TABLE OF CONTENTS

Table of Contents

A. PROJECT OBJECTIVE ... 3
B. PURPOSE ... 3
C. FIELD SURVEY OF EXISTING STRUCTURE ... 3
D. RECOMMENDED REPAIRS .. 4
E. MATERIAL SAMPLING AND TESTING ... 5
F. PRELIMINARY STEEL SUPERSTRUCTURE EVALUATION ... 5
G. PRELIMINARY SEISMIC ANALYSIS AND RECOMMENDATIONS ... 5
H. GEOTECHNICAL EVALUATION .. 5
I. HYDRAULIC EVALUATION .. 5
J. RECOMMENDED MODIFICATIONS ... 6
K. PRELIMINARY COST ESTIMATE .. 6

APPENDICES .. 7
Appendix A Location Map .. 8
Appendix B Photographic Documentation of Bridge .. 10
Appendix C: Figures .. 17
Appendix D: Preliminary Structures Cost Estimate .. 18
A. PROJECT OBJECTIVE

The Bruce Freeman Rail Trail (BFRT) Project will convert the abandoned rail corridor to a bike trail for the Town of Sudbury, MA, thus extending the existing portion of the BFRT north to the Sudbury/Concord town line. As part of this effort, the existing abandoned railroad bridge spanning over Hop Brook will be rehabilitated for use as a multi-use pedestrian/bike trail bridge. VHB is working with the Town to finalize the design of the bridge. As a first step, the bridge has been inspected and the necessary modifications identified to transform it from its current abandoned state to a multi-use crossing over Hop Brook.

B. PURPOSE

The purpose of this report is to document the existing conditions obtained through a visual inspection. This report also describes any repairs necessary for rehabilitation of the structure for use as a pedestrian bridge over Hop Brook as part of the Bruce Freeman Rail Trail Project.

C. FIELD SURVEY OF EXISTING STRUCTURE

The existing abandoned railroad bridge was inspected on May 26, 2016 by VHB Structural Engineers. Weather during the inspection was partly cloudy with the temperature around 85 degrees. The bridge is a single simple-span deck plate girder structure over Hop Brook in Sudbury, MA. The span is approximately 26.83 feet, and is oriented north to south. The bridge crosses Hop Brook at a 90 degree angle (no skew).

The clearance under the bridge to the water at the time of inspection was 7’-7” to the fascia girders and 7’-3” to the interior girders.

The existing structure is a riveted steel deck plate girder superstructure supported on granite block stone masonry abutments. The structure is comprised of four steel built up girders, nested in two groups. The girders are spaced at 2’-0”, 3’-0”, and 2’-0” from west to east respectively. There are built up channel diaphragms at 1/3 points along the bridge along with lateral bracing of the top flange. The existing
bridge originally carried a single railroad track. See Appendix C Figures 1 & 2 for an elevation and typical cross section of the existing structure.

The built up girders are in satisfactory condition, with only surface rusting and minor pitting. The paint system has completely failed, and only minor flakes remain. The bracing and rivet heads are also in satisfactory condition with less than 5% loss. Although the timber ties and rails were not evaluated during the site visit as they will be removed for the rehabilitation of the bridge, it is noted that the ties were moderately rotted, some more than half the way through. There is no noted collision damage to the superstructure.

The bearings at both abutments appear to be in generally satisfactory condition with minor rust and debris present and do not need to be replaced. The bearings sit directly on steel built up bolsters which sit on the stone bridge seats.

Both abutments are in satisfactory condition. Some of the pointing is missing on the abutment faces and wingwalls, mostly near the waterline. There are no obvious signs of settlement.

D. RECOMMENDED REPAIRS

As seen from the photographic documentation in Appendix B, the abandoned railroad bridge over Hop Brook is in overall satisfactory condition. The following details the work required prior to the construction of the new pedestrian deck and railing system.

