

Camp Sewataro 2022 Vegetation Survey & Water Quality Report

Sudbury, Massachusetts

Prepared On: January 23, 2023

Prepared by: SOLitude Lake Management

590 Lake Street

Shrewsbury, MA 01545

Prepared for: Camp Sewataro

% Emmy Niinimaki Sudbury, MA 01776

In accordance with the existing aquatic vegetation survey contract between SŌLitude Lake Management and Camp Sewataro, this report reflects the work performed throughout the 2022 management season.

AQUATIC VEGETATION SURVEY RESULTS

An aquatic vegetation survey was performed on July 22, 2022 by SOLitude specialists. Two species were identified in Fish Pond at this time: Arrowhead (Sagittaria latifolia), and large-leaf pondweed (Potamogeton amplifolius). Filamentous alga was also identified at this time in low abundance concentrated at the shoreline. No plants were found at Swim Pond.

WATER QUALITY RESULTS

SŌLitude specialists collected monthly (April-September) water quality samples and data from both Swim and Fish Pond at Camp Sewataro. The objective of the water quality sampling was to gain an understanding of the nutrient levels within the two ponds. Parameters collected between April & September include: water temperature, dissolved oxygen, hardness, turbidity, alkalinity, conductance, total phosphorus, soluble phosphorus, and pH. Additionally, true color, apparent color, nitrate, total nitrogen, and Total Kjeldahl Nitrogen were sampled on August 23. These results are included in **Table 1 & 2** below.

Table 1: Temperature/Dissolved Oxygen Profiles

April 2	8, 2022							
	Fishing	Pond		Swimming Pond				
Depth (ft)	Temp (°C)	DO (mg/L)	DO % Saturation	Depth (ft)	Temp(°C)	DO (mg/L)	DO % Saturation	
SW	13.9	12.18	117.88	SW	14.1	12.6	122.48	
3.0	13.4	12.2	116.77	3.0	14.0	12.8	124.15	
6.0	12.7	12.4	116.85	6.0	13.7	12.9	124.3	
9.0	12.2	12.2	113.68	9.0	12.7	13.3	125.33	
				10	12.7	13.55	127.69	

May 1	0, 2022						
	Fishing	Pond		Swimming Pond			
Depth (ft)	Temp (°C)	DO (mg/L)	DO %	Depth (ft)	Temp (°C)	DO (mg/L)	DO %
Depin (ii)	Temp (C)	DO (IIIg/L)	Saturation	Depin (ii)	Temp (C)	DO (mg/t)	Saturation
SW	20.5	11.52	127.92	SW	20.3	12.5	138.26
3.0	19.7	12.0	131.15	3.0	19.0	12.7	136.86
6.0	16.7	12.7	130.52	6.0	18.5	12.8	136.54
9.0	15.0	12.7	125.89	9.0	18.0	12.8	135.15

June (6, 2022						
	Fishing	Pond					
Depth (ft)	Temp (°C)	DO (mg/L)	DO %	Depth (ft)	Temp (°C)	DO (mg/L)	DO %
Depin (ii)	lenip (C)	DO (mg/t)	Saturation	Depin (ii)	Temp (C)	DO (IIIg/L)	Saturation
SW	21.7	11.7	133.01	SW	23.5	12.3	144.75
3.0	20.5	12.2	135.47	3.0	20.2	12.8	141.29
6.0	18.7	12.7	136.03	6.0	19.0	12.9	139.01
9.0	16.9	12.9	133.13	9.0	18.2	13.0	137.82

July 2	1, 2022							
	Fishing	Pond		Swimming Pond				
Depth (ft)	Temp (°C)	DO (mg/L)	DO %	n Depth (ft)	Temp (°C)	DO (mg/L)	DO %	
(,		(g/ -)	Saturation		15p (5)	2 5 (g, 2)	Saturation	
SW	20.1	11.9	131.1	SW	21.5	12.8	144.95	
3.0	19.4	12.5	135.79	3.0	19.7	12.9	140.98	
6.0	18.2	12.3	130.4	6.0	18.7	12.6	134.95	
9.0	15.9	12.8	129.35	9.0	18.1	13.1	138.6	
	•							

August	23, 2022						
	Fishing	Pond		Swimming Pond			
Depth (ft)	Temp (°C)	DO (mg/l)	DO %	Depth (ft)	Temp (°C)	DO (mg/l)	DO %
Depin (ii)	lemp (C)	DO (mg/L)	Saturation	Depin (ii)	lemp (C)	DO (mg/L)	Saturation
SW	25.1	7.28	88.27	SW	25.1	7.28	88.27
3.0	24.8	7.21	86.94	3.0	24.1	7.88	93.79
6.0	22.7	6.55	75.91	6.0	23.2	7.91	92.56
9.0	17.9	4.11	43.31	9.0	19.3	8.02	86.95

<u>ProDO meter.</u> At Fish Pond, dissolved oxygen was at ideal levels through July, ranging between 12.9 mg/L and 11.5mg/L. In August, the dissolved oxygen was lower but still at acceptable levels. Near the bottom of Fish Pond, the dissolved oxygen dropped, which is common near the sediment where oxygen exchange is at a minimum and oxygen demand is highest. Temperature has ranged from 13.9°C (57.02°F) to 25.1°C (77.18°F). At Swim Pond dissolved oxygen levels ranged from 13.3 mg/L to 7.3 mg/L. Temperatures ranged from 14.1°C (57.4°F) to 21.5°C (77.18°F). The highest temperature reached in both ponds was in August. Temperature and dissolved oxygen was not measured in September due to equipment failure.

Table 2: Water Quality Results

		F	ish Pond					
Parameter	Units	Detection Limit	April 28	May 10	June 6	July 21	August 23	Sept 6
Hardness	mg/L	0.66	61.8	NS	74.3	76.8	75.0	71.2
Turbidity	NTU	0.2	1.9	1.7	3.9	2.8	2.8	2.8
Total Alkalinity	mg CaCO3/L	2	30.4	33.4	36.4	40.9	46.1	48.2
Specific Conductance	umhos/cm	10	340	350	350	370	NS	360
рН	SU	-	6.9	8.2	8.0	8.6	NS	7.5
Total Phosphorus	mg/L	0.01	0.015	0.018	0.014	0.047	NS	0.054
Soluble Phosphorus	mg/L	0.01	0.030	ND	ND	ND	NS	0.011
True/Apparent Color	A.P.C.U.	5.0	NS	NS	NS	NS	12/44	NS
Nitrate/Nitrogen	mg/L	0.10	NS	NS	NS	NS	ND	NS
Total Nitrogen	mg/L	0.30	NS	NS	NS	NS	0.53	NS
Total Kjedahl Nitrogen	mg/L	0.300	NS	NS	NS	NS	0.531	NS
		Sv	vim Pond					
Parameter	Units	Detection Limit	April 28	May 10	June 6	July 21	August 23	Sept 6
Hardness	mg/L	0.66	81.3	NS	78.3	69.9	72.8	72.3
Turbidity	NTU	0.2	1.4	1.4	2.4	4.4	3.1	2.2
Total Alkalinity	mg CaCO3/L	2	32.4	33.5	36.5	40.7	46.7	47.8
Specific Conductance	umhos/cm	10	390	360	360	370	NS	360
рН	SU	-	7.4	8.0	7.6	8.6	NS	7.6

Page 4
Camp Sewataro, Sudbury, MA
2022 Year End Report

	Swim Pond								
Parameter	Units	Detection Limit	April 28	May 10	June 6	July 21	August 23	Sept 6	
Total Phosphorus	mg/L	0.01	0.011	0.010	0.013	0.037	NS	0.016	
Soluble Phosphorus	mg/L	0.01	0.036	ND	ND	ND	NS	ND	
True/Apparent Color	A.P.C.U.	5.0	NS	NS	NS	NS	12/20	NS	
Nitrate/Nitrogen	mg/L	0.10	NS	NS	NS	NS	ND	NS	
Total Nitrogen	mg/L	0.30	NS	NS	NS	NS	0.54	NS	
Total Kjedahl Nitrogen	mg/L	0.300	NS	NS	NS	NS	0.541	NS	

^{*}ND= non-detected; NS=not sampled

Hardness (Table 2) Hardness is a measure of dissolved salts in the water, usually calcium, but also magnesium and iron. Hardness is usually influenced by the geology and soil types of the watershed, and the amount of runoff over these surfaces. Hardness can be measured for only calcium content (Hardness (Ca)), or for all three salts, called Total Hardness. Water with Hardness (Ca) less than 10 mg/L can only support sparse aquatic biota. Freshwater typically has a Hardness (Ca) level from 4 to 100 mg/L. Swim & Fish Ponds saw a range of 69.9 to 81.3 mg/l and 61.8 to 76.8 mg/l, respectively. Hardness was not collected during the May sampling event.

<u>Turbidity</u> (<u>Table 2</u>) is a measure of the relative clarity of the water and is measured in NTU. Suspended solids in the water column such as clay particles, silt, and organic matter can cause an increase in turbidity; therefore, the lower the turbidity measurement, the clearer the water is. The leading sources of turbidity include soil erosion, waste discharge, urban runoff, flooding, dredging operations, increased flow rates, or algal blooms. An overabundance of bottom feeding fish, such as carp, can also increase turbidity due to constant grazing and disturbing of fine bottom sediments. Turbidity can affect a lake in many ways. These include temperature increases, reduced light penetration, and negative impacts to fish. In most freshwater systems, turbidity rarely rises above 5 NTU's. **Turbidity remained below the suggested 5 NTU threshold for all sampling months, but came close to reaching the threshold in the Swim Pond in July. This increase of turbidity is likely due to the recreational activities that occur in the pond.**

Total Alkalinity (Table 2) is a measure of the buffering capacity of a waterbody against acid additions such as acid rain and pollution, which can be detrimental to wildlife populations. Total alkalinity measures the presence of carbonates, bicarbonates and hydroxides. Values below 20 mg/l are a signal that the pond may be susceptible to fluctuations in pH. Alkalinity remained stable during the six sampling events, ranging from 30.4 mg CaCO3/L to 48.2 mg CaCO3/L.

Specific Conductance (Table 2) is the measure of water's ability to conduct an electrical current, and is measured in umhos/cm. The higher the number of charged particles (ions) in the water, the easier for electricity to pass through it. Conductivity is useful in lake management by estimating the dissolved ionic matter in the water. The lower the conductivity, the higher the quality of water (oligotrophic). A higher conductivity usually indicates an abundance of plant nutrients (total phosphorous and nitrate), or

Page 5 Camp Sewataro, Sudbury, MA 2022 Year End Report

eutrophic conditions. Conductivity can be increased by industrial discharge, road salt runoff, and septic tank leaching. Distilled water has a conductivity of 0.5 to 2.0 umhos/cm, while drinking water conductivity typically ranges from 50 to 1,500 umhos/cm. Conductivity below 500 umhos/cm is considered ideal in a lake system. The conductivity levels in Fish/Swim Ponds displayed desirable levels (between 350 and 400 umhos/cm) for New England waterbodies. Conductance was not sampled in July or August.

pH (Table 2) is a measurement of the acidity of the waterbody. The pH scale ranges from 0 (acidic) to 14 (basic) with 7 being neutral. Natural pH values of most freshwater systems in this region range between 6 and 8. Extreme pH values (less than 5 and greater than 9) have detrimental effects on organism physiology and can result in the direct loss of sensitive species. Diurnal fluctuations in pH are common in freshwater ponds and lakes. The extent to which the pH fluctuates depends on how well the freshwater system is buffered. The pH in Fish Pond ranged from 6.9 to 8.6. The reading of 8.6 is a higher value than is desired. Swim Pond pH values were similar, ranging between 7.4 to 8.6. The pH in both ponds seem to be naturally higher than average, as the monthly sampling has displayed. pH can be influenced by several factors and does not seem to negatively influence the overall ecology of the two ponds.

Total Phosphorus (Table 2) is a chemical compound derived from phosphorus and oxygen. Total phosphorus is usually present in freshwater in low concentrations and is often the limiting nutrient to aquatic plant and algae growth. However, man-made sources of phosphorus include septic system leaching, fertilizer runoff, and improperly treated wastewater. These phosphorus inputs usually enter a freshwater lake system during rain events, and bank erosion. A total phosphorus level greater than 0.03 mg/L can promote excessive aquatic plant growth and decomposition, either in the form of algal blooms, or nuisance quantities of aquatic plants. As a result of this excessive growth, recreational activities, such as swimming, boating, and fishing in the lake can be negatively impacted. In addition, aerobic bacteria will thrive under these conditions, causing a decrease in dissolved oxygen levels which can negatively impact aquatic biota. The total phosphorus in Fish Pond ranged from 14 ppm to 54 ppm (not sampled in August). The phosphorus levels in Swim Pond ranged from 10 ppm to 37 ppm. Both were above the suggested threshold of 30 ppm at certain points during the summer.

Soluble phosphorus (Table 2) is phosphorus that remains in the water after filtration to remove particulate matter. Soluble phosphorus can be a special problem because a) it is highly "bioavailable" to algae (i.e. it supports rapid algal growth and reproduction), and b) soluble phosphorus remains in the water while particulate phosphorus settles to lake bottoms where it may no longer be available to algae. Generally, soluble phosphorus over 20 parts per billion (ppb; or 0.02 mg/l) is the threshold at which algal growth can become problematic. The majority of the soluble phosphorus was below 20 ppm, aside from the April sampling where soluble phosphorus was detected in Fish Pond at 30 ppm and Swim Pond at 36 ppm. It was not sampled in August.

Algae ID & Enumeration (Table 3)

All sampling events for the contract period for algal species & enumeration have occurred at Camp Sewataro (April 28, May 10, June 6, July 21, August 23, and September 6). **Table 3** below displays the

species observed and the cell count associated with each species. MA DPH regards harmful algal blooms at a cell count of 70,000 cells/mL. Although results displayed relatively low, non-harmful algal/cyanobacteria cell counts during all sample months, the non-cyanobacteria algae counts were relatively high in April and May.

Table 3: Algal/Cyanobacteria Sampling Results April-September

April 28, 2022	FISH POND	SWIM POND
Genus	Cell Count	Cell Count
Filamentous Cyanobacteria	140	340
Total Cyanobacteria Cell Count	140	340
Diatoms	9,600	7,100
Navicula	29	29
Chlorophytes	6,900	6,000
Chrysophytes	58	10
Total Algae Cell Count	16,587	13,139

Cell Count	Cell Count
	Cell Coull
-	-
0	0
19,490	12,477
10	10
-	8,100
-	19
-	190
-	10
-	11,000
-	29
19,500	31,835
	19,490 10 - - - - -

June 6, 2022	FISH POND	SWIM POND
Genus	Cell Count	Cell Count
Unicellular Cyanobacteria		
Aphanocapsa	-	340
Filamentous Cyanobacteria		
Psuedanabaena	1,200	96
Total Cyanobacteria Cell Count	1,200	436
Diatoms	286	799
Nitzchia	130	130
Amphipleura	29	29
Chlorophytes	29	668
Tribonema	48	77
Desmids	19	29
Dinobryons	1,000	380
Total Algae Cell Count	1,541	2,112

July 21, 2022	FISH POND	SWIM POND
Genus	Cell Count	Cell Count
Unicellular Cyanobacteria		
Aphanocapsa	-	340
Filamentous Cyanobacteria		
Pseudanabaena	1,200	96
Total Cyanobacteria Cell Count	1,200	436
Diatoms	286	799
Desmids	19	29
Ceratrium	10	-
Biraphid pennate	159	159
Chrysophytes	1,000	380
Tribophytes/Eustigmatophytes	48	-
Chlorophyta	58	668
Total Algae Cell Count	1,580	2,035

August 23, 2022	FISH POND	SWIM POND
Genus	Cell Count	Cell Count
Unicellular Cyanobacteria		
None	-	-
Filamentous Cyanobacteria		
Aphanizomenon	-	10
Total Cyanobacteria Cell Count	0	10
Diatoms	740	1,100
Chrysophytes	-	29
Chlorophytes	410	-
Total Algae Cell Count	1,150	1,499
September 6, 2022	FISH POND	SWIM POND
Genus	Cell Count	Cell Count
Unicellular Cyanobacteria		
None	-	-
Filamentous Cyanobacteria		
Pseudanabaena	3,600	-
Pseudanabaena Total Cyanobacteria Cell Count	3,600 3,600	- 0
Total Cyanobacteria Cell Count	3,600	0
Total Cyanobacteria Cell Count Diatoms	3,600 1,258	0 207
Total Cyanobacteria Cell Count Diatoms Chlorophyta	3,600 1,258 49	0 207 187

SEDIMENT POLING

On July 22nd, a ten-foot pole was used to measure water depth, sediment depth and sediment type in both ponds. The water depth was measured from the surface of the pond to the top of the sediment layer. The sediment depth was measured from the top of the sediment layer to a solid refusal layer. Measurements were taken at predetermined points around each pond (Figure 1). Fish Pond had mostly organic matter with a sediment depth of 1-2 ft (Table 4). Swim Pond had mostly sand with a sediment depth of 1 ft (Table 5). A visual representation of the data is in Figure 2. The sediment layer was not sampled at water depths greater than 10 ft.

