volume system for compliance with the contract documents. As a minimum, the following items shall be tested and /or recorded:

1. General Information

VFD manufacturer and mod	del no			
Supply Fan (SF) HP:	CFM:	RPM:	SP:	
Return Fan (RF) HP:	CFM:	RPM:	SP:	

2. Static Pressure Sensor/Transmitter

a. Verify location of the static pressure sensor in % of the distance from fan to terminal unit.
 (Normally, the sensor should be located 2/3 to 3/4 downstream of the fan to the terminal unit of the most restrictive branch)

Distance _____%

- b. Pressure Reading Reliability
 - Duct diameter or equivalent diameter ______
 - Nearest duct fitting upstream ______
 - Nearest duct fitting downstream ______
 - (Ideally, the most reliable readings occur when the sensor is at least 10 duct diameters downstream and 5 duct diameters upstream from takeoffs or fittings)
 - Does the location comply? ______

3. Functional Performance Test

- Terminal Units Full Cooling (Boxes at Max)
 Adjust all space temperature setpoints at least 10°F below design setpoints. All zones should be in full cooling and terminal units should be open to the maximum position.
 - Measure or read the duct static pressure and record in column A of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- Terminal Units Intermediate Position (Boxes Partially Opened) Readjust thermostats to a few degrees below normal setpoints, to simulate an approaching thermostat satisfaction and take readings.
 - Measure or read the duct static pressure and record in column B of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- c. Terminal Units Satisfied (Boxes at Min) Readjust thermostats to actual room temperatures to simulate a satisfied condition. Boxes should close to the minimum position.
 - Measure or read the duct static pressure and record in column C of Table 1.
 - Read the frequency output of the VFDs and record in Table 1.
- d. Verify Static Pressure Sensor/Transmitter

Using a magnehelic gauge, record actual static pressure at the location of the sensor and record static pressure indicated by the BMS

Actual Static Pressure _____

BMS Static Pressure _____

Is the variance less than 5%? _____ If no, investigate problem.

4. Test Data

Design Static Pressure (in.)_____

Design Frequency (Hz): SF _____ RF _____

Design RPM: SF _____ RF _____

SP Setpoint during test (in.) _____

Table 1.

Test Data	A Boxes at M	-	B Boxes Partially Open		C Boxes at Min position	
	SF	RF	SF	RF	SF	RF
VFD Frequency or RPM						
Static Pressure during Test						

5. Analysis

a. Compare the full open frequency or RPM to the design values for the supply fan.
 Divide the design value by the reading in Column A. If the percentage is less than 95%, all boxes may not have driven to the full open position. Investigate possible problems.

Is the variance less than 5%? _____

- b. Is the static pressure recorded in Columns B & C within 10% of the setpoint?
 Is the variance less than 5%? ______
- c. The SP during the full open condition should be significantly less than the partially loaded conditions and close to the value calculated in Attachment A (within 0.15 inches). If not, investigate possible problems.

Compliance? _____

6. General Issues

Verify that power quality requirements from the specifications have been completed.

- 7. Record results and include in the Operation and Maintenance Manuals.
- 8. Certification and Witness

Performance Partner

Client

Ameresco

```
Final Investment Grade Audit
```


Attachment A

To ensure that the energy savings are maximized, the system must be operated at the lowest static pressure (SP) possible. The objective is to find the lowest SP at the sensor that will allow full design flow at the terminal unit most difficult to satisfy (the duct run with the greatest pressure losses). The system minimum SP determined should be the setpoint for the VFD.

The procedure for finding the system minimum static pressure is as follows:

- 1. Manually or automatically set the temperature setpoints for all zones to 55 F, which should cause all units to open to the maximum position.
- 2. The airflow at each terminal unit should be measured and compared to the design flow.
- The terminal unit receiving the lowest fraction of the design flow should be identified. (It should be the unit with the longest duct run, most fittings, etc.)
- 4. The SP at the controlling sensor should be noted.
- A calculation should be made to determine the static pressure at the sensor that will allow the critical terminal unit to achieve its design flow.
 SP (setpoint) = SP (at the sensor from Step 4) X (1 / (fraction of flow from Step 3)²)

It should be noted that if all terminal units were calling for full cooling simultaneously, the fan may not be able to achieve the SP setpoint calculated in Step 5 due to diversity allowances made by the design engineer.

Page 18

Section 7: Measurement & Verification Plan

Site Specific Plan

Ameresco has based its verification pricing on a short-term plan with certain instantaneous measurements performed at commissioning to ensure audit savings projections are met, and on-going monitoring over the project term to assist the Town in operating at peak efficiency throughout the project term. This approach allows Ameresco to be a long-term partner of the Town while minimizing the on-going cost of verification and thereby allowing significantly more capital improvements to be funded.

The above approach to verification minimizes the effect of inevitable changes at the facility, while still ensuring the Town savings will be realized. Other verification approaches require adjustments for changes outside of the ESCO's control and can result in conflicts about the true magnitude of the adjustment. Our recommended approach preserves the ability to recognize savings while minimizing the long-term potential for conflicts.

In addition to the services described herein, Ameresco will also provide the Town with a utility comparison highlighting usage for the current period versus baseline usage after any applicable adjustments. The utility comparison will encompass electric and gas utilities affected by the ECMs in the following locations:

Curtis Middle School
Haynes Elementary
Loring Elementary
Nixon Elementary
Noyes Elementary
Public Library

Such utility comparison shall not impact the reconciliation of Guaranteed Savings. However, Ameresco will provide reasonable assistance to the Town to identify reasons for variations between the actual utility use and post retrofit utility use anticipated to result from the implemented ECMs.

The following table outlines the measurement and verification plan included for this project.

This page intentionally left blank.