Substructure:

- Clean and Repoint stone masonry missing joints at abutments and wingwalls.
- Monitor abutments for potential scour

Superstructure:

- Remove all railroad ties and track.
- Remove all existing paint.
- Paint all steel elements.
- Jack superstructure for horizontal shift for proposed path alignment and replace bearings.
E. MATERIAL SAMPLING AND TESTING

Material testing and sampling was not conducted on the existing structure. The plaque on the side of the bridge indicates that the bridge was constructed in 1893. Due to the age of the structure, all paint on the existing superstructure is assumed to contain lead. According to “AISC – Historical Record Dimensions and Properties” for 1873 to 1952 for bridges constructed around 1900, the Structural Steel has a minimum yield point of 32,000 psi and the Rivet Steel is 30,000 psi.

F. PRELIMINARY STEEL SUPERSTRUCTURE EVALUATION

The original design live load is unknown. The repurposing of the structure as a pedestrian bridge and an H10 truck loading intended as an occasional emergency vehicle will present a significantly reduced live load as compared to typical railroad loading in the early 1900’s. It is anticipated that the existing steel structure, which is in good shape, can carry the required pedestrian and emergency vehicle loading. However, a comparative analysis will be performed during the final design phase to confirm this.

G. PRELIMINARY SEISMIC ANALYSIS AND RECOMMENDATIONS

Since this bridge is not a critical or essential bridge, seismic retrofit is not recommended.

H. GEOTECHNICAL EVALUATION

A geotechnical investigation was not performed at the time of this report. An investigation in the future will include samples taken from the railroad embankment and several probes behind each abutment to establish soil conditions and estimate the shape of the back of the abutment. It is anticipated that the proposed loading for the rail trail will be significantly less than the historic railroad loading. However, a comparative analysis will be performed during the final design phase to confirm this.

I. HYDRAULIC EVALUATION

The channel alignment is poor, however there are no obvious signs of settlement at the abutments. There is a possible scour hole in the northwest corner of the channel, but no other signs of scour. The channel velocity is slow to moderate and there is moderate amounts of debris in the channel. There are some silt deposits in the northeast and southwest corners due to the alignment.
The hydraulic opening will not change due to the proposed improvements and repairs to the existing bridge structure. Therefore, a hydraulic investigation is not proposed.

J. RECOMMENDED MODIFICATIONS

The existing structure will allow for a 14 foot wide travel way within new bridge railings. However, the existing bridge does not line up with the centerline of the proposed path as it currently sits on the abutments. Therefore, the existing bridge will be picked and moved 1 foot to the West to better suit the path alignment. The existing abutments appear to have sufficient space to allow for this movement. After the removal of the existing railroad ties and rail, a new deck can be supported directly on the existing steel stringers. The new deck could be timber, steel, or concrete. Based on keeping with the rural area of the project as well as continuity among local structures, a timber deck and railing system is recommended. The timber deck and floorbeams can be supported directly on the existing steel stringer top flanges.

Bicycle railing will be required on both sides of the new deck. The railings must be a minimum of 42 in high. All design will be in accordance with the 2014 AASHTO LRFD Bridge Design Specifications, with 2015 interims. See Appendix C Figure C-3 for the proposed bridge cross section.

K. PRELIMINARY COST ESTIMATE

Based on the proposed rehabilitation detailed in this report and the new timber deck and railings, the estimated cost for the bridge work is $340,000, which includes a 25% contingency. The detailed preliminary cost estimate is provided in Appendix D.
APPENDICES

Appendix A: Location Map
Appendix B: Photographic Documentation of Bridge
Appendix C: Figures
Appendix D: Preliminary Structures Cost Estimate
Appendix A Location Map
PROJECT LOCATION MAP

Proposed Bruce Freeman Rail Trail over Hop Brook
Appendix B Photographic Documentation of Bridge
Photo 1: North Approach (Looking North)

Photo 2: South Approach (Looking South)
Photo 3: Channel (Looking West of the Bridge)