Table 4: Fish Pond Sediment Depth

Point Number	WATER DEPTH (Ft.)	SEDIMENT DEPTH (Ft.)	SEDIMENT TYPE
1	5'	2'	Organic Matter
2	5'	1'	Organic Matter
3	8'	1'	Mix organic matter/sand
4	7'	2'	Mix organic matter/sand
5	7'	2'	Mix organic matter/sand
6	9'	1'	Mix organic matter/sand
7	7'	1'	Sand
8	10'	Not Sampled	Not Sampled
9	9'	1' plus	Organic Matter
10	4'	1'	Organic Matter
11	9'	1' plus	Organic Matter
12	5'	1'	Organic Matter
13	3'	1'	Sand
14	5'	1'	Organic Matter
15	3'	1'	Organic Matter

Table 5: Swim Pond Sediment Depth

Point Number	WATER DEPTH (Ft.)	SEDIMENT DEPTH (Ft.)	SEDIMENT TYPE
1	10' plus	Not Sampled	Cement
2	6'	0	Cement
3	9'	1'	Sand
4	9'	1'	Sand
5	10' plus	Not Sampled	Not Sampled

SEDIMENT SAMPLING

Table 6: Sediment Chemistry Results

Sample ID	% Solids (% Dry Wt)	Labile (mg P/kg)	Reductant-Soluble (mg P/kg)	Metal-Oxide (mg P/kg) AL-P	Organic (mg P/kg)	Apatite & Residual (mg P/kg)
Fish Pond	16	4	129	454	386	310
Swim Pond	17	3	79	235	182	383

The above analysis parses out the different forms of phosphorus in the pond sediment. Labile P, or loosely bound, is that phosphorus that is in dissolved form in the sediment porewater or that which releases easily from the soil particles and is mostly available for plant and algae growth. Labile P levels were relatively low. Reductant soluble P is that which is bound to metals like iron and which can be released under low oxygen conditions at the sediment-water interface. Desirable reductant-soluble P levels are < 250 mg/Kg, so these levels are also relatively low. Metal-oxide P is phosphorus that is bound with metals such as aluminum and is generally not released under normal pond conditions. Organic P is phosphorus that is contained in more complex organic compounds such as proteins and which must be decomposed before potentially becoming available for algae growth. Apatite and Residual P is phosphorus that is tied up in mineral form and not available for biological growth.

In most cases, it is labile P and Organic P that is potentially released by the sediments and can be available to fuel algae growth. If the pond regularly experiences low or no oxygen at the bottom, reductant P can also be released during the summer month and potentially fuel algae blooms. For both ponds, the labile P and reductant P were within desirable ranges. As is typical for many ponds, organic P levels were moderate and therefore will affect the amount of phosphorus available to algae.

SUMMARY

- Limited aquatic vegetation exists in Fish Pond and Swim Pond.
- Both Fish and Swim Ponds displayed ideal nutrient levels for most of the season, but each pond exceeded desirable levels at different points, mostly in late summer.
- Algae and cyanobacteria cell counts remained at desirable levels with higher non-cyanobacteria counts in May and April.
- Sediment phosphorus levels were low to moderate, with most of the potentially available phosphorus being present as undecomposed organic material.

RECOMMENDATIONS

Based on this year's results, a continuation of monthly monitoring is recommended to track the water quality. If the cyanobacteria reaches high levels, an algaecide treatment could be necessary. At this time no plant control is necessary, but another vegetation survey is recommended next season to monitor for invasive or nuisance species.

Page 11 Camp Sewataro, Sudbury, MA 2022 Year End Report



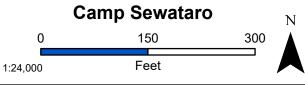
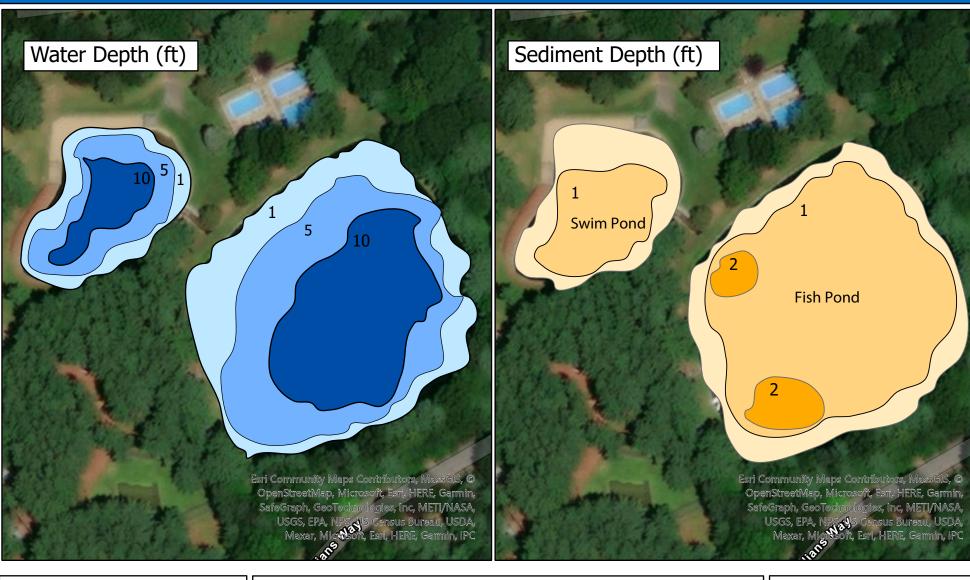

It does not appear that a high dose, sediment inactivation treatment using alum is needed at either pond. Low-dose treatment targeting water column phosphorus levels however may be needed periodically due to organic decomposition in the sediments and loading from the watershed. The need for low-dose water column treatment should be guided by regular testing of the pond water for total and soluble phosphorus.

FIGURE 1: Sediment Poling Sample Points



Map Date: 01/20/2023 Prepared by: SM Office: SHREWSBURY, MA

FIGURE 2: Swim and Fish Ponds Sediment Depth

1:1,449

Camp Sewataro 0 70 140 280 Feet

Survey Date: 07/22/2022 Prepared by: SB Office: SHREWSBURY, MA

Appendix A

- 1. Alpha Analytical, Inc. Nutrient Analysis Laboratory Results
- 2. Northeast Laboratories Algal Results
- 3. SePro Research & Technology Campus Sediment Analysis

ANALYTICAL REPORT

Lab Number: L2222364

Client: Solitude Lake Management, LLC

590 Lake Street

Shrewsbury, MA 01545

ATTN: Amanda Mahaney Phone: (508) 865-1000

Project Name: CAMP SEWATARO

Project Number: Not Specified Report Date: 05/24/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2222364

Report Date: 05/24/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2222364-01	FISH POND	WATER	SUDBURY, MA	04/28/22 14:00	04/28/22
L2222364-02	SWIM POND	WATER	SUDBURY, MA	04/28/22 14:30	04/28/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:CAMP SEWATAROLab Number:L2222364Project Number:Not SpecifiedReport Date:05/24/22

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

Phosphorus, Soluble

L2222364-01 and -02: The SPHOS result is slightly higher than the TPHOS result; however, the results are less than five times the reporting limits. Therefore, no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/24/22

Jufani Morrissey-Tiffani Morrissey

ALPHA

METALS

Project Name:CAMP SEWATAROLab Number:L2222364Project Number:Not SpecifiedReport Date:05/24/22

SAMPLE RESULTS

Lab ID:L2222364-01Date Collected:04/28/22 14:00Client ID:FISH PONDDate Received:04/28/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	61.8		mg/l	0.660	NA	1	05/17/22 19:0	5 05/23/22 18:07	EPA 3005A	1,6010D	EW

Project Name:CAMP SEWATAROLab Number:L2222364Project Number:Not SpecifiedReport Date:05/24/22

SAMPLE RESULTS

Lab ID:L2222364-02Date Collected:04/28/22 14:30Client ID:SWIM PONDDate Received:04/28/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by SM 2340B - Mansfield Lab											
Hardness	81.3		mg/l	0.660	NA	1	05/17/22 19:0	5 05/23/22 18:11	EPA 3005A	1,6010D	EW

Project Name: CAMP SEWATARO

Project Number:

Not Specified

Lab Number: Report Date: L2222364

05/24/22

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RLMDL **Factor Prepared** Analyzed Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1639019-1 Hardness ND mg/l 0.660 NA 05/23/22 17:58 1,6010D EW 05/17/22 19:05

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Lab Number:

L2222364

Project Number: Not Specified

Report Date:

05/24/22

Parameter	LCS %Recovery Qu	ual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab /	Associated sample(s):	01-02	Batch: WG1639	019-2				
Hardness	104		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number:

Not Specified

Lab Number:

L2222364

Report Date:

05/24/22

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD I %Recove	ry Qual	Recovery Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B -	- Mansfield La	b Associated	sample(s)	: 01-02 QC	Batch ID: WG16	39019-3 QC	Sample:	L2222404-02	Client ID:	MS Sample
Hardness	401	66.2	453	79		-		75-125	-	20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2222364

Report Date:

05/24/22

Parameter	Native Sample	Duplicate Sample	Units	RPD (Qual RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Sample	Associated sample(s): 01-02	QC Batch ID: WG1639019-4	QC Sample:	: L2222404	I-02 Client ID: DUP
Hardness	401	408	mg/l	2	20

Project Name:

Project Number:

CAMP SEWATARO

Not Specified

INORGANICS & MISCELLANEOUS

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2222364

Report Date: 05/24/22

SAMPLE RESULTS

Lab ID: L2222364-01

Client ID: FISH POND Sample Location: SUDBURY, MA

Date Collected: 04/28/22 14:00 Date Received: 04/28/22

Field Prep: Not Specified

Sample Depth:

Matrix: Water

Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
orough Lab)							
1.9	NTU	0.20		1	-	04/29/22 09:57	121,2130B	KP
30.4	mg CaCO3/L	2.00	NA	1	-	05/10/22 08:38	121,2320B	MT
340	umhos/cm	10		1	-	04/29/22 23:41	1,9050A	AS
6.9	SU	-	NA	1	-	04/29/22 18:14	1,9040C	AS
0.015	mg/l	0.010		1	05/04/22 07:30	05/04/22 15:37	121,4500P-E	SD
0.030	mg/l	0.010		1	05/12/22 11:00	05/12/22 12:06	121,4500P-E	SD
	orough Lab 1.9 30.4 340 6.9 0.015	orough Lab 1.9 NTU 30.4 mg CaCO3/L 340 umhos/cm 6.9 SU 0.015 mg/l	orough Lab 1.9 NTU 0.20 30.4 mg CaCO3/L 2.00 340 umhos/cm 10 6.9 SU - 0.015 mg/l 0.010	orough Lab 1.9 NTU 0.20 30.4 mg CaCO3/L 2.00 NA 340 umhos/cm 10 6.9 SU - NA 0.015 mg/l 0.010	Result Qualifier Units RL MDL Factor 0rough Lab 1.9 NTU 0.20 1 30.4 mg CaCO3/L 2.00 NA 1 340 umhos/cm 10 1 6.9 SU - NA 1 0.015 mg/l 0.010 1	Result Qualifier Units RL MDL Factor Prepared 0rough Lab 1.9 NTU 0.20 1 - 30.4 mg CaCO3/L 2.00 NA 1 - 340 umhos/cm 10 1 - 6.9 SU - NA 1 - 0.015 mg/l 0.010 1 05/04/22 07:30	Result Qualifier Units RL MDL Factor Prepared Analyzed 0rough Lab 1.9 NTU 0.20 1 - 04/29/22 09:57 30.4 mg CaCO3/L 2.00 NA 1 - 05/10/22 08:38 340 umhos/cm 10 1 - 04/29/22 23:41 6.9 SU - NA 1 - 04/29/22 18:14 0.015 mg/l 0.010 1 05/04/22 07:30 05/04/22 15:37	Result Qualifier Units RL MDL Factor Prepared Analyzed Method 0rough Lab 1.9 NTU 0.20 1 - 04/29/22 09:57 121,2130B 30.4 mg CaCO3/L 2.00 NA 1 - 05/10/22 08:38 121,2320B 340 umhos/cm 10 1 - 04/29/22 23:41 1,9050A 6.9 SU - NA 1 - 04/29/22 18:14 1,9040C 0.015 mg/l 0.010 1 05/04/22 07:30 05/04/22 15:37 121,4500P-E

Project Name: CAMP SEWATARO

Project Number: Not Specified Lab Number:

L2222364

Report Date: 05/24/22

SAMPLE RESULTS

Lab ID: L2222364-02

Client ID: SWIM POND Sample Location: SUDBURY, MA Date Collected:

04/28/22 14:30

Date Received:

04/28/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	orough Lab)							
Turbidity	1.4	NTU	0.20		1	-	04/29/22 09:57	121,2130B	KP
Alkalinity, Total	32.4	mg CaCO3/L	2.00	NA	1	-	05/10/22 08:38	121,2320B	MT
Specific Conductance @ 25 C	390	umhos/cm	10		1	-	04/29/22 23:41	1,9050A	AS
pH (H)	7.4	SU	-	NA	1	-	04/29/22 18:14	1,9040C	AS
Phosphorus, Total	0.011	mg/l	0.010		1	05/04/22 07:30	05/04/22 15:38	121,4500P-E	SD
Phosphorus, Soluble	0.036	mg/l	0.010		1	05/12/22 11:00	05/12/22 12:07	121,4500P-E	SD

L2222364

Lab Number:

Project Name: CAMP SEWATARO

Project Number: Not Specified **Report Date:** 05/24/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lab for sam	nple(s): 01	-02 Ba	itch: WC	31632496-1				
Turbidity	ND	NTU	0.20		1	-	04/29/22 09:57	121,2130B	KP
General Chemistry - Westl	oorough Lab for sam	nple(s): 01	-02 Ba	itch: WC	G1634132-1				
Phosphorus, Total	ND	mg/l	0.010		1	05/04/22 07:30	05/04/22 15:10	121,4500P-E	SD
General Chemistry - Westl	oorough Lab for sam	nple(s): 01	-02 Ba	itch: WC	31636219-1				
Phosphorus, Soluble	ND	mg/l	0.010		1	05/12/22 11:00	05/12/22 11:55	121,4500P-E	SD
General Chemistry - Westl	oorough Lab for sam	nple(s): 01	-02 Ba	itch: WC	31636481-1				
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	05/10/22 08:38	121,2320B	MT

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2222364

Report Date:

05/24/22

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1632496-2				
Turbidity	91	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1632696-1				
pH	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1632718-1				
Specific Conductance	101	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1634132-2				
Phosphorus, Total	108	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1636219-2				
Phosphorus, Soluble	105	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1636481-2				
Alkalinity, Total	102	-	90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2222364

Report Date: 05/24/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1634132-4	QC Sample: L	_2221884-05	Client ID:	MS Sample
Phosphorus, Total	0.339	0.5	0.736	79	-	-	75-125	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1636219-4	QC Sample: L	_2222209-01	Client ID:	MS Sample
Phosphorus, Soluble	0.144	0.5	0.624	97	-	-	75-125	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1636481-4	QC Sample: L	_2222586-01	Client ID:	MS Sample
Alkalinity, Total	513	100	623	110	-	-	86-116	-	10