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014

Page 2

Measurement & Verification Summary Matrix

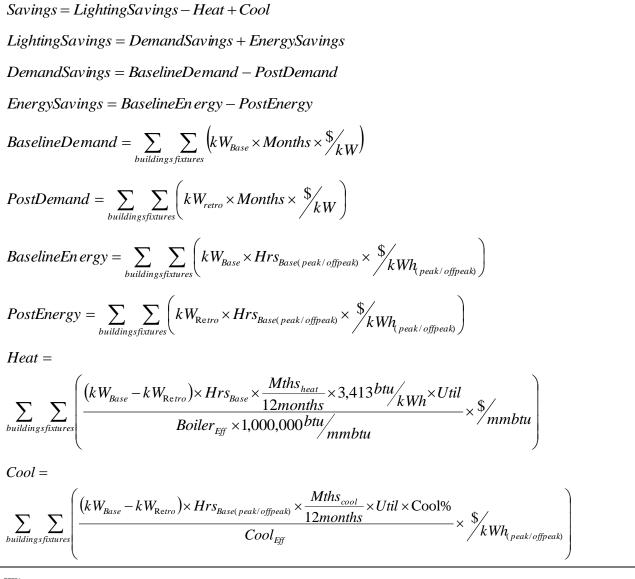
The matrix below represents a summary of specific details included in the attached Site-Specific M&V Plan.

ECM	Minimum Baseline M&V Requirements	Minimum Post Installation M&V Requirement	Metered or Measured Variables	Stipulated Variables	Minimum Performance Period M&V Requirements
ECM-1: Lighting System Improvements	Fixture wattages will be from an industry standard wattage table. Operating hours to be based on information provided by the Town.	Input power and foot-candles for a statistically significant sample of retrofitted fixtures will be measured at time of commissioning. Power measurements will be compared to values in the energy audit and foot candle readings will be compared to "IES" tables.	One time instantaneous power using a true RMS power meter and foot candle readings.	Baseline and post-installation (subject to one-time post-retrofit measurements) fixture power draw. Operating hours from energy audit. Interactive effects.	Adjust savings to measured results if beyond +/- 10% from energy audit values. Post- retrofit foot-candle readings will be provided for reference only. Ameresco will visually inspect a sample of lamps to verify the lamp types are as efficient as those proposed in the energy audit.
ECM-3: Integrated and New Energy Management System	Pre-retrofit parameters are based on industry information and energy audit data collection. Space temperatures and motor run hours sampled during energy audit.	Monitoring of equipment operating hours and space temperatures.	Trend readings of temperature and set points as well as set points for operating parameters over 4 weather bins at time of commissioning, up to a maximum of 4 weeks. Quarterly monitoring of post installation operating hours, set-points, and space temperatures will be performed. (for trendable systems only)	Load profile in weather bins. Pre- and post- retrofit variables. Operating hours	Annual inspection of installed systems to identify ability to maintain persistence of savings. Quarterly monitoring and reporting of operating hours, set-points, and space temperatures. (for trendable systems only) Annual inspection of schedules and set- points. (for non-trendable systems)
ECM-4: Programmable Thermostats	Pre-retrofit parameters are based on industry information and energy audit data collection. Space temperatures and motor run hours sampled during energy audit.	Commissioning of system to ensure installed to perform as designed.	N/A	Load profile in weather bins. Pre- and post- retrofit variables. Operating hours	Annual inspection of installed systems to identify ability to maintain persistence of savings including schedules and set-points.
ECM-5: PC Load Management	Survey the computers to determine counts.	Verify CPU and monitor operating policies are in place and being followed	N/A	Operating Run Hours and computer energy use.	Annual inspection of installed systems to identify ability to maintain persistence of savings
ECM-6: Demand Control Ventilation	Baseline parameters are based on industry information and the energy audit	Commissioning of system to ensure installed to perform as designed.	No variables will be specifically metered or measured. Quarterly monitoring of post installation operating hours and CO ₂ setpoints in conjunction with ECM-3. (for trendable systems only)	Load profile in weather bins. Pre- and post- retrofit variables. Operating hours	Annual inspection of installed systems to identify ability to maintain persistence of savings. Quarterly monitoring and reporting of operating hours and CO ₂ setpoints. (for trendable systems only)
ECM-7: Variable Frequency Drives	Baseline parameters are based on industry information and the energy audit	Monitoring of motor speed.	Post-retrofit measurements based on performance over at least a 24 hour period, incorporating at least three temperature bins at time of commissioning.	Load profile in weather bins. Operating hours.	Adjust savings to measured results if beyond +/- 10% from energy audit values. Annual inspection of installed systems to identify ability to maintain persistence of savings.
ECM-9: Vending Machine Controls	Survey the machines to verify counts.	Verify controllers are in place and being used	NA	Operating Run Hours and machine energy use.	Annual inspection of installed systems to identify ability to maintain persistence of savings.
ECM-11: Weatherization	Baseline parameters are based on industry information and the energy audit	Commissioning of system to ensure installed to perform as designed.	N/A	Heat transfer rates, infiltration amounts, space temperatures and operating hours of system.	Annual inspection of installed systems to identify ability to maintain persistence of savings.
ECM-22: Pipe Insulation	Baseline parameters are based on industry information and the energy audit	Commissioning of system to ensure installed to perform as designed.	N/A	Heat transfer rates and operating hours of system.	Annual inspection of installed systems to identify ability to maintain persistence of savings.
ECM 25: Efficient Showerheads	Usage and flow rates are based on industry information and energy audit.	Water Usage for a statistically significant sample size of measureable retrofitted fixtures will be measured at time of commissioning.	Flow rates for a statistically significant sample size of measureable fixtures	Baseline and post-installation (subject to one-time post-retrofit measurements) fixture water usage. Occurrences.	Adjust savings to measured results if beyond +/- 10% from energy audit values. Ameresco will visually inspect a sample of fixtures to verify the fixture types are as efficient as those proposed in the energy audit.