Photo 4: Channel (Looking East of the Bridge)
Photo 5: South Abutment

Photo 6: North Abutment
Photo 7: Northwest Wingwall

Photo 8: Southeast Wingwall
Photo 9: Typical Framing

Photo 10: Typical Steel Condition
Photo 11: Typical Bearing Assemblies
Appendix C: Figures
Computations

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement for Pointing</td>
<td>40</td>
<td>BAG</td>
<td>$250</td>
<td>$10,000</td>
</tr>
<tr>
<td>Backwall modifications: 4000PSI, 1.5", 565 Cement Concrete</td>
<td>20</td>
<td>CY</td>
<td>$1,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Steel Reinforcement for Structures - Epoxy Coated</td>
<td>3000</td>
<td>LB</td>
<td>$2.65</td>
<td>$7,950</td>
</tr>
<tr>
<td>Alteration to Bridge Structure No. S-31-007</td>
<td>1</td>
<td>LS</td>
<td>$217,800</td>
<td>$217,800</td>
</tr>
<tr>
<td>Temporary Protective Shielding</td>
<td>1</td>
<td>LS</td>
<td>$10,800</td>
<td>$10,800</td>
</tr>
</tbody>
</table>

Sub Total = $266,550

25% Contingency = $66,638

Total = $333,188

Say = $340,000
Item # 690.91 Cement for Pointing BAG

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit</th>
<th>Cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointing</td>
<td>40 bags</td>
<td></td>
<td>$250.00</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

From MassDOT online bid application for item #908., use $250/bag

Cost = $250.00 /bag
Total = $10,000
Item # 901.

Backwall modifications: 4000PSI, 1.5", 565 Cement Concrete

Build up backwall to new proposed grade

New conc Height = 35 in
Width = 3 ft
Length = 17 ft
Backwalls = 2

20 CY

From MassDOT online bid application for item #901., use $1000/CY

Cost = $1,000.00 /EA
Total = $20,000
Item # 910.1
Steel Reinforcement for Structures - Epoxy Coated

4000PSI 1.5" 565

Weight of Steel = 3000 LB

Assume 150# of reinforcing steel per cubic yard of concrete.

From MassDOT online bid application for item #910.1, use $2.65/LB

Cost = $2.65 /LB

Total = $7,950
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacking Superstructure</td>
<td>1</td>
<td>LS</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>Drill & Grout Dowels</td>
<td>80</td>
<td>EA</td>
<td>$48</td>
<td>$3,800</td>
</tr>
<tr>
<td>Elastomeric Bearings w/ Anchor Bolts</td>
<td>8</td>
<td>EA</td>
<td>$3,000</td>
<td>$24,000</td>
</tr>
<tr>
<td>New Timber Deck & Railing System</td>
<td>1</td>
<td>LS</td>
<td>$82,000</td>
<td>$82,000</td>
</tr>
<tr>
<td>Clean (Full Removal) and Paint Steel Bridge No. S-31-007</td>
<td>1</td>
<td>LS</td>
<td>$68,000</td>
<td>$68,000</td>
</tr>
</tbody>
</table>

Total Lump Sum from Bridge Items = $217,800.00
Item # 106.87
Jacking Superstructure

Jacking and shoring of superstructure for bearing replacement and horizontal shift.

- **Locations = 8** (4 stringers, 2 abutments)
- **Use Unit Cost = $5,000.00 /Location**

Say = $40,000.00
Assume #5s - 3'-0" Long @ 12" O.C. F&B of Backwall

Spacing Bars = 12 in
Length Backwall = 17 ft
Backwalls = 2
Total Number Bars = 72
Say = 80

From MassDOT online bid application for item #912.5, use $47.50/EA
Cost = $47.50 /EA
Total = $3,800
Item # 921. Elastomeric Bearings w/ Anchor Bolts

Replace existing stringer bearings.