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

 Lab Number:
 L2222364

 Report Date:
 05/24/22

Parameter	Nat	ive Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1632496-3	QC Sample:	L2222364-02	Client ID:	SWIM POND
Turbidity		1.4		1.4	NTU	0		13
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1632696-2	QC Sample:	L2221919-01	Client ID:	DUP Sample
рН		7.3		7.3	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1632718-2	QC Sample:	L2222364-01	Client ID:	FISH POND
Specific Conductance @ 25 C		340		330	umhos/cm	3		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1634132-3	QC Sample:	L2221884-02	Client ID:	DUP Sample
Phosphorus, Total		0.066		0.071	mg/l	7		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1636219-3	QC Sample:	L2222209-01	Client ID:	DUP Sample
Phosphorus, Soluble		0.144		0.142	mg/l	1		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	QC Batch ID:	WG1636481-3	QC Sample:	L2222586-01	Client ID:	DUP Sample
Alkalinity, Total		513		524	mg CaCO3/l	L 2		10

CAMP SEWATARO Lab Number: L2222364

Project Number: Not Specified Report Date: 05/24/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2222364-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		16.7	Υ	Absent		ALK-T-2320(14)
L2222364-01B	Plastic 250ml unpreserved	Α	7	7	16.7	Υ	Absent		FILTER(1)
L2222364-01C	Plastic 250ml unpreserved	Α	7	7	16.7	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2222364-01D	Plastic 250ml H2SO4 preserved	Α	<2	<2	16.7	Υ	Absent		TPHOS-4500(28)
L2222364-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	16.7	Υ	Absent		HARDT(180)
L2222364-01X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		16.7	Υ	Absent		SPHOS-4500(28)
L2222364-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		16.7	Υ	Absent		ALK-T-2320(14)
L2222364-02B	Plastic 250ml unpreserved	Α	7	7	16.7	Υ	Absent		FILTER(1)
L2222364-02C	Plastic 250ml unpreserved	Α	7	7	16.7	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2222364-02D	Plastic 250ml H2SO4 preserved	Α	<2	<2	16.7	Υ	Absent		TPHOS-4500(28)
L2222364-02E	Plastic 250ml HNO3 preserved	Α	<2	<2	16.7	Υ	Absent		HARDT(180)
L2222364-02X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		16.7	Υ	Absent		SPHOS-4500(28)

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a
specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Serial_No:05242213:14

Project Name:CAMP SEWATAROLab Number:L2222364Project Number:Not SpecifiedReport Date:05/24/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05242213:14

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ALPHA	СНА	IN OF C	CUSTO	OY ,	AGE	OF	Date	Rec'd i	n Lab:	4/2	28/	22		A	LPH	A Job	#: [22	2234	04
#CHIOGEOGRAPHIA 8 Walkup Drive	320 Forbes Blvd	Pro	oject Informati	ion			Rep	ort Info	rmat	ion - Da	ita De	liver	ables		Billing	g Inform	nation	N. L.		
Westboro, MA 0 Tel: 508-898-92	01581 Mansfield, MA 03	2048 Pro	ject Name: Cav	W Se	watar	0	ΠA	DEx		□ EMA	L	.,		0	Same	as Clie	nt info	PO #:		
Client Informatio	on	Pro	ject Name: Cav	udhia	MA		Reg	ulatory	Req	uiremei	nts (& P	rojec	t Info	rmati	on Rec	uirem	ents		
Client: SoLitua	le Loke Mana	gement Pro	ject #:	0112019						CP Analy Spike R				G2 /F					lytical Metho	ods
Address: 590		0	ect Manager:				☐ Ye	□ No	GW1	Standard										
Shreu	usbury, MA	01545 AL	PHA Quote #:		- 1-1-		7.5500.0000	□ No er State		S RGP Progran	n					Criteria				
Phone:	**	1000	ırn-Around Tin	ne		F8 78		1	1	15/	n/s	./.	/	/ /	7	//		/		
	mey@solitud	com A	Standard ate Due:	RUSH (only	confirmed if pre-a	pprovedl)	28260	D 48N D 524.2	METALS: DMCP 13 DM	EPH. DRanges & T. DRCRAS DRCRAS	VPH: CRanges & Tarres	D PEST Sels D Ranges On	Cord John DFingern	LEM TURE	Hardues	90/-	//	Fil D Pro	AMPLE INF tration Field Lab to do eservation Lab to do	L # BOT
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Colle Date	ction	Sample Matrix	Sampler	80/	SVOC.	METAL	EPH: D	D Pro	TOHE D	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sper	D TO		/ /		e Comment	T L E s
7364-01	Fish Pond		4/28/22	2:00	SW	KV							X	یرار	12				-	
	Swim Pone	X.	4/26/2a	2:30	SW	KV							X	< >	X	×				
								1												
																				+
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄				5,80%-6519	ainer Type eservative											-			
B= Bacteris cup C= Cube O= Other E= Encore D= BOD Bottle	E=NaOH F= MeOH G=NaHSO4 H= Na ₂ S ₂ O ₃ I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate O= Other	Krigh	elinquished By:		Dat り/みら/	e/Time 3:41	m	U)	Receive	eld By:	5	- ,	D.	ate/Tir /ƏQ	ne 15:4	Alpha See i	a's Tern reverse	ns and (side.	ed are subjections.	ect to

ANALYTICAL REPORT

Lab Number: L2224658

Client: Solitude Lake Management, LLC

590 Lake Street

Shrewsbury, MA 01545

ATTN: Amanda Mahaney Phone: (508) 865-1000

Project Name: CAMP SEWATARO

Project Number: Not Specified Report Date: 06/01/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2224658

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2224658-01	FISHING POND	WATER	SUDBURY, MA	05/10/22 14:40	05/10/22
L2224658-02	SWIMMING POND	WATER	SUDBURY, MA	05/10/22 15:00	05/10/22

Project Name:CAMP SEWATAROLab Number:L2224658Project Number:Not SpecifiedReport Date:06/01/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.												

L2224658

Project Name: CAMP SEWATARO

Not Specified Report D

Report Date: 06/01/22

Lab Number:

Case Narrative (continued)

Sample Receipt

Project Number:

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

L2224658-02: Headspace was noted in the sample containers submitted for Total Alkalinity - SM 2320.

The analyses performed were specified by the client.

pΗ

WG1636865: A Laboratory Duplicate was prepared with the sample batch, however, the native sample was not available for reporting; therefore, the results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 06/01/22

INORGANICS & MISCELLANEOUS

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2224658

Report Date: 06/01/22

SAMPLE RESULTS

Lab ID: L2224658-01

Client ID: FISHING POND Sample Location: SUDBURY, MA

Date Collected: 05/10/22 14:40

Date Received: 05/10/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lat)							
Turbidity	1.7	NTU	0.20		1	-	05/10/22 21:26	121,2130B	AS
Alkalinity, Total	33.4	mg CaCo	D3/L 2.00	NA	1	-	05/23/22 07:30	121,2320B	MT
Specific Conductance @ 25 C	350	umhos/	cm 10		1	-	05/11/22 19:53	1,9050A	AS
pH (H)	8.2	SU	-	NA	1	-	05/10/22 20:35	1,9040C	AS
Phosphorus, Total	0.018	mg/l	0.010		1	05/27/22 11:30	05/27/22 14:28	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	05/31/22 11:00	05/31/22 16:15	121,4500P-E	SD

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2224658

Report Date: 06/01/22

SAMPLE RESULTS

Lab ID: L2224658-02

Client ID: SWIMMING POND Sample Location: SUDBURY, MA

Date Collected:

05/10/22 15:00

Date Received:

05/10/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	orough Lat								
Turbidity	1.4	NTU	0.20		1	-	05/10/22 21:26	121,2130B	AS
Alkalinity, Total	33.5	mg CaCO3/L	2.00	NA	1	-	05/23/22 07:30	121,2320B	MT
Specific Conductance @ 25 C	360	umhos/cm	10		1	-	05/11/22 19:53	1,9050A	AS
pH (H)	8.0	SU	-	NA	1	-	05/10/22 20:35	1,9040C	AS
Phosphorus, Total	0.010	mg/l	0.010		1	05/27/22 11:30	05/27/22 14:29	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	05/31/22 11:00	05/31/22 16:17	121,4500P-E	SD

Lab Number:

Project Name: CAMP SEWATARO

L2224658 Project Number: Not Specified **Report Date:** 06/01/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Un	its I	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab fo	or sample(s	s): 01-02	2 Ba	itch: WG	91636889-1				
Turbidity	ND	١	NTU	0.20		1	-	05/10/22 21:26	121,2130B	AS
General Chemistry - W	estborough Lab fo	or sample(s	s): 01-02	2 Ba	itch: WC	91641553-1				
Alkalinity, Total	ND	mg C	aCO3/L	2.00	NA	1	-	05/23/22 07:30	121,2320B	MT
General Chemistry - W	estborough Lab fo	or sample(s	s): 01-02	2 Ba	itch: WC	91643637-1				
Phosphorus, Total	ND	r	ng/l	0.010		1	05/27/22 11:30	05/27/22 14:22	121,4500P-E	SD
General Chemistry - W	estborough Lab fo	or sample(s	s): 01-02	2 Ba	itch: WC	91644660-1				
Phosphorus, Soluble	ND	r	mg/l	0.010		1	05/31/22 11:00	05/31/22 16:12	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2224658

Davamatav	LCS	LCSD		%Recovery Limits	DDD		DDD Limite
Parameter	%Recovery Qual	%Recovery	Qual	LIIIIIIS	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1636865	5-1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1636889	9-2				
Turbidity	99	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1637402	2-1				
Specific Conductance	99	-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1641553	3-2				
Alkalinity, Total	103	-		90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1643637	7-2				
Phosphorus, Total	100	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1644660	0-2				
Phosphorus, Soluble	98	-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2224658

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1641553-4	QC Sample: L	_2225493-01	Client ID:	MS Sample
Alkalinity, Total	117	100	230	113	-	-	86-116	-	10
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1643637-4	QC Sample: L	_2224507-01	Client ID:	MS Sample
Phosphorus, Total	ND	0.5	0.502	100	-	-	75-125	-	20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1644660-3	QC Sample: L	_2224658-02	Client ID:	SWIMMING PON
Phosphorus, Soluble	ND	0.5	0.516	103	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number: L2224658

Parameter	Native Sa	mple [Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1636889-3	QC Sample:	L2224658-02	Client ID:	SWIMMING POND
Turbidity	1.4		1.5	NTU	7		13
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1637402-2	QC Sample:	L2224658-01	Client ID:	FISHING POND
Specific Conductance @ 25 C	350		340	umhos/cm	3		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1641553-3	QC Sample:	L2225493-01	Client ID:	DUP Sample
Alkalinity, Total	117		117	mg CaCO3/L	0		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1643637-3	QC Sample:	L2224507-01	Client ID:	DUP Sample
Phosphorus, Total	ND		0.010	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1644660-4	QC Sample:	L2224658-01	Client ID:	FISHING POND
Phosphorus, Soluble	ND		ND	mg/l	NC		20

Lab Number: L2224658

Report Date: 06/01/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

CAMP SEWATARO

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: Not Specified

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2224658-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		13.6	Υ	Absent		ALK-T-2320(14)
L2224658-01B	Plastic 250ml unpreserved	Α	7	7	13.6	Υ	Absent		FILTER(1)
L2224658-01C	Plastic 250ml unpreserved	Α	7	7	13.6	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2224658-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	13.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2224658-01E	Plastic 250ml H2SO4 preserved	Α	<2	<2	13.6	Υ	Absent		TPHOS-4500(28)
L2224658-01X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		13.6	Υ	Absent		SPHOS-4500(28)
L2224658-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		13.6	Υ	Absent		ALK-T-2320(14)
L2224658-02B	Plastic 250ml unpreserved	Α	7	7	13.6	Υ	Absent		FILTER(1)
L2224658-02C	Plastic 250ml unpreserved	Α	7	7	13.6	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2224658-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	13.6	Υ	Absent		HOLD-METAL-TOTAL(180)
L2224658-02E	Plastic 250ml H2SO4 preserved	Α	<2	<2	13.6	Υ	Absent		TPHOS-4500(28)
L2224658-02X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		13.6	Υ	Absent		SPHOS-4500(28)

Project Name: Lab Number: **CAMP SEWATARO** L2224658 **Report Date: Project Number:** Not Specified 06/01/22

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RPD

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2224658Project Number:Not SpecifiedReport Date:06/01/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2224658Project Number:Not SpecifiedReport Date:06/01/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2224658Project Number:Not SpecifiedReport Date:06/01/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06012214:15

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διρна	CHAI	N OF C	JSTO	DY	PAGE	_ OF	- Date R	ec'd in	Lab:	51	10/8	77	13	ALP	HA Job	p#:	_ 222 '	468
8 Walkup Drive	320 Forbes Blvd	110000000000000000000000000000000000000	ct Informa				of Street, or other Designation of the last of the las	rt Infor	1000	-		0.5		- No.	ng Infor			7000
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 0204 220 Tel: 508-822-9300	Project	Name:	imp S	Pewa	tard	□ AD	Ex	0	EMAIL		SERENINA.	30x	☐ Sar	ne as Cli	ent info	PO #:	
Client Information		Project	Name: C	South.	1/1/1	A	Regu	latory l	Requir	ement	s &	Proj	ect Ir	forma	tion Re	quiren	nents	E A AN
Address: 590 Shrewshy	de Cake Mus Cake St. , MA 01541	Project ALPH	#: Manager: A Quote #:		97-111	11	☐ Yes	□ No G □ No N	atrix Sp W1 Sta PDES I Fed Pr	ike Rei ndards RGP ogram	quired o (Info Re	n this	SDG? d for M	(Requi	EPH with	ICP Ino h Targe	RCP Analytica rganics) ets)	I Methods
Additional P	roject Information	lelake Asta	Around Ti	me □ RUSH (only	continued if pre-a	ppprovedf)	J8260 D 62.	METALS: CI ABN CI PAH	METALS: URCP13 UMCP14 CD	VPH. DRanges & Targets DPP13	D PCB DPES & Targets D Ranges Only	THE COUNTY ONLY CO	Sphort Lemanton	Total Park	Stayon		Filtration Field Lab t	o do 8
ALPHA Lab ID (Lab Use Only)	Sample	ID	Coll	ection	Sample Matrix	Sampler	Voc.	TALS	TALS		2 8	D F	7	10			□ Lab t	o do
24 <i>b58-01</i> 02	Flahing Swimming	Pond g Pand	5/10	7:00 pm	SW	Initials RU RV						X	XX	X			Sample Con	nments \$
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteris cup C= Cube O= Other E= Encore D= BOD Bottle Page 18 of 18	Preservative A= None B= HCI C= HNO3 D= H ₂ SO ₄ E= NsOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Relinq	uished By:	F	Pre	eservative e/Time	inl		ceived E				Date/	Time	Alph See	a's Tem reverse	submitted are ns and Condit side.	ions.