Final Investment Grade Audit

"Page content is subject to Confidentiality Restrictions"

Section 7: Measurement and Verification Plan					Green · Clean · Sustainable
ECM	Minimum Baseline M&V Requirements	Minimum Post Installation M&V Requirement	Metered or Measured Variables	Stipulated Variables	Minimum Performance Period M&V Requirements
ECM 29: Replace Transformers	Baseline power draws are based on nameplate data collected during the energy audit.	Measurement of transformer input and output power consumption and efficiency of a statistically significant sample size of transformers at commissioning.	Measurement of power consumption and no load losses at post retrofit conditions.	Operating hours of the transformers and loading from baseline measurements.	Adjust savings to measured results if beyond +/- 15% from energy audit values. Annual inspection of installed systems to identify ability to maintain persistence of savings



ECM 1: Lighting System Improvements

Energy Savings Calculation Methodology

Savings Algorithm:

Where:

kW _{Base}	- Base fixture kW, as per lighting audit calculation included in the energy audit
$\mathrm{kW}_{\mathrm{Retro}}$	- Retrofit fixture kW, as per lighting audit calculation included in the energy audit, subject to
	metering described below
Months	- Number of months demand savings will occur factored for coincidence, as per lighting audit
	calculation included in the energy audit

"Page content is subject to Confidentiality Restrictions"

Section 7: Measurement & Verifications Plan

Hrs _{Base}	- Baseline fixture operating hours broken out into peak and offpeak, as per lighting audit
	calculation included in the energy audit
$\text{Boiler}_{\rm Eff}$	- Average heating system efficiency, as per lighting audit calculation included in the energy
	audit
$\operatorname{Cool}_{\operatorname{Eff}}$	- Average cooling system performance (COP), as per lighting audit calculation included in the energy audit
Util	- Factor representing the amount of energy transmitted to the space, as per lighting audit
	calculation included in the energy audit
Cool%	- Factor representing the amount space with cooling, as per calculation in the energy audit
Mthsheat	- Number of months the heating penalty will occur, as per lighting audit calculation included
	in the energy audit
$\mathrm{Mths}_{\mathrm{cool}}$	- Number of months the cooling benefit will occur, as per lighting audit calculation included
	in the energy audit
\$/kW	- Unit cost of electric demand, as per Unit Prices section
\$/kWh _{peak}	- Unit cost of peak electric energy, as per Unit Prices section
\$/kWh _{offpeak}	- Unit cost of offpeak electric energy, as per Unit Prices section
\$/mmbtu	- Unit cost of fossil fuel, as per Unit Prices section

Metering Plan

Ameresco will measure the post-installation fixture input power for a statistically significant sample size of the retrofit fixtures, and if the total sample values are within 10% of the energy audit values no change will be made. If the total sample values are not within 10%, Ameresco will either take corrective action for them to be within this limit, or will utilize the measured values. Post-retrofit light level measurements for a sample of areas will be provided to the Town for reference. A "true-up" will be provided in spreadsheet format which will detail the measurement results and any savings guarantee adjustments.

Ameresco will use a calibrated hand held RMS meter (Fluke or equivalent) to measure power readings (kW, V, Amps, PF) from the lighting systems. These measurements can include individual fixtures or single lighting circuits with multiple fixtures of the same type and will continue until the sample size for each lighting group has been achieved. Fixtures to be metered must have at least 100 hours of operation following retrofit. Measurements shall be made only after the fixtures have reached steady state operating temperature and space temperatures are within normal occupied ranges.

The wattage measurements for each sample group will be averaged together. These averages will then be summed for all sample groups in order to determine the total measured wattage for the entire lighting sample. The difference between the total measured sample wattage and the total proposed wattage for the same sample will be subject to the 10% hurdle. If the difference is not within the 10% hurdle, the proposed wattage in the energy audit for the entire lighting project will be multiplied by the measured percentage difference and substituted into the energy audit calculation. The resulting savings will become the actual savings for this ECM. Interactive savings are stipulated and will not be part of the comparison.

Final Investment Grade Audit

Page 6

Preliminary Lighting Metering Sample

	S	udbury	- Lightin	g Sampl	le Coun	ts*				
Post Description	Flynn Building	Public Library	DPW Highway	Fire Dept Headqua rters	Curtis Middle School	Loring Element ary	Haynes Element ary	Nixon Element ary	Total Sample Count	Total Fixture Count
2L2' T8 15w/ELEE HI/RFL		1		1	10	5			17	466
2L2' T8 15w/ELEE LO					16				16	137
2L4' T8 28w/ELEE LO	2	1			7		4	3	17	699
2L4' T8 28w/ELEE LO-8'					15		1	1	17	359
3L4' T8 28w/ELEE LO		2		2	7	4		1	16	186
4L4' T8 28w/ELEE LO-8'	1	2			5	1	3	5	17	1226
Grand Total	3	6	0	3	60	10	8	10	100	3073

* Sample based on FEMP Guidelines with 90% Confidence, 20% Precision, & Coefficient Variation = 0.5.

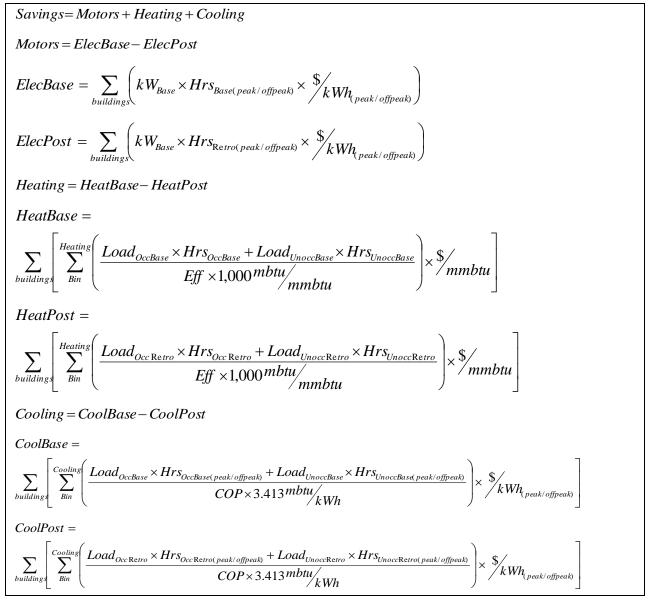
Section 7: Measurement & Verification Plan

This page intentionally left blank.