Bearings = 8

Cost = $3,000.00 /EA
Total = $24,000
Computed Information

<table>
<thead>
<tr>
<th>Item #</th>
<th>New Timber Deck & Railing System</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bridge Length = 35 ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bridge Width = 14 ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Area = 490 SF</td>
<td></td>
</tr>
</tbody>
</table>

From Blackstone Greenway canvas of bids in 2012:

- **Area = 490 SF**
- **Price = $167.00 /SF** (For Bridge No. B-13-030, similar beam spacing)
- **Total = $81,830**
- **Say = $82,000**

Note: Ipe was used for the Blackstone project for the deck and railings, so ignore inflation to offset the cost between Ipe & SYP.
Computed for the BFRT Project #12984.00 located in Sudbury, MA by KMR on 6/20/2017 and SK on 9/6/2017.

Title: Hop Brook Preliminary Estimate

Item # 961.201
Clean (Full Removal) and Paint Steel Bridge No. S-31-007

Per Span

Ext Stringers

- **Web**
 - Member Depth: 2.75 ft
 - Member Length: 28 ft
 - Area of Face: 77 sf
 - Faces: 4 (2 per stringer)
 - Area: 308 sf

- **Flanges**
 - Member Width: 12.6 in
 - Member Depth: 0.375 in
 - Member Length: 28 ft
 - Area of Face: 30 sf
 - Faces: 8 (4 per stringer)
 - Area: 242 sf

Int Stringers

- **Web**
 - Member Depth: 3.0520833 ft
 - Member Length: 28 ft
 - Area of Face: 85.458333 sf
 - Faces: 4 (2 per stringer)
 - Area: 341.83333 sf

- **Flanges**
 - Member Width: 10 in
 - Member Depth: 0.75 in
 - Member Length: 28 ft
 - Area of Face: 25 sf
 - Faces: 8 (4 per stringer)
 - Area: 201 sf

Ext Built Up Channels

- **Web**
 - Member Depth: 2.083333 ft
 - Member Length: 2 ft
 - Area of Face: 4.1666667 sf
 - Faces: 16 (2 per channel, 8 channels)
 - Area: 66.666667 sf

- **Flanges**
 - Member Width: 4 in
 - Member Depth: 0.375 in
 - Member Length: 2 ft
 - Area of Face: 1 sf
 - Faces: 32 (4 per channel, 8 channels)
 - Area: 23 sf

Int Built Up Channels

- **Web**
 - Member Depth: 2.333333 ft
 - Member Length: 3 ft
 - Area of Face: 7 sf
 - Faces: 8 (2 per channel, 4 channels)
Computations

Transportation
Land Development
Environmental
Services

Vanasse Hangen Brustlin, Inc.

Project: BFRT Project #: 12984.00
Location: Sudbury, MA Sheet:
Calculated By: KMR Date: 6/20/2017
Checked By: SK Date: 9/6/2017
Title: Hop Brook Preliminary Estimate

Area = 56 sf

Flanges
Member Width 4 in
Member Depth 0.375 in
Member Length 3 ft
Area of face 1 sf
Faces 16 (4 per channel, 4 channels)
Area = 18 sf

Top Flange Bracing

Diagonal
Leg 1 3.5 in
Leg 2 3.5 in
Length 9.5 ft
Area per brace 33.25 sf
braces 3
Area = 100 sf

Subtotal = 1356 sf
Add 25% For Misc Steel = 339 sf
Grand Total = 1700 sf

Cost
Assume the existing paint contains lead.

Painting Cost - Based on estimate of $4/SF to paint the Court Street parking garage, use 10$/SF because this structure is over water.

Deleading - Use $30/SF to delead based on estimate for the Longfellow Bridge.

Surface Preparation Cost = $30.00 /SF
Paint = $10.00 /SF

Total = $68,000 LS
Item # 994.1 Temporary Protective Shielding LS

Protect waterway from debris/contamination

Width Shielding = 20 ft
Length Bridge = 24 ft (clearance between abutments)
SF Shielding = 480

From MassDOT online bid application for item #994.1, use $22.50/SF

Cost = $22.50 /SF (use max for over water)
Total = $10,800
Say = $10,800