ANALYTICAL REPORT

Lab Number: L2229559

Client: Solitude Lake Management, LLC

590 Lake Street

Shrewsbury, MA 01545

ATTN: Amanda Mahaney Phone: (508) 865-1000

Project Name: CAMP SEWATARO

Project Number: Not Specified Report Date: 06/27/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2229559

Report Date:

06/27/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2229559-01	FISH POND	WATER	SUDBURY, MA	06/06/22 11:20	06/06/22
L2229559-02	SWIM POND	WATER	SUDBURY, MA	06/06/22 11:40	06/06/22

Project Name:CAMP SEWATAROLab Number:L2229559Project Number:Not SpecifiedReport Date:06/27/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:CAMP SEWATAROLab Number:L2229559Project Number:Not SpecifiedReport Date:06/27/22

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

L2229559-02: Headspace was noted in the sample container submitted for Total Alkalinity - SM 2320. The analysis was performed at the client's request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/27/22

Jufani Morrissey-Tiffani Morrissey

METALS

Project Name:CAMP SEWATAROLab Number:L2229559Project Number:Not SpecifiedReport Date:06/27/22

SAMPLE RESULTS

Lab ID:L2229559-01Date Collected:06/06/22 11:20Client ID:FISH PONDDate Received:06/06/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness I	ov SM 2340F	R - Mansfie	ld I ab								
Total Haraness I	3y 0111 20+01	, manone	ia Lab								
Hardness	74.3		mg/l	0.660	NA	1	06/17/22 19:0	0 06/27/22 15:30	EPA 3005A	1,6010D	NB

Project Name:CAMP SEWATAROLab Number:L2229559Project Number:Not SpecifiedReport Date:06/27/22

SAMPLE RESULTS

Lab ID:L2229559-02Date Collected:06/06/22 11:40Client ID:SWIM PONDDate Received:06/06/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	78.3		mg/l	0.660	NA	1	06/17/22 19:0	0 06/27/22 15:35	EPA 3005A	1,6010D	NB

Project Name: CAMP SEWATARO
Project Number: Not Specified

Lab Number: L2229559

Report Date: 06/27/22

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RLMDL **Factor Prepared** Analyzed Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1651721-1 Hardness ND mg/l 0.660 NA 06/27/22 14:25 1,6010D ΝB 06/17/22 19:00

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Lab Number:

L2229559

Project Number: Not Specified

Report Date:

06/27/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01-02	Batch: WG165	1721-2				
Hardness	102		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number:

Not Specified

Lab Number:

L2229559

Report Date:

06/27/22

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B	- Mansfield La	b Associated	d sample(s)	: 01-02 QC I	Batch ID: WG165	1721-3 QC Sa	ample: L2231490-01	Client ID:	MS Sample
Hardness	74.4	66.2	138	96		-	75-125	-	20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2229559

Report Date:

06/27/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD L	<u>imits</u>
Total Hardness by SM 2340B - Mansfield Lab Asso Sample	sociated sample(s): 01-02	QC Batch ID: WG1651721-4	QC Sample	: L2231	490-01 Client ID: [DUP
Hardness	74.4	75.6	mg/l	2		20

Project Name:

Project Number:

CAMP SEWATARO

Not Specified

INORGANICS & MISCELLANEOUS

L2229559

Project Name: CAMP SEWATARO

Report Date: **Project Number:** Not Specified

06/27/22

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2229559-01 06/06/22 11:20

Client ID: FISH POND Date Received: 06/06/22 Not Specified Sample Location: SUDBURY, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lab)							
Turbidity	3.9	NTU	0.20		1	-	06/06/22 23:30	121,2130B	AS
Alkalinity, Total	36.4	mg CaCO3/L	2.00	NA	1	-	06/17/22 10:16	121,2320B	CS
Specific Conductance @ 25 C	350	umhos/cm	10		1	-	06/07/22 09:34	1,9050A	KS
pH (H)	8.0	SU	-	NA	1	-	06/07/22 08:34	1,9040C	KS
Phosphorus, Total	0.014	mg/l	0.010		1	06/23/22 10:30	06/23/22 14:42	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	06/22/22 08:30	06/22/22 12:13	121,4500P-E	SD

Project Name: CAMP SEWATARO

Project Number: Not Specified Lab Number:

L2229559

Report Date:

06/27/22

SAMPLE RESULTS

Lab ID: L2229559-02

SWIM POND

Client ID: Sample Location: SUDBURY, MA Date Collected:

06/06/22 11:40

Date Received:

06/06/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lab)							
Turbidity	2.4	NTU	0.20		1	-	06/06/22 23:30	121,2130B	AS
Alkalinity, Total	36.5	mg CaCO3/L	2.00	NA	1	-	06/17/22 10:16	121,2320B	CS
Specific Conductance @ 25 C	360	umhos/cm	10		1	-	06/07/22 09:34	1,9050A	KS
pH (H)	7.6	SU	-	NA	1	-	06/07/22 08:34	1,9040C	KS
Phosphorus, Total	0.013	mg/l	0.010		1	06/23/22 10:30	06/23/22 14:43	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	06/22/22 08:30	06/22/22 12:15	121,4500P-E	SD

L2229559

Lab Number:

Project Name: CAMP SEWATARO

Project Number: Not Specified **Report Date:** 06/27/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for s	sample(s): 01	-02 Ba	atch: Wo	G1647295-1				
Turbidity	ND	NTU	0.20		1	-	06/06/22 23:30	121,2130B	AS
General Chemistry - Wes	stborough Lab for s	sample(s): 01	-02 Ba	atch: W0	G1651930-1				
Alkalinity, Total	ND	mg CaCO3/I	2.00	NA	1	-	06/17/22 10:16	121,2320B	CS
General Chemistry - Wes	stborough Lab for s	sample(s): 01	-02 Ba	atch: Wo	G1653793-1				
Phosphorus, Soluble	ND	mg/l	0.010		1	06/22/22 08:30	06/22/22 12:09	121,4500P-E	SD
General Chemistry - Wes	stborough Lab for s	sample(s): 01	-02 Ba	atch: W0	G1654351-1				
Phosphorus, Total	ND	mg/l	0.010		1	06/23/22 10:30	06/23/22 14:37	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2229559

Report Date:

06/27/22

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1647295-2				
Turbidity	106	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1647353-1				
рН	99	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1647355-1				
Specific Conductance	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1651930-2				
Alkalinity, Total	107	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1653793-2				
Phosphorus, Soluble	105	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1654351-2				
Phosphorus, Total	100	-	80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2229559

Report Date:

06/27/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	QC Batch II	D: WG1651930-4	QC Sample:	L2229095-12	Client ID:	MS Sample
Alkalinity, Total	278	100	393	115	-	-	86-116	-	10
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	QC Batch II	D: WG1651930-6	QC Sample:	L2229602-03	Client ID:	MS Sample
Alkalinity, Total	204	100	323	119	Q -	-	86-116	-	10
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	QC Batch II	D: WG1653793-3	QC Sample:	L2229559-02	Client ID:	SWIM POND
Phosphorus, Soluble	ND	0.5	0.496	99	-	-	75-125	-	20
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	QC Batch II	D: WG1654351-3	QC Sample:	L2229345-01	Client ID:	MS Sample
Phosphorus, Total	2.88	5	8.02	103	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

 Lab Number:
 L2229559

 Report Date:
 06/27/22

Parameter	Native	Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1647295-3	QC Sample:	L2229559-02	Client ID:	SWIM POND
Turbidity	:	2.4	2.3	NTU	4		13
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1647353-2	QC Sample:	L2229010-01	Client ID:	DUP Sample
рН	7	7.4	7.5	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1647355-2	QC Sample:	L2229484-01	Client ID:	DUP Sample
Specific Conductance	ı	ND	ND	umhos/cm	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1651930-3	QC Sample:	L2229095-12	Client ID:	DUP Sample
Alkalinity, Total	2	278	276	mg CaCO3/l	_ 1		10
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1651930-5	QC Sample:	L2229602-03	Client ID:	DUP Sample
Alkalinity, Total	2	204	207	mg CaCO3/l	_ 1		10
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1653793-4	QC Sample:	L2229559-01	Client ID:	FISH POND
Phosphorus, Soluble	ı	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	1-02 QC Batch	ID: WG1654351-4	QC Sample:	L2229345-01	Client ID:	DUP Sample
Phosphorus, Total	2	2.88	3.20	mg/l	11		20

Serial_No:06272221:22

Lab Number: L2229559

Report Date: 06/27/22

Project Name: CAMP SEWATARO

Project Number: Not Specified

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ntainer Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2229559-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		21.4	Υ	Absent		ALK-T-2320(14)
L2229559-01B	Plastic 250ml unpreserved	Α	7	7	21.4	Υ	Absent		FILTER(1)
L2229559-01C	Plastic 250ml unpreserved	Α	7	7	21.4	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2229559-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	21.4	Υ	Absent		HARDT(180)
L2229559-01E	Plastic 250ml H2SO4 preserved	Α	<2	<2	21.4	Υ	Absent		TPHOS-4500(28)
L2229559-01X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		21.4	Υ	Absent		SPHOS-4500(28)
L2229559-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		21.4	Υ	Absent		ALK-T-2320(14)
L2229559-02B	Plastic 250ml unpreserved	Α	7	7	21.4	Υ	Absent		FILTER(1)
L2229559-02C	Plastic 250ml unpreserved	Α	7	7	21.4	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2229559-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	21.4	Υ	Absent		HARDT(180)
L2229559-02E	Plastic 250ml H2SO4 preserved	Α	<2	<2	21.4	Υ	Absent		TPHOS-4500(28)
L2229559-02X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		21.4	Υ	Absent		SPHOS-4500(28)

Project Name: Lab Number: **CAMP SEWATARO** L2229559

Report Date: Project Number: Not Specified 06/27/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Serial_No:06272221:22

Project Name:CAMP SEWATAROLab Number:L2229559Project Number:Not SpecifiedReport Date:06/27/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:06272221:22

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHA	AIN OF C	USTO	DY P	AGE	OF	Date	Rec'd i	n Lab:	61	61	27	al se	E	ALP	HA J	ob #:	La	22953	50
8 Walkup Drive	320 Forbes Blv	d and a second	ject Informat		A A		Rep	ort Info	ormat	ion - [ata D	Delive	rable		-	-	ormati	-		
Westboro, MA 01 Tel: 508-898-922	581 Mansfield, MA	02048 300 Pro	ect Name: 🔾	uip (Selvate	Co.	DA	DEx		□ EM/	AIL.				☐ Sar	me as (Client in	fo Po) #:	
Client Information		Pro	ect Name: Co	dburn	MA		Reg	ulatory	/ Req	uireme	ents	&	Proje	ct In	forma	ation I	Requir	ement	S	
Client: Solitude	Lake Mana	genent Pro	ect#:	1	4					CP Ana				DG?			No C		Analytical Methodos	İs
Address: 590 Shrewsbur	Lake ST.	Proj	ect Manager:				☐ Yes	□ No	GW1	Standa	rds (In						with Tar		03)	
Shrewsbur	y, MA 015	545 AL	PHA Quote #:				10000000			S RGP Progra						_ Crite	eria			
Phone:		Tu	rn-Around Ti	ne				7	7	15	2/	/ د	\mathcal{J}	7	1	/ /		/ /	7	
Additional Pr		, AL	Standard C	RUSH (cnl)-(confirmed if pre-ap	gproved()	Dazen	SVOC: U ABN C 24 254.2	METALS: DMCP 13 DM	EPH: DRanow DRCRAS	Ranges Targets D Ranges	D PCB D PEST	Ally JOHN DE	S The "Berprint	# 12 1 PM	Meta 1s	//	//	SAMPLE INFO Filtration ☐ Field ☐ Lab to do Preservation ☐ Lab to do	1 O T T T T T T T T T T T T T T T T T T
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Colle	ection Time	Sample Matrix	Sampler Initials	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SVOC	METAL	EPH	VPHE	TPH.	All	1	12	//	//	Sai	mple Comments	
29559-01	Fish P	820	6/6/27	11: 20an	Sw	TU							X	V	X					Г
07	Juin 9	Pond	616/37	11:40am	Sw	ZÚ							Ý	Ý.	X					F
																				I
					7															<u> </u>
Container Type	Preservative																			
P= Plastic A= Amber glass V= Vial G= Glass	A= None B= HCl C= HNO ₃ D= H ₂ SO ₄			\perp	2000	iner Type eservative			\perp		\pm									+
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Re V	linquished By:		5/6	3:44	f	W	Receiv	ed By:	8)		Date/	Time 15.7	7_ 8	Alpha's 1 See reve	Terms a erse side	mitted are subject nd Conditions. e. v. 12-Mar-2012)	at to

ANALYTICAL REPORT

Lab Number: L2239167

Client: Solitude Lake Management, LLC

590 Lake Street

Shrewsbury, MA 01545

ATTN: Amanda Mahaney Phone: (508) 865-1000

Project Name: CAMP SEWATARO

Project Number: Not Specified Report Date: 08/11/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2239167

Report Date: 08/11/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2239167-01	SWIMMING POND	WATER	SUDBURY, MA	07/21/22 15:10	07/21/22
L2239167-02	FISHING POND	WATER	SUDBURY, MA	07/21/22 16:15	07/21/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:CAMP SEWATAROLab Number:L2239167Project Number:Not SpecifiedReport Date:08/11/22

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were delivered directly from the sampling site but were not on ice.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/11/22

Jufani Morrissey-Tiffani Morrissey

METALS

Project Name:CAMP SEWATAROLab Number:L2239167Project Number:Not SpecifiedReport Date:08/11/22

SAMPLE RESULTS

Lab ID:L2239167-01Date Collected:07/21/22 15:10Client ID:SWIMMING PONDDate Received:07/21/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness b	y SM 2340E	3 - Mansfiel	ld Lab								
Hardness	69.9		mg/l	0.660	NA	1	07/22/22 14:4	3 07/26/22 19:3	5 EPA 3005A	1,6010D	EW

Project Name:CAMP SEWATAROLab Number:L2239167Project Number:Not SpecifiedReport Date:08/11/22

SAMPLE RESULTS

Lab ID:L2239167-02Date Collected:07/21/22 16:15Client ID:FISHING PONDDate Received:07/21/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness	s by SM 2340E	3 - Mansfie	ld Lab								
Hardness	76.8		mg/l	0.660	NA	1	07/22/22 14:4	3 07/26/22 19:4	0 EPA 3005A	1,6010D	EW

Project Name: CAMP SEWATARO

Project Number:

L2239167 Not Specified **Report Date:**

08/11/22

Lab Number:

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RLMDL **Factor Prepared** Analyzed Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1666210-1 Hardness ND mg/l 0.660 NA 07/22/22 14:43 07/26/22 18:39 1,6010D EW

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Lab Number:

L2239167

Project Number:

Not Specified

Report Date:

08/11/22

Parameter	LCS %Recovery (Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab A	Associated sample(s	s): 01-02	Batch: WG1666	6210-2				
Hardness	103		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified Lab Number:

L2239167

Report Date:

08/11/22

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s)	: 01-02 QC E	Batch ID: WG166	66210-3 QC S	Sample: L2200081-45	Client ID:	MS Sample
Hardness	106	66.2	160	82	-	-	75-125	-	20

INORGANICS & MISCELLANEOUS

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2239167

Report Date:

08/11/22

SAMPLE RESULTS

Lab ID: L2239167-01

Client ID: SWIMMING POND Sample Location: SUDBURY, MA

Date Collected:

07/21/22 15:10

ING POND Date Received: RY, MA Field Prep:

ceived: 07/21/22 ep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lab)							
Turbidity	4.4	NTU	0.20		1	-	07/22/22 08:30	121,2130B	KP
Alkalinity, Total	40.7	mg CaCO3/L	2.00	NA	1	-	08/02/22 07:32	121,2320B	MT
Specific Conductance @ 25 C	370	umhos/cm	10		1	-	07/22/22 12:23	1,9050A	KS
pH (H)	8.6	SU	-	NA	1	-	07/21/22 22:09	1,9040C	AS
Phosphorus, Total	0.037	mg/l	0.010		1	08/11/22 08:30	08/11/22 13:35	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	08/10/22 12:15	08/10/22 15:40	121,4500P-E	SD

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2239167

Report Date: 08/11/22

SAMPLE RESULTS

Lab ID: L2239167-02

Client ID: FISHING POND Sample Location: SUDBURY, MA

Date Collected: 07/21/22 16:15 Date Received: 07/21/22

Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)							
Turbidity	2.8	NTU	0.20		1	-	07/22/22 08:30	121,2130B	KP
Alkalinity, Total	40.9	mg CaCO3/L	2.00	NA	1	-	08/02/22 07:32	121,2320B	MT
Specific Conductance @ 25 C	370	umhos/cm	10		1	-	07/22/22 12:23	1,9050A	KS
pH (H)	8.6	SU	-	NA	1	-	07/21/22 22:09	1,9040C	AS
Phosphorus, Total	0.047	mg/l	0.010		1	08/11/22 08:30	08/11/22 13:37	121,4500P-E	SD
Phosphorus, Soluble	ND	mg/l	0.010		1	08/10/22 12:15	08/10/22 15:42	121,4500P-E	SD

Lab Number:

Project Name: CAMP SEWATARO

L2239167 Project Number: Not Specified **Report Date:** 08/11/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	lifier Units	s RI	_ MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab fo	or sample(s):	01-02	Batch: W	/G1666097-	1			
Turbidity	ND	NT	U 0	20	1	-	07/22/22 08:30	121,2130B	KP
General Chemistry - W	/estborough Lab fo	or sample(s):	01-02	Batch: W	/G1670023-	1			
Alkalinity, Total	ND	mg Ca(CO3/L 2.	00 NA	1	-	08/02/22 07:32	121,2320B	MT
General Chemistry - W	estborough Lab fo	or sample(s):	01-02	Batch: W	/G1673511-	1			
Phosphorus, Soluble	ND	mg	/I 0.0)10	1	08/10/22 12:15	08/10/22 15:38	121,4500P-E	SD
General Chemistry - W	/estborough Lab fo	or sample(s):	01-02	Batch: W	/G1674005-	1			
Phosphorus, Total	ND	mg	/I 0.0)10	1	08/11/22 08:30	08/11/22 13:30	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number: L2239167

Report Date: 08/11/22

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1665455-1				
рН	99	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1666078-1				
Specific Conductance	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1666097-2				
Turbidity	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1670023-2				
Alkalinity, Total	107	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1673511-2				
Phosphorus, Soluble	104	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1674005-2				
Phosphorus, Total	104		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number: L2239167

Report Date: 08/11/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westboo	rough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1670023-4	QC Sample: L	.2239017-02	Client ID:	MS Sample
Alkalinity, Total	223	100	329	106	-	-	86-116	-	10
General Chemistry - Westboo	rough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1673511-3	QC Sample: L	.2239167-02	Client ID:	FISHING POND
Phosphorus, Soluble	ND	0.5	0.521	104	-	-	75-125	-	20
General Chemistry - Westbor	rough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1674005-3	QC Sample: L	.2239079-01	Client ID:	MS Sample
Phosphorus, Total	0.350	0.5	0.511	32	Q -	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

 Lab Number:
 L2239167

 Report Date:
 08/11/22

Parameter	Nativ	e Samp	ole D	Duplicate Sample		RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1665455-2	QC Sample:	L2238279-01	Client ID:	DUP Sample
рН		8.2		8.2	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1666078-2	QC Sample:	L2239167-01	Client ID:	SWIMMING POND
Specific Conductance @ 25 C		370		410	umhos/cm	10		20
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1666097-3	QC Sample:	L2238860-01	Client ID:	DUP Sample
Turbidity		ND		ND	NTU	NC		13
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1670023-3	QC Sample:	L2239017-02	Client ID:	DUP Sample
Alkalinity, Total		223		222	mg CaCO3/l	_ 0		10
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1673511-4	QC Sample:	L2239167-01	Client ID:	SWIMMING POND
Phosphorus, Soluble		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): (01-02	QC Batch ID:	WG1674005-4	QC Sample:	L2239079-01	Client ID:	DUP Sample
Phosphorus, Total		0.350		0.403	mg/l	14		20

Lab Number: L2239167

Report Date: 08/11/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

CAMP SEWATARO

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: Not Specified

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2239167-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		24.8	Υ	Absent		ALK-T-2320(14)
L2239167-01B	Plastic 250ml HNO3 preserved	Α	7	7	24.8	Υ	Absent		HARDT(180)
L2239167-01C	Plastic 250ml H2SO4 preserved	Α	<2	<2	24.8	Υ	Absent		TPHOS-4500(28)
L2239167-01D	Plastic 250ml unpreserved	Α	7	7	24.8	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2239167-01E	Plastic 250ml unpreserved	Α	7	7	24.8	Υ	Absent		FILTER(1)
L2239167-01X	Plastic 250ml H2SO4 preserved Filtrates	Α	<2	<2	24.8	Υ	Absent		SPHOS-4500(28)
L2239167-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		24.8	Υ	Absent		ALK-T-2320(14)
L2239167-02B	Plastic 250ml HNO3 preserved	Α	7	7	24.8	Υ	Absent		HARDT(180)
L2239167-02C	Plastic 250ml H2SO4 preserved	Α	<2	<2	24.8	Υ	Absent		TPHOS-4500(28)
L2239167-02D	Plastic 250ml unpreserved	Α	7	7	24.8	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2239167-02E	Plastic 250ml unpreserved	Α	7	7	24.8	Υ	Absent		FILTER(1)
L2239167-02X	Plastic 250ml H2SO4 preserved Filtrates	Α	<2	<2	24.8	Υ	Absent		SPHOS-4500(28)

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (DOD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \text{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:CAMP SEWATAROLab Number:L2239167Project Number:Not SpecifiedReport Date:08/11/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Albra	CHA	IN OF C	JSTO	ΟY	AGE	OF	Date Re	ec'd in L	ab:	7/2	117	22		ALPH	IA J	ob #:	12	23916
ADDRESS STREET	50 CBC VII. 60 INC. 11 P. 11		ct Informati	on		有 类似	-	t Inform	THE REAL PROPERTY.	-	-	-	1	-	-	formati	and the same of	
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 01581 Mansfield, MA (220 Tel: 508-822-93	A STATE OF THE PARTY OF T			de co	itale	□ ADE	NAME OF TAXABLE PARTY.	2/10/12/25	MAIL	essentini		100	□ Sam	ne as (Client in	fo PC) #:
Client Informatio	THE RESERVE OF THE PERSON NAMED IN	Projec	t Name: Ca t Location:	Vd5.	10 6	CA	Regul	atory R	equire	ments	. &	Proje	ect In	format	tion F	Requir	ements	
Client: Salth	de Lote	Projec	t #:		7			No MA					ence?					Analytical Methods
Address: 590	lehe	S/ Projec	Manager:				☐ Yes 0	No GV	V1 Stan	dards (-31
Sarela	de Late Lete Burgi, U	A ALPH	A Quote #:				☐ Yes 0								Crite	eria		
Phone:	9	Turn	-Around Tin	1e	THE ST			7 7		7	/_/	1	1	11	V	7	/ /	
Additional P	roject Informat	» Coin	ndard 🗅	RUSH (only	confirmed if pre-ap	proved)	J 8260 D 624	DABN DPAH	METALS: DRCRAS DMCP 14 DRC	VPH. CIP.	C PCB C PEST	TH: Douant Only De.	7H Tol	The tell the		//		SAMPLE INFO Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	San	nple ID	Colle Date	ction Time	Sample Matrix	Sampler Initials	Voc.	METAL	METAL	VPH:	D PCB	# /	125	7 cry		//		ple Comments
9167-01 -02	Swimm	ing Pond	7/21	3:102	2	20						7	7	7				
-02	Fishing	Pond	7/21	4:152	, Sw	ZN						X	X	X				
												+						
Container Type P= Plastic A= Amber glass A= HCI V= Vial G= Glass B= Bacteria cup C= Cube C= Cube C= Cube C= Encore D= BOD Bottle age 24 of 24 Preservative A= None A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H= Na ₃ S ₂ O ₃ I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate			Container Type Preservative Relinquished By: Date/Time H2(5:14pc)			Received By:												
		April V								7	1	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)						

ANALYTICAL REPORT

Lab Number: L2245640

Client: Solitude Lake Management, LLC

09/20/22

590 Lake Street

Shrewsbury, MA 01545

ATTN: Amanda Mahaney
Phone: (508) 865-1000
Project Name: Not Specified
Project Number: Not Specified

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Report Date:

Project Name: Not Specified Project Number: Not Specified

 Lab Number:
 L2245640

 Report Date:
 09/20/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2245640-01	FISH POND	WATER	Not Specified	08/23/22 10:00	08/23/22
L2245640-02	SWIM POND	WATER	Not Specified	08/23/22 10:31	08/23/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Case Narrative (continued)

Sample Receipt

L2245640-02: The collection date and time on the chain of custody was 23-AUG-22 10:20; however, the collection date/time on the container label was 23-AUG-22 10:31. At the client's request, the collection date/time is reported as 23-AUG-22 10:31.

Alkalinity, Total

WG1681274: A Matrix Spike and Laboratory Duplicate were not performed due to a laboratory oversight.

Nitrogen, Total Kjeldahl

The WG1684847-3 Laboratory Duplicate RPD for nitrogen, total kjeldahl (29%), performed on L2245640-02, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 09/20/22

METALS

Project Name:Not SpecifiedLab Number:L2245640Project Number:Not SpecifiedReport Date:09/20/22

SAMPLE RESULTS

Lab ID:L2245640-01Date Collected:08/23/22 10:00Client ID:FISH PONDDate Received:08/23/22Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	75.0		mg/l	0.660	NA	1	08/24/22 19:4	4 09/19/22 21:55	EPA 3005A	1,6010D	DL

Project Name:Not SpecifiedLab Number:L2245640Project Number:Not SpecifiedReport Date:09/20/22

SAMPLE RESULTS

Lab ID:L2245640-02Date Collected:08/23/22 10:31Client ID:SWIM PONDDate Received:08/23/22Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness	s by SM 2340E	3 - Mansfie	ld Lab								
Hardness	72.8		mg/l	0.660	NA	1	08/24/22 19:4	4 09/19/22 22:5	5 EPA 3005A	1,6010D	DL

Project Name: Lab Number: Not Specified L2245640 Project Number: Not Specified **Report Date:** 09/20/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lat	o for sam	ple(s):	01-02 E	Batch: WG	1679259-1			
Hardness	ND	mg/l	0.660	NA	1	08/24/22 19:44	09/19/22 20:38	1,6010D	DL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified

Lab Number:

L2245640

Project Number: Not Specified

Report Date:

09/20/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01-02	Batch: WG1679	9259-2				
Hardness	100		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number:

L2245640

Report Date:

09/20/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery 0	Recovery Qual Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B -	- Mansfield La	b Associated	sample(s)	: 01-02 QC I	Batch ID: WG16792	259-3 QC Sar	nple: L2245640-01	Client ID:	FISH POND
Hardness	75.0	66.2	138	95	-	-	75-125	-	20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2245640

Report Date:

09/20/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG1679259-4	QC Sample	e: L22456	640-01	Client ID: FISH POND
Hardness	75.0	73.4	mg/l	2		20

Project Name:

Project Number:

Not Specified

Not Specified

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: Not Specified L2245640 **Project Number:** 09/20/22 Not Specified

Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: L2245640-01 08/23/22 10:00 Client ID: FISH POND Date Received: 08/23/22 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	- Westborough	Lab							
E. Coli (MPN)	19.89	MPN/100ml	1	NA	1	-	08/23/22 17:30	121,9223B	DV
General Chemistry - We	estborough Lab								
Turbidity	2.8	NTU	0.20		1	-	08/23/22 21:40	121,2130B	AS
Color, True	12	A.P.C.U.	5.0		1	-	08/24/22 03:50	121,2120B	GB
Color, Apparent	44	A.P.C.U.	10		2	-	08/24/22 03:50	121,2120B	GB
Alkalinity, Total	46.1	mg CaCO3/L	2.00	NA	1	-	08/30/22 09:07	121,2320B	MT
Nitrogen, Nitrate/Nitrite	ND	mg/l	0.10		1	-	09/07/22 09:16	121,4500NO3-F	KA
Total Nitrogen	0.53	mg/l	0.30		1	-	09/09/22 14:06	107,-	JO
Nitrogen, Total Kjeldahl	0.531	mg/l	0.300		1	09/08/22 13:51	09/09/22 10:36	121,4500NH3-H	KP

Project Name: Not Specified Lab Number: L2245640 **Project Number:** Not Specified

Report Date: 09/20/22

SAMPLE RESULTS

Lab ID: Date Collected: L2245640-02 08/23/22 10:31 Client ID: SWIM POND Date Received: 08/23/22 Not Specified Sample Location: Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	s - Westborough	Lab							
E. Coli (MPN)	3.06	MPN/100ml	1	NA	1	-	08/23/22 17:30	121,9223B	DV
General Chemistry - We	estborough Lab								
Turbidity	3.1	NTU	0.20		1	-	08/23/22 21:40	121,2130B	AS
Color, True	12	A.P.C.U.	5.0		1	-	08/24/22 03:50	121,2120B	GB
Color, Apparent	20	A.P.C.U.	5.0		1	-	08/24/22 03:50	121,2120B	GB
Alkalinity, Total	46.7	mg CaCO3/L	2.00	NA	1	-	08/30/22 09:07	121,2320B	MT
Nitrogen, Nitrate/Nitrite	ND	mg/l	0.10		1	-	09/07/22 09:18	121,4500NO3-F	KA
Total Nitrogen	0.54	mg/l	0.30		1	-	09/09/22 14:06	107,-	JO
Nitrogen, Total Kjeldahl	0.541	mg/l	0.300		1	09/08/22 13:51	09/09/22 10:39	121,4500NH3-H	KP

Project Name: Lab Number: L2245640

Project Number: Not Specified Report Date: 09/20/22

Method Blank Analysis Batch Quality Control

Parameter	Result C	Qualifier (Jnits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological A	nalysis - Westboroug	h Lab for s	ample(s):	01-02	Batch	: WG16787	774-1			
E. Coli (MPN)	<1	N	/IPN/100ml	1	NA	1	-	08/23/22 17:30	121,9223B	DV
General Chemist	ry - Westborough Lab	o for sampl	e(s): 01-0)2 Bat	ch: WG	31678841-1				
Turbidity	ND		NTU	0.20		1	-	08/23/22 21:40	121,2130B	AS
General Chemist	ry - Westborough Lab	o for sampl	e(s): 01-0)2 Bat	ch: WG	31681274-1				
Alkalinity, Total	ND	m	g CaCO3/L	2.00	NA	1	-	08/30/22 09:07	121,2320B	MT
General Chemist	ry - Westborough Lab	o for sampl	e(s): 01-0)2 Bat	ch: WG	1684190-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	09/07/22 05:04	121,4500NO3-	F KA
General Chemist	ry - Westborough Lat	o for sampl	e(s): 01-0)2 Bat	ch: WG	1684847-1				
Nitrogen, Total Kjeldah	l ND		mg/l	0.300		1	09/08/22 13:51	09/09/22 10:33	121,4500NH3-l	н кр

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L2245640

Report Date:

09/20/22

Parameter	LCS %Recovery Q	ual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 0°	1-02	Batch: WG16788	341-2				
Turbidity	104		-		90-110	-		
General Chemistry - Westborough Lab As	sociated sample(s): 01	1-02	Batch: WG16812	274-2				
Alkalinity, Total	106		-		90-110	-		10
General Chemistry - Westborough Lab As	sociated sample(s): 0°	1-02	Batch: WG1684	190-2				
Nitrogen, Nitrate/Nitrite	92		-		90-110	-		20
General Chemistry - Westborough Lab As	sociated sample(s): 01	1-02	Batch: WG16848	347-2				
Nitrogen, Total Kjeldahl	98		-		78-122	-		

Matrix Spike Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number:

L2245640

Report Date:

09/20/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1684190-4	QC Sample: L	.2245396-01	Client ID:	MS Sample
Nitrogen, Nitrate/Nitrite	ND	4	3.7	92	-	-	80-120	-	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01-02	QC Batch II	D: WG1684847-4	QC Sample: L	.2245640-02	Client ID:	SWIM POND
Nitrogen, Total Kjeldahl	0.541	8	8.09	94	-	-	77-111	-	24

Lab Duplicate Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

 Lab Number:
 L2245640

 Report Date:
 09/20/22

Parameter	Native San	nple [Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-02	QC Batch ID:	WG1678841-3	QC Sample:	L2245645-01	Client ID:	DUP Sample
Turbidity	6.5		6.4	NTU	2		13
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1678960-1	QC Sample:	L2245640-01	Client ID:	FISH POND
Color, Apparent	44		44	A.P.C.U.	0		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1678964-1	QC Sample:	L2245640-01	Client ID:	FISH POND
Color, True	12		12	A.P.C.U.	0		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1684190-3	QC Sample:	L2245396-01	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1684847-3	QC Sample:	L2245640-02	Client ID:	SWIM POND
Nitrogen, Total Kjeldahl	0.541		0.727	mg/l	29	Q	24

Lab Number: L2245640

Report Date: 09/20/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Not Specified