Final Investment Grade Audit

Town of Sudbury, MassachusettsPage 8May 6, 2014

"Page content is subject to Confidentiality Restrictions"



ECM 3: Integrated and New Energy Management Systems

ECM 4: Programmable Thermostats

Energy Savings Calculation Methodology

Savings Algorithm:

Where:

kW_{Base} - Total fan and pump motor kW under EMS control, as per calculation in the energy audit

Section 7: Measurement & Verifications Plan

Hrs_{Base}	-	Base motor operating hours broken out into peak and offpeak, as per calculation in the energy audit
Hrs_{Retro}	-	Retrofit motor operating hours broken out into peak and offpeak, as per calculation in the energy audit
$Load_{OccBase}$	-	Building load per bin, including infiltration load, (mbtu/hr) under current conditions during occupied hours, as per calculation in the energy audit
$Load_{UnoccBase}$	-	Building load per bin, including infiltration load, (mbtu/hr) under current conditions during unoccupied hours, as per calculation in the energy audit
Load _{OccRetro}	-	Building load per bin, including infiltration load, (mbtu/hr) with reduced setpoint temperature and improved control, as per calculation in the energy audit
Load _{UnoccRetro}	-	Building load per bin, including infiltration load, (mbtu/hr) with night setback and improved control, as per calculation in the energy audit
Hrs _{OccBase}	-	Baseline heating and cooling bin hours during occupied period broken out into peak and
Hrs _{UnoccBase}	-	offpeak, as per calculation in the energy audit Baseline heating and cooling bin hours during unoccupied period broken out into peak and offpeak, as per calculation in the energy audit
HrsoccRetro	-	Retrofit heating and cooling bin hours during occupied period broken out into peak and offpeak, as per calculation in the energy audit
Hrs _{UnoccRetro}	-	Retrofit heating and cooling bin hours during unoccupied period broken out into peak and offpeak, as per calculation in the energy audit
Eff	_	Heating system efficiency, as per calculation in the energy audit
COP		Cooling system coefficient of performance, as per calculation included in the energy audit
\$/kWh _{peak}		Unit cost of peak electric energy, as per Unit Prices section
\$/kWh _{offpeak}		Unit cost of offpeak electric energy, as per Unit Prices section
\$/mmbtu	-	Unit cost of fossil fuel, as per Unit Prices section

Metering Plan – (Direct Digital Controls)

Upon completion of the installation, Ameresco will commission the energy management system and test its functionality to ensure the ability of savings as specified in the energy audit to occur, as per the Commissioning Plan in Section 6. Monitoring of equipment operating hours and space temperatures will be completed in detail to verify the performance of the new EMS over at least 4 weather bins at time of commissioning, up to a maximum of 4 weeks. Performance of the new EMS shall be considered verified once all time schedules are shown to turn on and off controlled equipment per the programmed times and temperature setpoints, both occupied and unoccupied are substantially achieved. Additionally, the commissioning report for the EMS, completed during construction, will be attached to the first Annual Measurement and Verification report to confirm the EMS is commissioned per the designed intent. Trends will be setup to track operating hours and temperatures per the final commissioning plan developed during the design and construction phase.

Metering Plan – Programmable Thermostats

Upon completion of the installation, Ameresco will commission the programmable thermostats and boiler controls and test their functionality to ensure the ability of savings as specified in the energy audit to occur, as per the Commissioning Plan in Section 6. No measurements will be taken.

Occupied Scheduling – Direct Digital Controls

Ameresco will initially setup the occupancy schedules in the EMS to reflect the current occupancy of the buildings. The HVAC systems will only be operated when the buildings are supposed to be occupied. Other areas of the buildings like offices and gymnasiums can have slightly longer schedules to reflect occupancy outside of the normal occupancy; however, classroom systems will be turned off based on the bell schedule. The vacation schedule will also be initially setup in the system to turn off equipment on vacation days. The Town will be responsible for updating the vacation and special days schedule to ensure the systems are not operating when the buildings are not occupied.

Schedule	M&V Operating Schedu	ıle					
	Monday - Friday		Weekends				
						Additional	Weighted Average
					Annual	Hrs. for	Annual Occupied
					Occupied	Areas with	Hours used in EMS
Programmable Thermostats	On	Off	On	Off	Hours	Longer Occ.	Calculation
Loring Elementary	8:00 AM	3:00 PM	Off	Off	1,585	441	2,026
Noyes Elementary	8:30 AM	3:30 PM	Off	Off	1,585	272	1,856
Haynes Elementary	8:30 AM	3:30 PM	Off	Off	1,585	272	1,856
Nixon Elementary	8:30 AM	3:30 PM	Off	Off	1,585	283	1,868

Final Investment Grade Audit

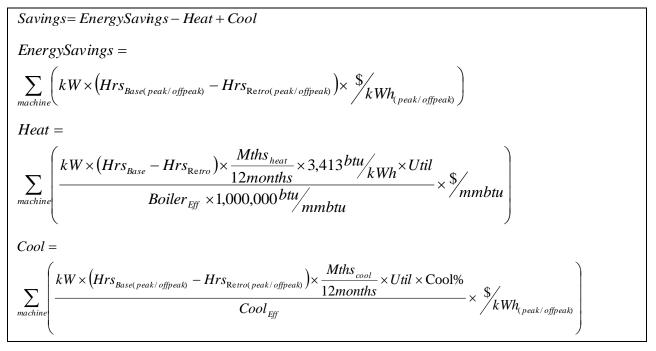
"Page content is subject to Confidentiality Restrictions"

Occupied Scheduling – Programmable Thermostats

Ameresco will initially setup the occupancy schedules in the programmable thermostats to reflect the current occupancy of the buildings. The HVAC systems will only be operated when the buildings are supposed to be occupied.