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: Not Specified

Container Int	formation	Initial		Final				Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2245640-01A	Bacteria Cup Na2S2O3 preserved	Α	NA		6.2	Υ	Absent		E-COLI-QT(.33)
L2245640-01B	Bacteria Cup Na2S2O3 preserved	Α	NA		6.2	Υ	Absent		E-COLI-QT(.33)
L2245640-01C	Plastic 250ml HNO3 preserved	Α	<2	<2	6.2	Υ	Absent		HARDT(180)
L2245640-01D	Plastic 250ml unpreserved/No Headspace	Α	NA		6.2	Υ	Absent		ALK-T-2320(14)
L2245640-01E	Plastic 250ml unpreserved	Α	7	7	6.2	Υ	Absent		TURB-2130(2)
L2245640-01F	Amber 500ml unpreserved	Α	7	7	6.2	Υ	Absent		COLOR-T-2120(2),COLOR-A-2120(2)
L2245640-01H	Plastic 950ml H2SO4 preserved	Α	<2	<2	6.2	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28)
L2245640-02A	Bacteria Cup Na2S2O3 preserved	Α	NA		6.2	Υ	Absent		E-COLI-QT(.33)
L2245640-02B	Bacteria Cup Na2S2O3 preserved	Α	NA		6.2	Υ	Absent		E-COLI-QT(.33)
L2245640-02C	Plastic 250ml HNO3 preserved	Α	<2	<2	6.2	Υ	Absent		HARDT(180)
L2245640-02D	Plastic 250ml unpreserved/No Headspace	Α	NA		6.2	Υ	Absent		ALK-T-2320(14)
L2245640-02E	Plastic 250ml unpreserved	Α	7	7	6.2	Υ	Absent		TURB-2130(2)
L2245640-02F	Amber 500ml unpreserved	Α	7	7	6.2	Υ	Absent		COLOR-T-2120(2),COLOR-A-2120(2)
L2245640-02H	Plastic 950ml H2SO4 preserved	Α	<2	<2	6.2	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28)

GLOSSARY

Acronyms

EDL

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

nlv)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L2245640Project Number:Not SpecifiedReport Date:09/20/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

107 Alpha Analytical - In-house calculation method.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:09202214:02

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДРНА	CHA	AIN OF (column as of times	10 To	AGE	OF	DISCOURSE OF THE PARTY OF THE P	Rec'd in	CHATCH)		23/	-		EXPERIENCE	WINDS	1000	COLUMN 	4564	0
8 Walkup Drive Westboro, MA	320 Forbes Blv 01581 Mansfield, MA	d ===	oject Informat oject Name:	ion	CONTRACT					on - Da		verab	es		1980	ormatic		10/27/55	
Client Information	220 Tel: 508-822-9	300	oject Name.				Regu	(SSS)	250 - 10	EMAIL	100	Proi	ect Ir	Name and Address of the Owner, where	200 7 77	Require	THE RESERVE		975
Client: 501; +	10	THE REAL PROPERTY.	oject #:							P Analyt			ecti					alytical Method	ds
Address: FF A	Lake 59		oject #.													MCP Inc)	
Addiss. 3 4 0	Lake 31		.PHA Quote #:				☐ Yes	□ No I	NPDES	RGP	(mile)	oquio	. 101 11	ioldio (010)		
Phone:		100	urn-Around Tir	ne	1 1 3 3	THE SAME	LI Othe	er State	-7	Program	7	7 7	7	7	_ Crite	/ (/	7	7	525
Email:				A GRAN	80000			/	/ /	RCP P	Only	Only	/	//	/ /	10/	/ /	/	B
Additional P	roject Informat		Standard C	RUSH (only	confermed if pre-ap	proved()	AA AA	DABN DPAN	METALS: DEC 13 DMCP 12	EPH. DRanges & Taroat DRCP 15	D PCB C Targets D Ranges Only	TPH: Clouant Only	C/1, CFingerprint	PESSAIK -	8.1/	7.4. X 12. X	/ F	AMPLE INFO iltration I Field I Lab to do reservation I Lab to do	TOTAL # BOTT
ALPHA Lab ID (Lab Use Only)	Sar	nple ID	Colle	ection Time	Sample Matrix	Sampler Initials	/ Š	METALS.	METAL	EPH:	D PCI	He L		18/	8	°/ /	Samo	le Comments	LE
5640-01	Fish Par	d	0.000		(C)(C)(C)(F)(P)	U Droppinson and						/	V			1	Samp	ie Comments	
-07	Shim Po	d	8/23/22 8/23/22	10:2000	Suface	FA					П	1	1	/ .	/ /	+			
	3271 - 10	0	100000000000000000000000000000000000000									- 1.0		V	-	+			-
							\vdash	-				+	Н	-	+				-
							\vdash			-		-	+-	-	-	+			-
									-			+	\vdash	+	+	-			-
			_					1	-	4-	H	+		-		-			-
									-			+		-		++			-
								+	-	+		+							
								+		-		-				-			-
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCI C= HNO ₂				506500000	iner Type													
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 25 of 25	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₆ H = Na ₂ S ₂ O ₃ I= Ascorbic Àcid J = NH ₄ Cl K= Zn Accatae O= Other	Edhin	elinquished By:		7/23/2	1506	K	Re V~	ecejved	I Ву:	AC	8	Date/	Time	Al Se		ms and e side.	ted are subject Conditions.	to

ANALYTICAL REPORT

Lab Number: L2248035

Client: Solitude Lake Management, LLC

590 Lake Street

Shrewsbury, MA 01545

ATTN: David Manch
Phone: (508) 865-1000

Project Name: CAMP SEWATARO

Project Number: Not Specified Report Date: 10/05/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2248035

Report Date: 10/05/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2248035-01	FISHING POND	WATER	SUDBURY, MA	09/06/22 10:15	09/06/22
L2248035-02	SWIM POND	WATER	SUDBURY, MA	09/06/22 10:00	09/06/22

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

riodos sonidos riojos managoment at 555 52 riozzo mar any questione.										

Please contact Project Management at 800-624-9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/05/22

Melissa Sturgis Melissa Sturgis

ALPHA

METALS

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

SAMPLE RESULTS

Lab ID:L2248035-01Date Collected:09/06/22 10:15Client ID:FISHING PONDDate Received:09/06/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness b	oy SM 2340E	3 - Mansfiel	ld Lab								
Hardness	71.2		mg/l	0.660	NA	1	09/11/22 12:3	5 10/05/22 11:04	EPA 3005A	1,6010D	JF

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

SAMPLE RESULTS

Lab ID:L2248035-02Date Collected:09/06/22 10:00Client ID:SWIM PONDDate Received:09/06/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	72.3		mg/l	0.660	NA	1	09/11/22 12:3	35 10/05/22 11:01	EPA 3005A	1,6010D	JF

Project Name: CAMP SEWATARO
Project Number: Not Specified

Lab Number: L2248035

Report Date: 10/05/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield La	b for sam	ple(s):	01-02 l	Batch: WG	1685084-1			
Hardness	ND	mg/l	0.660	NA	1	09/11/22 12:35	10/05/22 10:47	7 1,6010D	JF

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Lab Number:

L2248035

Project Number: Not Specified

..... 0=........

Report Date:

10/05/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01-02	Batch: WG168	5084-2					
Hardness	101		-		80-120	-			

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number:

Not Specified

Lab Number:

L2248035

Report Date:

10/05/22

Parameter	Native Sample	MS Added	MS Found	MS %Recov	ery Q	Qual	MSD Found	MS %Reco	_	Recovery I Limits	RPD Qual	RPD Limits
Total Hardness by SM 2340B - POND	Mansfield La	b Associated	l sample(s)	: 01-02	QC Bato	ch ID:	WG16850)84-3	QC Sample	: L2248035-0	1 Client ID:	FISHING
Hardness	71.2	66.2	135	96	3		-	-		75-125	-	20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2248035

Report Date:

10/05/22

Parameter	Native Sample	Duplicate Sample	Units	RPD Q	ual RPD Limits
Total Hardness by SM 2340B - Mansfield Lab POND	Associated sample(s): 01-02	QC Batch ID: WG1685084-4	QC Sample:	L2248035-	01 Client ID: FISHING
Hardness	71.2	71.3	mg/l	0	20

Project Name:

Project Number:

CAMP SEWATARO

Not Specified

INORGANICS & MISCELLANEOUS

Project Name: CAMP SEWATARO

Lab Number: L2248035

Project Number: Not Specified

Report Date: 10/05/22

SAMPLE RESULTS

Lab ID:L2248035-01Date Collected:09/06/22 10:15Client ID:FISHING PONDDate Received:09/06/22Sample Location:SUDBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

General Chemistry - Westborough Lab Turbidity 2.8 NTU 0.20 1 - 09/07/22 07:36 124	
Turbidity 2.8 NTU 0.20 1 - 09/07/22 07:36 121	
	1,2130B KP
Alkalinity, Total 48.2 mg CaCO3/L 2.00 NA 1 - 09/19/22 08:01 121	1,2320B MT
Specific Conductance @ 25 C 360 umhos/cm 10 1 - 09/07/22 09:15 1,	9050A KS
pH (H) 7.5 SU - NA 1 - 09/07/22 12:39 1,	9040C KS
Phosphorus, Total 0.054 mg/l 0.010 1 09/21/22 09:00 09/21/22 13:00 121,	4500P-E AA
Phosphorus, Soluble 0.011 mg/l 0.010 1 09/13/22 08:30 09/13/22 12:26 121,	4500P-E AA

Project Name: CAMP SEWATARO Lab Number:

L2248035 Report Date: **Project Number:** 10/05/22 Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: L2248035-02 09/06/22 10:00 Client ID: SWIM POND Date Received: 09/06/22

Not Specified Sample Location: SUDBURY, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lab)							
Turbidity	2.2	NTU	0.20		1	-	09/07/22 07:36	121,2130B	KP
Alkalinity, Total	47.8	mg CaCO3/L	2.00	NA	1	-	09/19/22 08:01	121,2320B	MT
Specific Conductance @ 25 C	360	umhos/cm	10		1	-	09/07/22 09:15	1,9050A	KS
pH (H)	7.6	SU	-	NA	1	-	09/07/22 12:39	1,9040C	KS
Phosphorus, Total	0.016	mg/l	0.010		1	09/21/22 09:00	09/21/22 13:03	121,4500P-E	AA
Phosphorus, Soluble	ND	mg/l	0.010		1	09/13/22 08:30	09/13/22 12:27	121,4500P-E	AA

Project Name: CAMP SEWATARO

Lab Number: L2248035 Project Number: Not Specified **Report Date:** 10/05/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab 1	or samp	ole(s): 01	-02 Ba	atch: WC	G1684284-1				
Turbidity	ND		NTU	0.20		1	-	09/07/22 07:36	121,2130B	KP
General Chemistry - V	Vestborough Lab 1	or samp	ole(s): 01	-02 Ba	atch: WO	31686646-1				
Phosphorus, Soluble	ND		mg/l	0.010		1	09/13/22 08:30	09/13/22 12:10	121,4500P-E	AA
General Chemistry - V	Vestborough Lab 1	or samp	ole(s): 01	-02 Ba	atch: WO	31689073-1				
Alkalinity, Total	ND	r	mg CaCO3/L	2.00	NA	1	-	09/19/22 08:01	121,2320B	MT
General Chemistry - V	Vestborough Lab 1	or samp	ole(s): 01	-02 Ba	atch: WO	31689589-1				
Phosphorus, Total	ND		mg/l	0.010		1	09/21/22 09:00	09/21/22 12:58	121,4500P-E	AA

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2248035

Report Date:

10/05/22

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1684284-2				
Turbidity	96	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1684291-1				
Specific Conductance	100	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1684378-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1686646-2				
Phosphorus, Soluble	104	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1689073-2				
Alkalinity, Total	106	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1689589-2				
Phosphorus, Total	93	-	80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified

Lab Number:

L2248035

Report Date:

10/05/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1686646-4	QC Sample:	L2245830-04	Client ID:	MS Sample
Phosphorus, Soluble	0.026	0.5	0.520	99	-	-	75-125	-	20
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1689073-4	QC Sample:	L2248394-01	Client ID:	MS Sample
Alkalinity, Total	32.6	100	138	105	-	-	86-116	-	10
General Chemistry - Westbore	ough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1689589-4	QC Sample:	L2248035-01	Client ID:	FISHING POND
Phosphorus, Total	0.054	0.5	0.556	100	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMP SEWATARO

Project Number: Not Specified Lab Number: L2248035 10/05/22

Report Date:

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1684284-3	QC Sample:	L2248256-01	Client ID:	DUP Sample
Turbidity	2.4		2.4	NTU	0		13
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1684291-2	QC Sample:	L2248035-01	Client ID:	FISHING POND
Specific Conductance @ 25 C	360		350	umhos/cm	3		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1684378-2	QC Sample:	L2248035-01	Client ID:	FISHING POND
pH (H)	7.5		7.4	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1686646-3	QC Sample:	L2245830-02	Client ID:	DUP Sample
Phosphorus, Soluble	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1689073-3	QC Sample:	L2248394-01	Client ID:	DUP Sample
Alkalinity, Total	32.6		33.4	mg CaCO3/L	2		10
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1689589-3	QC Sample:	L2248035-01	Client ID:	FISHING POND
Phosphorus, Total	0.054		0.055	mg/l	2		20

Lab Number: L2248035

Report Date: 10/05/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

CAMP SEWATARO

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: Not Specified

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2248035-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		6.1	Υ	Absent		ALK-T-2320(14)
L2248035-01B	Plastic 250ml unpreserved	Α	7	7	6.1	Υ	Absent		FILTER(1)
L2248035-01C	Plastic 250ml unpreserved	Α	7	7	6.1	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2248035-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	6.1	Υ	Absent		HARDT(180)
L2248035-01E	Plastic 250ml H2SO4 preserved	Α	<2	<2	6.1	Υ	Absent		TPHOS-4500(28)
L2248035-01X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		6.1	Υ	Absent		SPHOS-4500(28)
L2248035-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		6.1	Υ	Absent		ALK-T-2320(14)
L2248035-02B	Plastic 250ml unpreserved	Α	7	7	6.1	Υ	Absent		FILTER(1)
L2248035-02C	Plastic 250ml unpreserved	Α	7	7	6.1	Υ	Absent		TURB-2130(2),PH-9040(1),COND-9050(28)
L2248035-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	6.1	Υ	Absent		HARDT(180)
L2248035-02E	Plastic 250ml H2SO4 preserved	Α	<2	<2	6.1	Υ	Absent		TPHOS-4500(28)
L2248035-02X	Plastic 250ml H2SO4 preserved Filtrates	Α	NA		6.1	Υ	Absent		SPHOS-4500(28)

Project Name: CAMP SEWATARO Lab Number: L2248035

Project Number: Not Specified Report Date: 10/05/22

GLOSSARY

Acronyms

EPA

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:CAMP SEWATAROLab Number:L2248035Project Number:Not SpecifiedReport Date:10/05/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DDY	PAGE O	F	Da	te Rec'o	d in La	b: 9	16h	2_			AL	PHA	Job #	:L	2248035	
ALPHA		Project Info	rmation			Re	port	Infor	matio	n Dai	a De	livera	bles		ling li				
Binasmeran	en.	AKE G					FAX			1000	EMAII				Same	as Clie	nt info	PO #:	
	Mansfield, MA TEL: 508-822-9300	Project Name	· Caus) ,		100.00	ADEx			10000		Delivera	446.50						
自然的自由的 对对对社会的	FAX: 508-822-3288	Project Name:	4	Sewate	450	- 110000				emen	ts/R	eport	Limit	10000		-	Mary		
Client Information		Project Location	on: July	vry , h	LA	Sie	te/Fed	Progra	m					Crite	eria				-
Client: SÖLitude La	ake Management	Project #:											TO SE		100	EFT	alk.	SETTO ESTATION	
Address: 590 Lake	ATTACANA TO THE PARTY OF THE PA	Project Manag	ger:																
Shrewsbury, MA 01		ALPHA Quote	#:			J			_		_			_	_	_	_		+
Phone: 508-865-10	00	Turn-Around	d Time				IALYS	SIS	T	T		Т	T	1	1	1	1	SAMPLE HANDLING	0
Fax:	0 " 111	_ 🗹 Standard	☐ Ru	ish (ONLY IF PR	E-APPROVED:	TOVOS	Motel										1	Filtration	A L
	y@solitudelake.com	-				12												□ Done □ Not Needed	#
	been Previously analyzed by Alpha	Due Date:	Time:	23			Tokal	2										Lab to do Preservation	8
Please run if out of I	ecific Requirements/Comments	/Detection Limi	its:			SPHOS	TH TUS /											Lab to do (Please specify below)	BOTTLES
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	lection Time	Sample Matrix	Sampler's Initials	HL-1	Cond 7											Sample Specific	
48635-01	Fishing Pond	9/6	10:15	Sw	EN	6	1	O											
-02	Swin Pond	9/6	10:66	Sw	PN			0											
						1													
		_			_	1	님	닏		닏	ᆜ	H							
					-	H	님	님	님	H	무	님	님	닏	닏		닏		
						H	H	님	H	님	무	片	H	片	님	님	무		_
						-	H		H	님	뷰	님	님	무	님	片	님		
						-	H	H	H	H	Η	H	H	님	무	ዙ	片		-
									ш	П	П	ш	Ш	ш	Ш	ш	ш		_
.0 6					reservative						•				-	-		Please print clearly, legibly	
			Relino	uished By:	- OSCIVATIVE	De	te/Time	,			_	red By:			-	ate/Tin		and completely. Samples co not be logged in and	can
FORM NO: 01-01(FNJ) (194-5-JAP-12)		Un		1-200	1/2	9/6	-	55	Sa				ورري	גפג		o lo	_	turnaround time clock will no start until any ambiguities ar resolved. All samples submitted are subject to Alpha's Payment Terms.	ot re

Page **1** of **5**

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2287283-01 Date Tested: 5/09/2022 Report Date: 5/13/2022

Date Received: 5/03/2022

Algae Species Identification (Expanded)

Sample Site: Surface Water @ Camp Sewataro Fish Pond in Sudbury, Massachusetts Date and Time Collected: 4/28/2022 14:00

Diatoms: Centric Diatoms					
Acanthoceras					
Aulacoseira					
Cyclotella					
Melosira					
Stephanodiscus					
Other centric					

Araphid Pennate Diat	oms
Asterionella	2,600
Diatoma	
Fragilaria	
Meridion	
Synedra	7,000
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	_
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenophtya				
Euglena				
Eutrepti				
Lepocinclis				
Phacus				
Trachelomonas				
Strombomonas				
Others				

Flagellated Chlorophy	ytes
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta				
Actinastrum				
Ankistrodesmus				
Botryococcus				
Chlorella				
Chlorococcum				
Closteriopsis				
Coelastrum				
Crucigenia				
Desmodesmus				
Dictyosphaerium				
Elakatothrix				
Golenkinia				
Kirchneriella				
Lagerheimia				
Micractinium				
Monoraphidium				

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

5. 1.1.5 .	
Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	29
Nitzschia	
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	

Page **2** of **5**

SOLitude Lake Management

590 Lake St. Laboratory ID#: N2287283-01 Shrewsbury, MA 01545 Date Tested: 5/09/2022

Report Date: 5/13/2022

Date Received: 5/03/2022

Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	***************************************
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	••••••
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	58
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	6,900
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 17,000/mL

Comments:

Results are based on the sample as received by Northeast Laboratories, Inc. 5/03/2022

Page 3 of 5

Approved by: Wan C. Jana

Alan C. Johnson, Laboratory Director

Date Received: 5/03/2022 Laboratory ID#: N2287283-02 Date Tested: 5/10/2022

Report Date: 5/13/2022

SOLitude Lake Management

590 Lake St.

Shrewsbury, MA 01545

Sample Site: Surface Water @ Camp Sewataro Swim Pond in Sudbury, Massachusetts Date and Time Collected: 4/28/2022 14:30

Algae Species Identification (Expanded)

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	2,200
Diatoma	
Fragilaria	
Meridion	
Synedra	4,900
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	
Monoraphidium	

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	29
Nitzschia	
Pinnularia	
Rhoicosphenia	
Rhopalodia	

Page 4 of 5

Phacus	
Trachelomonas	
Strombomonas	
Others	

1 480	- O. J
Stauroneis	
Surirella	
Other Biraphid Pennate	

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545

Laboratory ID#: N2287283-02 Date Tested: 5/10/2022

Report Date: 5/13/2022

Date Received: 5/03/2022

Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	•••••
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	10
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	6,000
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 13,000/mL

Page **5** of **5**

Treubaria	
Other Coccoid	
Other Elongate	

Comments:

• Results are based on the sample as received by Northeast Laboratories, Inc. 5/03/2022

Approved by: Dan C. Johnson, Laboratory Director

Page 1 of 3

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2287283-01
Date Tested: 5/09/2022
Report Date: 5/13/2022

Date Received: 5/03/2022

Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro Fish Pond in Sudbury, Massachusetts

Date and Time Collected: 4/28/2022 14:00

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	140
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: 140/mL

Comments:

• Results are based on the sample as received by Northeast Laboratories, Inc. 5/03/2022

Page 2 of 3

Approved by:

Alan C. Johnson, Laboratory Director

alan C. J. har

Date Received: 5/03/2022 Laboratory ID#: N2287283-02

Date Tested: 5/09/2022 Report Date: 5/13/2022

Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro Swim Pond in Sudbury, Massachusetts

Date and Time Collected: 4/29/2022 14:30

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

SOLitude Lake Management

590 Lake St.

Shrewsbury, MA 01545

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	340
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: 340/mL

Comments:

Page 3 of 3

• Results are based on the sample as received by Northeast Laboratories, Inc. 5/03/2022

Approved by:

Alan C. Johnson, Laboratory Director

Page **1** of **5**

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2287344-01
Date Tested: 5/16/2022
Report Date: 5/19/2022

Date Received: 5/11/2022

Algae Species Identification (Expanded)

Sample Site: Surface Water @ Swim Pond , Camp Swataro - Sudbury, MA Date and Time Collected: 5/10/2022 14:50

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	2400
Diatoma	
Fragilaria	77
Meridion	
Synedra	10,000
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	
Monoraphidium	10

Filamentous Chlorophytes	
Bulbochaete	_
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	
Nitzschia	19
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
b	l

Page **2** of **5**

Other Biraphid Pennate	

Strombomonas Others

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545

Laboratory ID#: N2287344-01 Date Tested: 5/16/2022 Report Date: 5/19/2022

Date Received: 5/11/2022

Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	19
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	8100
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 21,000 /mL

Page 3 of 5

Other Elongate	•••••
<u> </u>	

Comments:

• Results are based on the sample as received by Northeast Laboratories, Inc. 5/11/2022

Approved by: Dan C. Jan

Alan C. Johnson, Laboratory Director

Date Received: 5/11/2022 Laboratory ID#: N2287344-02 Date Tested: 5/16/2022

Report Date: 5/19/2022

SOLitude Lake Management

590 Lake St. Shrewsbury, MA 01545

Algae Species Identification (Expanded)

Sample Site: Surface Water @ Fish Pond , Camp Swataro - Sudbury, MA
Date and Time Collected: 5/10/2022 14:40

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	3000
Diatoma	
Fragilaria	490
Meridion	
Synedra	16,000
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenoph	tya
-----------	-----

Flagellated Chloroph	ytes
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chloro	phyta
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	10
Nitzschia	19
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • • • • • • • • • • • • • • • • • •

Monoraphidium



Page **4** of **5** 

Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 5/11/2022 Laboratory ID#: N2287344-02 Date Tested: 5/16/2022

Report Date: 5/19/2022

#### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmato	phytes
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	190
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	10
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	29
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	11,000
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 31,000/mL



Page 5 of 5

Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

#### **Comments:**

• Results are based on the sample as received by Northeast Laboratories, Inc. 5/11/2022

Approved by: Dan C. Janan Alan C. Johnson, Laboratory Director



Page 1 of 3

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 5/11/2022
Laboratory ID#: N2287344-01
Date Tested: 5/16/2022
Report Date: 5/19/2022

#### Cyanobacteria

Sample Site: Surface Water @ Swim Pond, Camp Swataro - Sudbury, MA
Date and Time Collected: 5/10/2022 14:50

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: ND /mL

**Comments:** 



Page 2 of 3

• Results are based on the sample as received by Northeast Laboratories, Inc. on 5/11/2022

Approved by:

Alan C. Johnson, Laboratory Director

alan C. John

Date Received: 5/11/2022 Laboratory ID#: N2287344-02 Date Tested: 5/16/2022

Report Date: 5/19/2022

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

#### Cyanobacteria

Sample Site: Surface Water @ Fish Pond, Camp Swataro - Sudbury, MA Date and Time Collected: 5/10/2022 14:40

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	
Spirulina	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: ND /mL



Page 3 of 3

Synechocystis	
Эупссиосузиз	

**Comments:** 

• Results are based on the sample as received by Northeast Laboratories, Inc. on 5/11/2022

Approved by:

Alan C. Johnson, Laboratory Director



Page 1 of 4

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

Date Received: 7/27/2022 Laboratory ID#: N2287963-01 Date Tested: 7/28/2022 Report Date: 7/29/2022

#### **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro – Swimming Pond

Date and Time Collected: 7/21/22

<b>Diatoms: Centric Diatoms</b>	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	
Diatoma	
Fragilaria	19
Meridion	
Synedra	770
Tabellaria	10
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chloro	ophyta
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	
Monoraphidium	58

Bulbochaete Chaetophora Cladophera Draparnaldia Hydrodictyon Microspora Oedogonium
Cladophera Draparnaldia Hydrodictyon Microspora Oedogonium
Draparnaldia Hydrodictyon Microspora Oedogonium
Hydrodictyon Microspora Oedogonium
Microspora Oedogonium
Oedogonium
Pithophora
Rhizoclonium
Stigeoclonium
Ulothorix
Other Filamentous Greens

Biraphid Pennate	
Amphipleura	29
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	
Nitzschia	130
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	



Page 2 of 4

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 7/27/2022 Laboratory ID#: N2287963-01 Date Tested: 7/28/2022

Report Date: 7/29/2022

#### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	77
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u> </u>	
<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	10
Staurodesmus	
Teilingia	
Xanthidium	19
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	460
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	150
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	380
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 2100/mL

Com C. Jane



Page 3 of 4

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

Date Received: 7/27/2022 Laboratory ID#: N2287963-02 Date Tested: 7/28/2022 Report Date: 7/29/2022

## **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro – Fishing Pond Date and Time Collected: 7/21/22

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	67
Diatoma	
Fragilaria	29
Meridion	
Synedra	180
Tabellaria	10
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	10
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	
Monoraphidium	29

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	29
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	
Nitzschia	130
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	



Page 4 of 4

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 7/27/2022 Laboratory ID#: N2287963-02 Date Tested: 7/28/2022

Report Date: 7/29/2022

### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	48
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u> </u>	
<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	19
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	58
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	1000
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 1600/mL



Page 1 of 2

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 7/27/2022 Laboratory ID#: N2287963-01 Date Tested: 7/28/2022 Report Date: 7/29/2022

#### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro – Swimming Pond Date and Time Collected: 7/21/22

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	340
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	96
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: 440/mL

#### Comments:

• Results are based on the sample as received by Northeast Laboratories, Inc. on 7/27/2022

Approved by:

Alan C. Johnson, Laboratory Director

alan C. John



Page 2 of 2

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 7/27/2022 Laboratory ID#: N2287963-02 Date Tested: 7/28/2022 Report Date: 7/29/2022

#### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro – Fishing Pond Date and Time Collected: 7/21/22

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	1200
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

Total Cell Count: 1200/mL

#### Comments:

• Results are based on the sample as received by Northeast Laboratories, Inc. on 7/27/2022

Approved by:

Alan C. Johnson, Laboratory Director

alan C. John



Page **1** of **5** 

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2288226-01
Date Tested: 9/01/2022
Report Date: 9/02/2022

Date Received: 8/25/2022

#### **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro, Swim Pond – Liberty Ledge, Sudbury, MA

Date and Time Collected: 8/23/22 10:24

Diatoms: Centric Diatoms	
Acanthoceras	740
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	
Diatoma	
Fragilaria	
Meridion	
Synedra	360
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	

Flagellated Chlorophytes		
Chlamydomonas		
Coccomonas		
Eudorina		
Pandorina		
Pyramichlamys		
Tetraselmis		
Volvox		
Other Flagelated Greens		

Coccoid/Colonial Chlorophyta		
Actinastrum		
Ankistrodesmus		
Botryococcus		
Chlorella		
Chlorococcum		
Closteriopsis		
Coelastrum		
Crucigenia		
Desmodesmus		
Dictyosphaerium		
Elakatothrix		
Golenkinia		
Kirchneriella		
Lagerheimia		
Micractinium		
Monoraphidium		

Filamentous Chlorophytes		
Bulbochaete		
Chaetophora		
Cladophera		
Draparnaldia		
Hydrodictyon		
Microspora		
Oedogonium		
Pithophora		
Rhizoclonium		
Stigeoclonium		
Ulothorix	•••••	
Other Filamentous Greens		

Biraphid Pennate		
Amphipleura		
Amphora (#)		
Cymtopleura		
Cymbella		
Entomoneis		
Epithemia		
Eunotia		
Frustulia		
Gomphonema		
Gyrosigma		
Navicula		
Nitzschia		
Pinnularia		
Rhoicosphenia		
Rhopalodia		
Stauroneis		



Page **2** of **5** 

	 	<del>-</del>
Trachelomonas	Surirella	
Strombomonas	Other Biraphid Pennate	
Others		

#### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 8/25/2022 Laboratory ID#: N2288226-01

> Date Tested: 9/01/2022 Report Date: 9/02/2022

#### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes		
Centritractus		
Ophiocytium		
Pseudostaurastrum		
Pseudotetraedron		
Tribonema		
Vaucheria		
Mischococcoid Taxa		
Chloramoeboid Taxa		
Rhizochlorid Taxa		
Heterogloeolid Taxa		
Other Tribophytes		
Raphidophytes		
Gonyostumum Taxa		
<u>Euglenophtya</u>		
Euglena		
Eutrepti		
Lepocinclis		
Phacus		
Trachelomonas		
Strombomonas		
Others		

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	

Flagellated Classic Chrysophytes		
Chromulina		
Chrysococcus		
Chrysosphaerella		
Dinobryon	29	
Kephyrian/Pseudokephyrian		
Mallomonas		
Ochramonas		
Synura		
Uroglena		
Uroglenopsis		
Others		
Non Motiles		
Haptophytes		

Total Cell Count: 1,100/mL



Page **3** of **5** 

Other Coccoid	
Other Elongate	

#### **Comments:**

Results are based on the sample as received by Northeast Laboratories, Inc. 8/25/2022

Approved by: Wan C. Johnson, Laboratory Director

Date Received: 8/25/2022 Laboratory ID#: N2288226-02 Date Tested: 9/01/2022

Report Date: 9/02/2022

590 Lake St. Shrewsbury, MA 01545

**SOLitude Lake Management** 

#### **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro, Fish Pond - Liberty Ledge, Sudbury, MA Date and Time Collected: 8/23/22 9:59

Diatoms: Centric Diatoms		
Acanthoceras	370	
Aulacoseira		
Cyclotella		
Melosira		
Stephanodiscus		
Other centric		

Araphid Pennate Diatoms	
Asterionella	
Diatoma	
Fragilaria	
Meridion	
Synedra	370
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	410
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate		
Amphipleura		
Amphora (#)		
Cymtopleura		
Cymbella		
Entomoneis		
Epithemia	***************************************	
Eunotia		
Frustulia		
Gomphonema		
Gyrosigma		
	•••••	

129 Mill Street Berlin, CT 06037



Page **4** of **5** 

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

Micractinium	
Monoraphidium	

Navicula	
Nitzschia	
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2288226-02 Date Tested: 9/01/2022 Report Date: 9/02/2022

Date Received: 8/25/2022

### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmatophytes	
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	•••••
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	•••••
Spirogyra (#)	
Staurastrum (#)	
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	
Schroederia/Ankyra	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 1,200/mL



Page **5** of **5** 

Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

#### **Comments:**

• Results are based on the sample as received by Northeast Laboratories, Inc. 8/25/2022

Approved by: Dan C Janan Alan C. Johnson, Laboratory Director



Page 1 of 3

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 8/25/2022

Laboratory ID#: N2288226-01

Date Tested: 9/01/2022

Report Date: 9/02/2022

### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro, Swim Pond – Liberty Ledge, Sudbury, MA

Date and Time Collected: 8/23/22 10:24

Cyanophyta: Unicellular & Colonial Forms	
Anabaena	
Aphanocapsa	
Aphanothece	
Chroococcus	
Coelosphoerium	
Dactylococcopsis	
Gomphosphaeria	
Merismpedia	
Microcystis	
Snowella	
Synechococcus/Related	
Woronichinia	
Other Coccoid Blue Greens	