Schedule	M&V Operating Sched	A&V Operating Schedule					
	Monday - Friday		Weekends				
						Additional	Weighted Average
					Annual	Hrs. for	Annual Occupied
					Occupied	Areas with	Hours used in EMS
EMS	On	Off	On	Off	Hours	Longer Occ.	Calculation
DPW Highway	6:00 AM	3:30 PM	Off	Off	2,346	130	2,477

"Page content is subject to Confidentiality Restrictions"


Town of Sudbury, Massachusetts May 6, 2014

ECM 5: PC Load Management

Energy Savings Calculation Methodology

Savings Algorithm:

Where:

kW	- Computer kW, as per calculation in the energy audit
Hrs_{Base}	- Total base operating hours broken out into peak and offpeak, as per calculation in the
	energy audit
Hrs_{Retro}	- Total retro operating hours broken out into peak and offpeak, as per calculation in the
	energy audit
$\mathrm{Mths}_{\mathrm{heat}}$	- Number of months the heating penalty will occur, as per calculation in the energy audit
$\mathrm{Mths}_{\mathrm{cool}}$	- Number of months the cooling benefit will occur, as per calculation in the energy audit
$\operatorname{Boiler}_{\operatorname{Eff}}$	- Average heating system efficiency, as per calculation in the energy audit
$\operatorname{Cool}_{\operatorname{Eff}}$	- Average cooling system performance (COP), as per calculation in the energy audit
Util	- Factor representing the amount of energy transmitted to the space, as per calculation in the
	energy audit
Cool%	- Factor representing the amount space with cooling, as per calculation in the energy audit
\$/mmbtu	- Unit cost of fossil fuel, as per Unit Prices section below
\$/kWh _{peak}	- Unit cost of peak electric energy, as per Unit Prices section
$kWh_{offpeak}$	- Unit cost of offpeak electric energy, as per Unit Prices section

Final Investment Grade Audit

Page 14

Metering Plan

No measurements will be taken for this ECM.

Final Investment Grade Audit

Town of Sudbury, Massachusetts May 6, 2014 "Page content is subject to Confidentiality Restrictions"

ECM 6: Demand Control Ventilation

Energy Savings Calculation Methodology

Savings Algorithm:

$$Savings = FuelBase - Fuel \operatorname{Retro}$$

$$FuelBase = \sum_{Building Bin} \sum_{Bin} \left(\frac{Load_{Base} \times Hrs_{BaseHeat}}{Eff \times 1,000 \, mbtu/mmbtu} \right) \times \frac{mmbtu}{mmbtu}$$

$$Fuel \operatorname{Retro} = \sum_{Building Bin} \sum_{Bin} \left(\frac{Load_{Retro} \times Hrs_{RetroHeat}}{Eff \times 1,000 \, mbtu/mmbtu} \right) \times \frac{mmbtu}{mmbtu}$$

Where:

Load _{Base}	- Building load {mbtu/hr} after EMS savings are accounted for, as per calculation in the
	energy audit
Load _{Retro}	- Building load {mbtu/hr} CO2 control, as per calculation in the energy audit
$Hrs_{BaseHeat}$	- Base bin hours for each heating period, occ/unocc, as per calculation in the energy audit
$Hrs_{RetroHeat}$	- Retrofit bin hours for each heating period, occ/unocc, as per calculation in the energy audit
Eff	- Average heating system efficiency, as per calculation in the energy audit
\$/mmbtu	- Unit cost of fossil fuel, as per Unit Prices section below

Metering Plan

Upon completion of the installation, Ameresco will commission the CO_2 sensors and test their functionality to ensure the ability of savings as specified in the energy audit to occur. Monitoring of equipment operating hours and CO_2 will be completed to verify the performance of the new CO_2 sensors in conjunction with the EMS measurement and verification plan. Trends will be setup to track operating hours and CO_2 levels per the final commissioning plan developed during the design and construction phase.

No measurements will be taken for this ECM.

ECM 7: Variable Frequency Drives

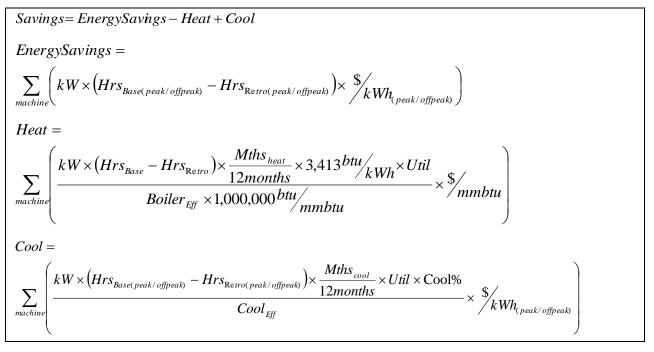
Energy Savings Calculation Methodology

Savings Algorithm:

Savings = Baseline - PostInstallation
$Baseline = \sum_{Building} \left(kW \times Hours_{(peak/offpeak)} \times \frac{\$}{kWh_{(peak/offpeak)}} \right)$
$Postinstallation = \sum_{Building} \left(Usage_{(peak/offpeak)} \times \frac{k}{kWh_{(peak/offpeak)}} \right)$
Where:

kW	- Base motor kW, as per calculation in the energy audit
Hours	- Run hours of each applicable motor broken out into peak and off peak, as per calculation in
	the energy audit
Usage	- Energy usage of each motor with VFD control, broken out into peak and offpeak, as per
	calculation in the energy audit
\$/kWh _{peak}	- Unit cost of peak electric energy, as per Unit Prices section
$kWh_{offpeak}$	- Unit cost of offpeak electric energy, as per Unit Prices section

Metering Plan


Ameresco will confirm performance of the variable frequency drives by trending fan or pump speed over the course of at least one representative 24-hour period (operation across at least three 5 degree F temperature BINs). Trending will be extended to longer than 24 contiguous hours if necessary to capture a three bin operating range. If the fan or pump speed modulates based upon system loading and is able to turn down below the speed referenced in the energy audit, no change will be made. The mildest temperature BIN measured, plus 10%, will be compared to the same temperature bin in the savings calculation. If the fan or pump does not modulate as predicted, Ameresco will either take corrective action and remeasure, or will recalculate the savings using measured performance data as inputs into the energy audit savings analysis.