Filamentous Non-Nitrogen Fixers		
Arthrospira		
Limonothrix		
Lyngbya		
Limnoraphis		
Microseira/Plectonema		
Oscillatoria		
Phormidium		
Planktolyngbya		
Planktothrix		
Pseudanabaena/Kromvophoron		
Spirulina		
Synechocystis		

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	10
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	•••••

Total Cell Count: 10 /mL

#### **Comments:**

• Results are based on the sample as received by Northeast Laboratories, Inc. on 8/25/2022



Page 2 of 3

Approved by:

Alan C. Johnson, Laboratory Director

alan C. J. har

Date Received: 8/25/2022 Laboratory ID#: N2288226-02 Date Tested: 9/01/2022

Report Date: 9/02/2022

### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro, Fish Pond – Liberty Ledge, Sudbury, MA
Date and Time Collected: 8/23/22 9:59

Cyanophyta: Unicellular & Colonial Forms		
Anabaena		
Aphanocapsa		
Aphanothece		
Chroococcus		
Coelosphoerium		
Dactylococcopsis		
Gomphosphaeria		
Merismpedia		
Microcystis		
Snowella		
Synechococcus/Related		
Woronichinia		
Other Coccoid Blue Greens		

**SOLitude Lake Management** 

590 Lake St.

Shrewsbury, MA 01545

Filamentous Non-Nitrogen Fixers	
Arthrospira	
Limonothrix	
Lyngbya	
Limnoraphis	
Microseira/Plectonema	
Oscillatoria	
Phormidium	
Planktolyngbya	
Planktothrix	
Pseudanabaena/Kromvophoron	
Spirulina	
Synechocystis	

Filamentous Nitrogen Fixers	
Anabaenopsis	
Aphanizomenon	
Calothrix/Rivularia	
Chrysosporxium	
Cuspidothrix	
Cylindrospermium	
Dolichospermium	
Gloeotrichia	
Hapalosiphon	
Nodularia	
Nostoc	
Raphidiopsis	
Sytonema	
Sphaerospermopsis	
Tolypothrix	
Other Filamentous Bluegreens (L)	
Other Filamentous Bluegreens (S)	

**Total Cell Count: None Detected /mL** 

**Comments:** 



Page 3 of 3

• Results are based on the sample as received by Northeast Laboratories, Inc. on 8/25/2022

Approved by:

Alan C. Johnson, Laboratory Director

Page **1** of **5** 

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Laboratory ID#: N2288364-01 Date Tested: 09/21/2022 Report Date: 09/26/2022

Date Received: 09/12/2022

### **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro, Fish Pond – Sudbury, MA Date and Time Collected: 09/06/22 10:15

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	
Diatoma	58
Fragilaria	
Meridion	
Synedra	1,200
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	1
Monoraphidium	10

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	
Nitzschia	110
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	



Date Received: 09/12/2022

Page **2** of **5** 

### **SOLitude Lake Management**

590 Lake St.

Shrewsbury, MA 01545

Date Tested: 09/21/2022

Report Date: 09/26/2022

Algae Species Identification (Expanded), cont.

	7 11840 0
Tribophytes/Eustigmato	phytes
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

<u>Desmids</u>	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	67
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

<u>Chlorophytes</u>	
Oocystis	
Pediastrum (#)	
Paulschulzia	
Polyedriopsis	
Pseudopediastrum	
Quadrigula	
Scenedesmus	38
Schroederia/Ankyra	
Selenastrum	
Sphaerocystis	
Tetradesmus (#)	
Tetraedron	
Tetrastrum	
Treubaria	
Other Coccoid	
Other Elongate	

Flagellated Classic Chrysophytes	
Chromulina	
Chrysococcus	
Chrysosphaerella	
Dinobryon	290
Kephyrian/Pseudokephyrian	
Mallomonas	
Ochramonas	
Synura	
Uroglena	
Uroglenopsis	
Others	
Non Motiles	
Haptophytes	

Total Cell Count: 1,800/mL

### **Comments:**

Results are based on the sample as received by Northeast Laboratories, Inc. 09/12/2022



Page 3 of 5

Approved by: Wan C. Johnson

Alan C. Johnson, Laboratory Director

Date Received: 09/12/2022 Laboratory ID#: N2288364-02 Date Tested: 09/21/2022 Report Date: 09/26/2022

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

### **Algae Species Identification (Expanded)**

Sample Site: Surface Water @ Camp Sewataro, Swim Pond – Sudbury, MA Date and Time Collected: 09/06/22 10:00

Diatoms: Centric Diatoms	
Acanthoceras	
Aulacoseira	
Cyclotella	
Melosira	
Stephanodiscus	
Other centric	

Araphid Pennate Diatoms	
Asterionella	
Diatoma	48
Fragilaria	
Meridion	
Synedra	140
Tabellaria	
Other Araphid Pennates	
Monoraphid Pennate	
Achnanthidium	
Cocconeis	

Pyrrhophyta	_
Ceratrium	
Gymnodinium	
Peridinium	
Other Dinofilagtes	
Other Dinomagies	

Euglenophtya	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	

Flagellated Chlorophytes	
Chlamydomonas	
Coccomonas	
Eudorina	
Pandorina	
Pyramichlamys	
Tetraselmis	
Volvox	
Other Flagelated Greens	

Coccoid/Colonial Chlorophyta	
Actinastrum	
Ankistrodesmus	
Botryococcus	
Chlorella	
Chlorococcum	
Closteriopsis	
Coelastrum	
Crucigenia	
Desmodesmus	
Dictyosphaerium	
Elakatothrix	
Golenkinia	
Kirchneriella	
Lagerheimia	
Micractinium	
Monoraphidium	29

Filamentous Chlorophytes	
Bulbochaete	
Chaetophora	
Cladophera	
Draparnaldia	
Hydrodictyon	
Microspora	
Oedogonium	
Pithophora	
Rhizoclonium	
Stigeoclonium	
Ulothorix	
Other Filamentous Greens	

Biraphid Pennate	
Amphipleura	
Amphora (#)	
Cymtopleura	
Cymbella	
Entomoneis	
Epithemia	
Eunotia	
Frustulia	
Gomphonema	
Gyrosigma	
Navicula	
Nitzschia	19
Pinnularia	
Rhoicosphenia	
Rhopalodia	
Stauroneis	
Surirella	
Other Biraphid Pennate	



Page **4** of **5** 

Others

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

Date Received: 09/12/2022 Laboratory ID#: N2288364-02 Date Tested: 09/21/2022

Report Date: 09/26/2022

### Algae Species Identification (Expanded), cont.

Tribophytes/Eustigmato	phytes
Centritractus	
Ophiocytium	
Pseudostaurastrum	
Pseudotetraedron	
Tribonema	
Vaucheria	
Mischococcoid Taxa	
Chloramoeboid Taxa	
Rhizochlorid Taxa	
Heterogloeolid Taxa	
Other Tribophytes	
Raphidophytes	
Gonyostumum Taxa	
<u>Euglenophtya</u>	
Euglena	
Eutrepti	
Lepocinclis	
Phacus	
Trachelomonas	
Strombomonas	
Others	

Desmids	
Closterium	
Cosmarium	
Desmidium	
Euastrum	
Hyalotheca	
Micrasterias	
Mougeotia/Debarya	
Octacanthium	
Pleurotaenium/Related	
Spirogyra (#)	
Staurastrum (#)	170
Staurodesmus	
Teilingia	
Xanthidium	
Zygnema/Zygnemopsis	
Others	

Chlorophytes					
Oocystis					
Pediastrum (#)	120				
Paulschulzia					
Polyedriopsis					
Pseudopediastrum					
Quadrigula					
Scenedesmus	38				
Schroederia/Ankyra					
Selenastrum					
Sphaerocystis					
Tetradesmus (#)					
Tetraedron					
Tetrastrum					
Treubaria					
Other Coccoid					
Other Elongate					

Flagellated Classic Chrysophytes				
Chromulina				
Chrysococcus				
Chrysosphaerella				
Dinobryon	38			
Kephyrian/Pseudokephyrian				
Mallomonas				
Ochramonas				
Synura				
Uroglena				
Uroglenopsis				
Others				
Non Motiles				
Haptophytes				

Total Cell Count: 600/mL



Page **5** of **5** 

**Comments:** 

• Results are based on the sample as received by Northeast Laboratories, Inc. 09/12/2022

Approved by: Com C Johnson, Laboratory Director



Page 1 of 3

### **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545 Date Received: 09/12/2022
Laboratory ID#: N2288364-01
Date Tested: 09/21/2022
Report Date: 09/26/2022

### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro, Fish Pond – Sudbury, MA
Date and Time Collected: 09/06/22 10:15

Cyanophyta: Unicellular & Colonial Forms				
Anabaena				
Aphanocapsa				
Aphanothece				
Chroococcus				
Coelosphoerium				
Dactylococcopsis				
Gomphosphaeria				
Merismpedia				
Microcystis				
Snowella				
Synechococcus/Related				
Woronichinia				
Other Coccoid Blue Greens				

Filamentous Non-Nitrogen Fixers				
Arthrospira				
Limonothrix				
Lyngbya				
Limnoraphis				
Microseira/Plectonema				
Oscillatoria				
Phormidium				
Planktolyngbya				
Planktothrix				
Pseudanabaena/Kromvophoron	3,600			
Spirulina				
Synechocystis				

Filamentous Nitrogen Fixers				
Anabaenopsis				
Aphanizomenon				
Calothrix/Rivularia				
Chrysosporxium				
Cuspidothrix				
Cylindrospermium				
Dolichospermium				
Gloeotrichia				
Hapalosiphon				
Nodularia				
Nostoc				
Raphidiopsis				
Sytonema				
Sphaerospermopsis				
Tolypothrix				
Other Filamentous Bluegreens (L)				
Other Filamentous Bluegreens (S)				

Total Cell Count: 3,600 /mL

#### **Comments:**

• Results are based on the sample as received by Northeast Laboratories, Inc. on 09/12/2022



Page 2 of 3

Approved by:

Alan C. Johnson, Laboratory Director

alan C. J. har

Date Received: 09/12/2022 Laboratory ID#: N2288364-02

> Date Tested: 9/21/222 Report Date: 9/26/2022

# **SOLitude Lake Management**

590 Lake St. Shrewsbury, MA 01545

### Cyanobacteria

Sample Site: Surface Water @ Camp Sewataro, Swim Pond – Sudbury, MA
Date and Time Collected: 09/06/22 10:00

Cyanophyta: Unicellular & Colonial Forms				
Anabaena				
Aphanocapsa				
Aphanothece				
Chroococcus				
Coelosphoerium				
Dactylococcopsis				
Gomphosphaeria				
Merismpedia				
Microcystis				
Snowella				
Synechococcus/Related				
Woronichinia				
Other Coccoid Blue Greens				

Filamentous Non-Nitrogen Fixers				
Arthrospira				
Limonothrix				
Lyngbya				
Limnoraphis				
Microseira/Plectonema				
Oscillatoria				
Phormidium				
Planktolyngbya				
Planktothrix				
Pseudanabaena/Kromvophoron				
Spirulina				
Synechocystis				

Filamentous Nitrogen Fixers				
Anabaenopsis				
Aphanizomenon				
Calothrix/Rivularia				
Chrysosporxium				
Cuspidothrix				
Cylindrospermium				
Dolichospermium				
Gloeotrichia				
Hapalosiphon				
Nodularia				
Nostoc				
Raphidiopsis				
Sytonema				
Sphaerospermopsis				
Tolypothrix				
Other Filamentous Bluegreens (L)				
Other Filamentous Bluegreens (S)				

Total Cell Count: None Detected /mL

**Comments:** 



Page 3 of 3

• Results are based on the sample as received by Northeast Laboratories, Inc. on 09/12/2022

Approved by:

Alan C. Johnson, Laboratory Director



## SePRO Research & Technology Campus



Company Name: Solitude Lake Management

lanagement Chain of Custody: COC13508

Billing Address:

1320 Brookwood Drive, Ste. H

City, State, Zip:

Little Rock, AR 72202

Project Name:

N/A

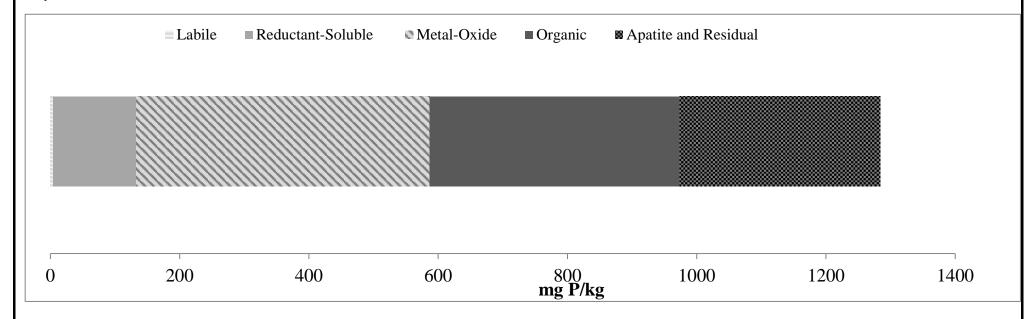
Report Date: 8/22/2022

SeSCRIPT Analysis Performed: SRTC Comprehensive Level 2

Waterbody Name: Camp Sewataro
Size (ac.): N/A
Average Water Depth (ft): N/A

Sample Collection Date: N/A

Contact Person: Amanda Mahaney


Email Address: amahaney@solitudelake.com

Telephone: N/A

Sample ID	% Solids (% Dry Wt.)	Labile (mg P/kg)	Reductant-Soluble (mg P/kg)	Metal-Oxide (mg P/kg)	Organic (mg P/kg)	Apatite and Residual (mg P/kg)
CTM37954-1	16	4	129	454	386	310

^{*} Concentration was less than reportable limits with 99% confidence

All concentrations are reported based on dry weight



**SePRO Research & Technology Campus** 

16013 Watson Seed Farm Road, Whitakers, NC, 27891

**Sescript***
Analysis

Page 1 of 1



Billing Address:

## SePRO Research & Technology Campus



Company Name: Solitude Lake Management

1320 Brookwood Drive, Ste. H

City, State, Zip: Little Rock, AR 72202

Project Name: N/A

Waterbody Name: Camp Sewataro Size (ac.): N/A

Average Water Depth (ft): N/A

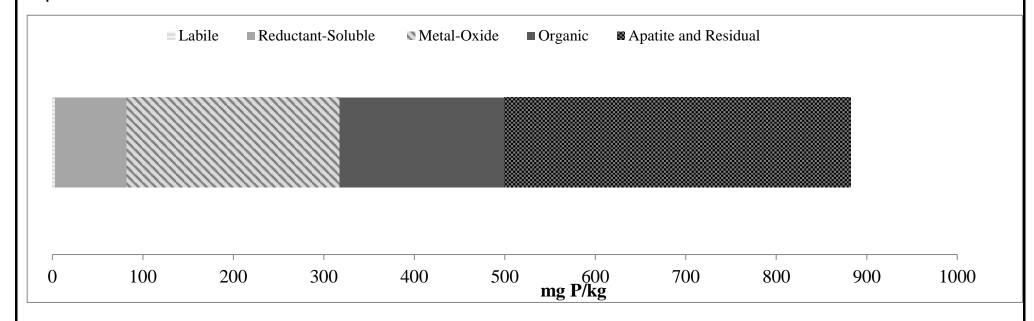
Sample Collection Date: N/A

Contact Person: Amanda Mahaney

Email Address: amahaney@solitudelake.com

Telephone: N/A

Chain of Custody: COC13508


**Report Date:** 8/22/2022

SeSCRIPT Analysis Performed: SRTC Comprehensive Level 2

Sample ID	% Solids (% Dry Wt.)	Labile (mg P/kg)	Reductant-Soluble (mg P/kg)	Metal-Oxide (mg P/kg)	Organic (mg P/kg)	Apatite and Residual (mg P/kg)
CTM37955-1	17	3	79	235	182	383

^{*} Concentration was less than reportable limits with 99% confidence

All concentrations are reported based on dry weight



**SePRO Research & Technology Campus** 

16013 Watson Seed Farm Road, Whitakers, NC, 27891

**Sescript***
Analysis

Page 1 of 1