ECM 9: Vending Machine Controls

Energy Savings Calculation Methodology

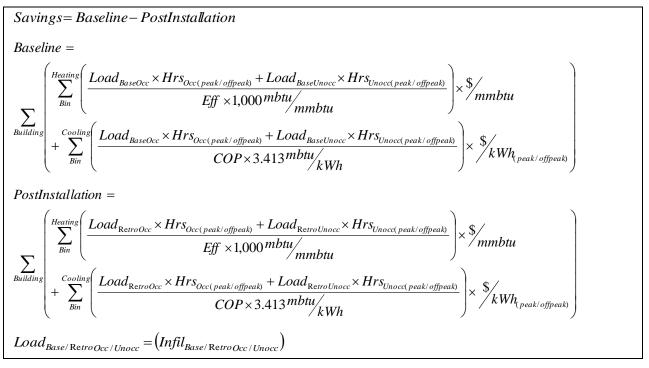
Savings Algorithm:

Where:

Metering Plan

No measurements will be taken for this ECM.

Final Investment Grade Audit


Page 18

ECM 11: Weatherization

Energy Savings Calculation Methodology

Savings Algorithm:

Where:

Infil	-	The infiltration load per bin (mbtu/hr) for either the base case or the retrofit case during
		either the occupied or unoccupied period, as per the calculation in the energy audit
Hrs _{Occ}	-	Bin hours for occupied period broken out into peak and off peak, as per calculation in the
		energy audit
Hrs_{Unocc}	-	Bin hours for unoccupied period broken out into peak and off peak, as per calculation in the
		energy audit
Eff	-	Heating system efficiency, as per calculation in the energy audit
COP	-	Cooling system coefficient of performance, as per calculation included in the energy audit
\$/mmbtu	-	Unit cost of fossil fuel, as per Unit Prices section below
\$/kWh _{peak}	-	Unit cost of peak electric energy, as per Unit Prices section
$kWh_{offpeak}$	-	Unit cost of offpeak electric energy, as per Unit Prices section

Metering Plan

No measurements will be taken for this ECM.

ECM 22: Pipe Insulation

Energy Savings Calculation Methodology

Savings Algorithm:

$$Savings = \sum_{Heat} (Baseline_{Heat} - PostInstallation_{Heat}) + \sum_{Cool} (Baseline_{Cool} - PostInstallation_{Cool})$$

$$Baseline_{Heat} = \sum_{Pipes} \left(\frac{LossRate_{Base} \times Hrs}{Eff \times 1000 \, mbtu/mmbtu} \right) \times \frac{mmbtu}{mmbtu}$$

$$PostInstallation_{Heat} = \sum_{Pipes} \left(\frac{LossRate_{Retro} \times Hrs}{Eff \times 1000 \, mbtu/mmbtu} \right) \times \frac{mmbtu}{mmbtu}$$

$$Baseline_{Cool} = \sum_{Pipes} \left(\frac{LossRate_{Base} \times Hrs}{COP} \times \frac{1,000 \, btu/mbtu}{3,413 \, btu/kWh} \right) \times \frac{mmbtu}{kWh}$$

$$PostInstallation_{Heat} = \sum_{Pipes} \left(\frac{LossRate_{Base} \times Hrs}{COP} \times \frac{1,000 \, btu/mbtu}{3,413 \, btu/kWh} \right) \times \frac{mmbtu}{kWh}$$

Where:

LossRate_{Base} - Existing pipe heat loss rate (mbtu/hr), as per calculation in energy audit
LossRate_{Retro} - Proposed pipe heat loss rate (mbtu/hr), as per calculation in energy audit
Hrs - Total pipe run hours, as per calculation in energy audit
Eff - Base heating plant efficiency, as per calculation in energy audit
COP - Cooling system coefficient of performance, as per calculation included in energy audit
\$/mmbtu
Unit cost of fossil fuel, as per Unit Prices section below
\$/kWh_{peak} - Unit cost of peak electric energy, as per Unit Prices section

Metering Plan

No measurements will be taken for this ECM.

ECM 25: Efficient Showerheads

Energy Savings Calculation Methodology

Savings Algorithm:

 $Savings = Baseline_{Water} - Post_{Water}$ $OccDays = Occupants \times OccDays \times OccFact$ $Baseline_{Water} = \sum_{Fixture} \left[OccDays \times (Shower_{Base}) \times \frac{\$}{kgal} \right]$ $Shower_{Base} = UsageFactor_{Shower} \times FlowRate_{ShoweEBase}$ $Post_{Water} = \sum_{Fixture} \left[OccDays \times (Shower_{Retro}) \times \frac{\$}{kgal} \right]$ $Shower_{Retro} = UsageFactor_{Shower} \times FlowRate_{ShoweEBase}$

Where:

Occupants	- Number of Occupants, as per calculation in energy audit
OccDays	- Number of days occupants in facility, per year, as per calculation in energy audit
OccFact	- Percentage of OccDays occupants actually in facility, as per calculation in energy audit
UsageFactor	- Frequency of fixture usage (occurrences or time length), as per calculation in energy audit
$FlowRate_{Base}$	- Base fixture flow rate, as per calculation in energy audit
FlowRate _{Retro}	- Retrofit fixture flow rate, as per calculation in energy audit, subject to metering described
	below
UUF	- Percentage of times urinal used with respect to toilet usage, as per calculation in energy audit
\$/kgal	- Unit cost of water and sewer, as per Unit Prices section below

Metering Plan

Ameresco will measure the post-installation consumption rate for a statistically significant sample size of measureable fixtures, and if the total sample values are within 10% of the energy audit values no change will be made. If the total sample values are not within 10%, Ameresco will either take corrective action for them to be within this limit, or will utilize the measured values. A "true-up" will be provided in spreadsheet format which will detail the measurement results and any savings guarantee adjustments.

A graduated container will be used to measure shower flow rates. At least three measurements will be taken for each metered fixture.

The flow rate measurements for each fixture type (showers) will be averaged together to determine the measured flow rate for each fixture type. The difference between the total measured sample flow rate and the total proposed flow rate for each fixture type will be subject to the 10% hurdle. If the differences are not within the 10% hurdle, the proposed flow rates in the energy audit for the particular fixture type will be

Section 7: Measurement and Verification Plan

multiplied by the measured percentage difference and substituted into the energy audit calculation. The sum of the resulting savings for each fixture type will become the actual savings for this ECM.

Final Investment Grade Audit

 Town of Sudbury, Massachusetts

 Page 22
 May 6, 2014

ECM 29: Replace Transformers

Energy Savings Calculation Methodology

Savings Algorithm:

Savings = Baseline - PostInstallation $Baseline = \sum_{transforme} \left(Usage_{Base_{(Peak/offPeak)}} \times \frac{\$}{kWh_{(Peak/offPeak)}} + kW_{Base} \times \frac{\$}{kW} \right)$ $PostInstallation = \sum_{transforme} \left(Usage_{Retro_{(Peak/offPeak)}} \times \frac{\$}{kWh_{(Peak/offPeak)}} + kW_{Retro} \times \frac{\$}{kW} \right)$

Where:

$\mathrm{kW}_{\mathrm{Base}}$	- Baseline transformer kW, as per calculation in the energy audit
$\mathrm{kW}_{\mathrm{Retro}}$	- Retrofit transformer kW, as per calculation in the energy audit, subject to metering described
	below
Usage _{Base}	- Baseline energy usage for transformers, as per calculation in the energy audit, subject to
	metering described below
Usage _{Post}	- Retrofit energy usage for transformers, as per calculation in the energy audit, subject to
	metering described below
\$/kW	- Unit cost of electrical demand, as per Unit Prices section
\$/kWh _{peak}	- Unit cost of peak electric energy, as per Unit Prices section
$kWh_{offpeak}$	- Unit cost of offpeak electric energy, as per Unit Prices section

Metering Plan

Ameresco will measure the input and output power for a statistically significant sample size of transformers after replacement, and if the total sample values are within 15% of the energy audit values no change will be made. If the total sample values are not within 15%, Ameresco will either take corrective action for them to be within this limit, or will utilize the measured values.

Measurement and Verification Report Services

ECM 1: Lighting System Improvements

Ameresco will perform a yearly site inspection of a sampling of the lighting systems to ensure that the lamp and ballast technologies that were installed are in operation and that future replacement lamps and ballasts are at least as efficient as the Ameresco installed technologies. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 3: Integrated and New Energy Management Systems

Ameresco will inspect the energy management system both quarterly and annually, as part of its site inspection. A review of available trend data will be performed, and a visual inspection of major control areas will be completed. Observations identified during the site inspection shall be incorporated into the annual reconciliation report.

Annual Inspection Procedures (General)

- Confirm that the system/equipment is functional and operating as intended.
- Verify that the system is being properly maintained. Review current O&M practices to ensure compliance with the contract requirements.
- Review current or past problems with the system, especially those that may affect energy savings.
- Identify any building renovations or changes in the facility operation during the past year that would affect the project performance and/or savings.

Quarterly Inspection Procedures (EMS)

- Review trend logs and compare with the standards established in the ESA.
- Review the notification history for set-points and occupancy schedules that have been modified since the last inspection.
- Recommend set-point and schedule adjustments particularly those that do not comply with the contract standards.
- Review the basic system operation with new personnel and recommend training, if necessary.
- Review alarm history and discuss possible reasons and corrections.

ECM 4: Programmable Thermostats

Ameresco will inspect the programmable thermostats and boiler controls annually, as part of its site inspection. This inspection will include checking setpoints and schedules. Observations identified during the site inspection shall be incorporated into the annual reconciliation report.

Annual Inspection Procedures

• Confirm that the system/equipment is functional and operating as intended.

Page 24

- Review set-point and schedule programming and compare with the standards established in the Agreement.
- Recommend set-point and schedule adjustments particularly those that do not comply with the contract standards.

ECM 5: PC Load Management

Ameresco will perform a yearly site inspection of the computer load management server to ensure it is functional. Audit reports will be generated from the software to indicate whether power savings policies are in place. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 6: Demand Control Ventilation

The ongoing monitoring for the new CO_2 sensors will be completed with ECM-3, only for sensor connected to a direct digital control system with trending capability.

ECM 7: Variable Frequency Drives

Ameresco will perform a yearly site inspection of the variable frequency drives. This inspection will include a visual inspection of the drives to ensure they are operational and not in bypass. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 9: Vending Machine Controls

Ameresco will perform a yearly site inspection of the installed controllers to ensure they are operational. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 11: Weatherization

Ameresco will perform a yearly site inspection of a sampling of the installed infiltration reduction materials to ensure they are installed. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 22: Pipe Insulation

Ameresco will perform a yearly site inspection of a sampling of the installed insulation to ensure it is installed. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 25: Efficient Showerheads

Ameresco will perform a yearly site inspection of a sampling of the water fixtures to ensure that the showerhead technologies that were installed are in operation and that future replacement units are at least as efficient as the Ameresco installed technologies. The observations during this inspection will be made part of the Annual Reconciliation Report.

ECM 29: Replace Transformers

Ameresco will perform a yearly site inspection of a sampling of the installed transformers to ensure they are installed. The observations during this inspection will be made part of the Annual Reconciliation Report.

Final Investment Grade Audit

Town of Sudbury, MassachusettsPage 26May 6, 2014

Maintenance Savings

AnnualSavings =
$$\frac{MAINT}{year} \times (1 + Esc)^{(CurrentYear-2013)}$$

The maintenance savings breakdown per measure is as follows:

ECM	O&M Savings
ECM 1: Lighting System Improvements	\$3,174
Totals	\$3,174

ECM 1 O&M savings are based on reduced material replacements costs due to replacing old lamps and ballasts with new.

The variable "Esc" equals 3.0% for the term of the project and is described in the Unit Prices section.

Unit Prices Section

The following base unit prices are based on unit prices for the Town, as provided for purposes of this project. These unit prices were utilized in calculating the financial savings associated with modified energy use.

Electricity Costs:

 $\begin{aligned} & \$ \\ & kW = Base \ kW \times (1 + Esc)^{(CurrentYea - 2013)} \\ & \$ \\ & kWh_{peak} = Base \ kWh_{peak} \times (1 + Esc)^{(CurrentYea - 2013)} \\ & \$ \\ & kWh_{offpeak} = Base \ kWh_{offpeak} \times (1 + Esc)^{(CurrentYea - 2013)} \end{aligned}$

The base for each location is listed in the following table.

Fossil Fuel Costs:

$$\frac{\text{Base}_{gas}}{\text{mmbtu}_{gas}} = \frac{\text{Base}_{gas}}{100 \,\text{mbtu}/\text{Therm}} \times (1 + \text{Esc})^{(CurrentYea-2013)}$$

The base for each location is listed in the following table.

Water Costs:

$$\frac{}{kgal} = (Base_water + Base_sewer) \times (1 + Esc)^{(CurrentYear-2013)}$$

The base for each location is listed in the following table.

Utility Escalation:

$$Esc = \frac{3.0\%}{yr}$$

For the purposes of the calculations set forth in this verification plan, the Parties stipulate that all Base Year utility rates and avoided maintenance cost savings shall be cumulatively escalated at three percent (3.0%) for each successive twelve (12) month period commencing with the first twelve (12) month period following the date of the energy audit. This escalation rate will be fixed for the full term of the project and applied annually to all energy unit prices.

Final Investment Grade Audit

Page 28

Utility Rate Tables:

Electricity Charges	Winter On-Peak (kWh)	Winter Off-Peak (kWh)	Winter Electric (kW)	Summer On-Peak (kWh)	Summer Off-Peak (kWh)	Summer Electric (kW)	Average On-Peak (kWh)	Average Off-Peak (kWh)	Average Electric (kW)
General Service – G-1	\$0.1663	\$0.1663	\$0.00	\$0.1943	\$0.1943	\$0.00	\$0.1757	\$0.1757	\$0.00
General Service – G-2	\$0.0997	\$0.0997	\$16.47	\$0.1001	\$0.1001	\$38.88	\$0.0998	\$0.0998	\$23.94
Time of Use – T-2	\$0.0879	\$0.0879	\$20.20	\$0.0879	\$0.0879	\$28.65	\$0.0879	\$0.0879	\$23.02

The electric rate to be used for the calculation of dollar savings will be the winter rate unless depicted otherwise in the following table.

Facility	G-1	G-2	T-2	ECM-1	ECM-9	ECM-29
DPW Highway		Х		Average	Average	
DPW Offices		Х				
Flynn Building		Х		Average		
Town Hall		Х				
Fairbank Community Center		Х			Average	
Public Library		Х		Average		
Fire Department Headquarters		Х		Average	Average	
Fire Department South	Х				Average	
Fire Department North	Х				Average	
Curtis Middle School			Х	Average		Average
Loring Elementary School			Х	Average	Average	Average
Noyes Elementary School		Х			Average	
Haynes Elementary School			Х	Average	Average	
Nixon Elementary School		Х		Average	Average	

The fuel and water rates to be used for the calculation of dollar savings are depicted in the following table.

Facility	\$/Therm Natural Gas	\$/kGal Water	\$/kGal Sewer
DPW Highway	\$1.227	\$4.000	\$-
DPW Offices	\$1.168	\$4.000	\$-
Flynn Building	\$1.168	\$4.000	\$-
Town Hall	\$1.227	\$4.000	\$-
Fairbank Community Center	\$1.036	\$4.000	\$-
Public Library	\$1.168	\$4.000	\$-
Fire Dept Headquarters	\$1.168	\$4.000	\$-
Fire Dept South	\$1.354	\$4.000	\$-
Fire Dept North	\$1.354	\$4.000	\$-
Curtis Middle School	\$1.168	\$4.000	\$-
Loring Elementary	\$1.168	\$4.000	\$-
Noyes Elementary	\$1.168	\$4.000	\$-
Haynes Elementary	\$1.168	\$4.000	\$-
Nixon Elementary	\$1.168	\$4.000	\$-

nvestment Grade Audit

Town of Sudbury, MassachusettsPage 30May 6, 2014

"Page content is subject to Confidentiality Restrictions"

CONTACTS:

Ameresco Inc. 111 Speen Street, Suite 410 Framingham, MA 01701 T: 508.661.2200 • F: 508.661.2201

Name of contact person in the firm: Harold Meyer – Manager, Business Development T: 508.661.2232

ameresco.com

©2014 Ameresco Inc. Ameresco, the Ameresco logo, the orb symbol and the tagline "Green. Clean. Sustainable." Are registered in the U.S. Patent and trademark Office. All rights reserved.

DA-5994-01/14-05-01.05